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complex applications such as satellite
control, autonomy, and data analysis;
the Pilot's Associate; autonomous
vehicles; battle management;
aerospace systems (for example, moni-
toring electric, power, propulsion, and
life-support systems); communica-
tions network monitoring and con-
trol; robotics and vision systems; pro-
cess control; financial advice (for
example, a market monitor, adviser,
or trader); and medicine (patient mon-
itoring).

Why Use a Real-Time 
Expert System?

As discussed by Turner (1986), the
"principal reason for using a real-time
expert system is to reduce the cogni-
tive load on users or to enable them to
increase their productivity without
the cognitive load on them increas-
ing."

Indicators that a real-time expert
system might be appropriate, especial-
ly when conventional techniques
have failed or are impractical, include
problem-solving situations where
humans suffer from cognitive over-
load, fail to effectively monitor all
available information, are unable to
resolve conflicting constraints, are
expensive or scarce, make high-cost
mistakes, miss high-revenue opportu-
nities, cannot simultaneously manip-
ulate all the relevant information to
obtain optimal solutions, or cannot
provide a solution quickly enough.

As shown earlier, many reasons
explain why real-time domains could
benefit from the capability to capture
and apply expert knowledge that
expert systems offer. For example, an
operator on an oil platform can be
confronted with 500 analog and 2500
digital signals, resulting in a consider-

s the application of knowledge-
based systems evolves from an

art to an engineering discipline, we
can expect more challenging applica-
tions to be addressed. Some of the
most challenging and interesting envi-
ronments are found in real-time
domains.

A knowledge-based system operat-
ing in a real-time situation (for exam-
ple, crisis intervention or threat
recognition) will typically need to
respond to a changing task environ-
ment involving an asynchronous flow
of events and dynamically changing
requirements with limitations on
time, hardware, and other resources.
A flexible software architecture is
required to provide the necessary rea-
soning on rapidly changing data with-
in strict time requirements while it
accommodates temporal reasoning,
nonmonotonicity, interrupt handling,
and methods for handling noisy input
data.

Real-time computer systems have
become an integral part of our every-
day life.  As discussed by Wright et al.
(1986) they are being used in a grow-
ing number of applications ranging
from small, simple controllers found
in common household appliances to
large, complex systems for industrial
and military purposes. The complexi-
ty of these systems is increasing
rapidly along three dimensions: (1) the
number of functions controlled, (2)
the rate at which the functions must
be controlled, and (3) the number of
factors that must be considered before
a decision can be made. The increas-
ing complexity has caused consider-
able interest in the use of knowledge-
based techniques for real-time appli-
cations. Proper application of these
problem-solving techniques can result
in more sophisticated strategies for

Real-time domains present a new and
challenging environment for the applica-
tion of knowledge-based problem-solving

techniques.  However, a substantial
amount of research is still needed to

solve many difficult problems before real-
time expert systems can enhance current
monitoring and control systems.  In this

article, we examine how the real-time
problem domain is significantly different

from those domains which have tradi-
tionally been solved by expert systems.

We conduct a survey on the current state
of the art in applying knowledge-based

systems to real-time problems and
describe the key issues that are pertinent

in a real-time domain. The survey is
divided into three areas: applications,
tools, and theoretic issues.  From the

results of the survey, we identify a set of
real-time research issues that have yet to

be solved and point out limitations of
current tools for real-time problems.

Finally, we propose a set of requirements
that a real-time knowledge-based system

must satisfy.
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able cognitive load in the event of a
system problem. For the future, oil
platform control rooms are being
planned that will make available as
many as 20,000 signals for just two or
three operators (Sachs, Paterson and
Turner 1986).  In other domains, such
as satellite operation and control,
qualified personnel are becoming
increasingly difficult to find, especial-
ly those who are able to evaluate com-
plex situations and recommend
actions (Krutchen 1986). Similarly, in
the world of stock market and foreign
currency exchange, good traders who
can quickly assimilate and evaluate
information and act on it are scarce
and expensive (Behan and Lecot 1987).
The stock market is also one of many
domains where the sheer volume and
complexity of information make it
difficult for a human to make correct,
timely decisions.

Many of the domains described ear-
lier have problem areas that could
benefit from the application of a real-
time knowledge-based system. Our
main goal in writing this article is to
examine the current state of the art in
real-time expert systems and indicate
areas where future research is needed.
First, we briefly discuss what "real
time" means and how real-time pro-
cessing differs from nonreal-time pro-
cessing. We then present the results of
our survey of real-time expert system
applications, followed by concluding
remarks. Our conclusions describe the
limitations of current tools for real-
time problems and list a set of
requirements that a real-time expert
system tool should offer.

Defining "Real Time"
The term real time is often easier to
recognize than to define. For example,
no one would call real time a comput-
er program that spends the night
updating bank accounts based on a
tape of recorded transactions.  Howev-
er, most people would probably agree
that a computer program which auto-
matically pilots an aircraft is real
time.

As discussed by O'Reilly and Cro-
marty (1985), many definitions of real
time exist.  Perhaps the most com-
mon usage of the term real time is
"fast," in the sense that a system is

considered real time if it processes
data quickly. Another common defini-
tion is that real time means "percep-
tually fast" or, at least, "faster than a
human can do it." A better definition
of real time states that the "the sys-
tem responds to incoming data at a
rate as fast or faster than it is arriv-
ing."  Although scarcely precise, this
definition does link the concept of
real time to problem-relevant perfor-
mance measures.

The literature also offers the follow-
ing two formal definitions of real-
time: (1) a system exhibits real time
behavior if it is "predictably fast
enough for use by the process being
serviced" (Marsh and Greenwood
1986) and (2) "there is a strict time
limit by which the system must have
produced a response, regardless of the
algorithm employed" (O'Reilly and
Cromarty 1985).

Response time is the time the com-
puter takes to recognize and respond
to an external event. This measure is
the most important in real-time appli-
cations; if events are not handled in a
timely fashion, the process can literal-
ly go out of control.  Thus, the feature
that defines a real-time system is the
system's ability to guarantee a
response after a fixed time has
elapsed, where the fixed time is pro-
vided as part of the problem state-
ment.  If, given an arbitrary input (or
event) and an arbitrary state of the
system, the system always produces a
response by the time it is needed,
then the system is said to be real
time.

Why Is Real Time Different?
Traditionally, knowledge-based prob-
lem-solving techniques have been
applied in domains where the data are
static, and no time-critical responses
are required. Many of the early diag-
nostic, design, and configuration sys-
tems exhibit these characteristics. AI
researchers find in real-time domains
a new set of complex problems, such
as those outlined in the following
paragraphs.

Nonmonotonicity: Incoming sensor
data, as well as facts that are deduced,
do not remain static during the entire
run of the program. The data are
either not durable and decay in validi-

ty with time, or they cease to be valid
because events have changed the state
of the system.

Continuous operation: Many real-
time systems continue to operate
until stopped by an operator or some
catastrophic external event.  The dis-
covery of a partial or complete failure
of one or more parts of the system
does not necessarily imply that the
system will stop functioning. A real-
time system monitor or controller
must be capable of continuous opera-
tion, which also implies that close
attention must be paid to the issue of
garbage collection.

Asynchronous events: Much of the
activity in a real-time system con-
forms to a schedule; that is, real-time
systems process data in an orderly and
predictable manner. However, in
many real-time systems, events can
occur that fail to conform to any
schedule.  Thus, a real-time system
must be capable of being interrupted
to accept input from an unscheduled
or asynchronous event.  Additionally,
events can vary in importance. A real-
time system must also be capable of
processing input according to impor-
tance, even if the processing of less
important input must be interrupted
or rescheduled.

Interface to external environment:
A real-time expert system typically
needs to gather its data from a set of
sensors. Traditionally, expert systems
have asked the operator for input.

Uncertain or missing data: The
validity of the data can decay with
time.  However, data can also lose
validity or have questionable validity
because of a degradation in sensor per-
formance.  Thus, a real-time system
must be able to recognize and appro-
priately process data of uncertain or
diminished validity.

High performance: High perfor-
mance is a key issue in many real-
time systems.  For instance, response
times in the Lockheed Pilot's Associ-
ate program vary from 500 millisec-
onds for assessing target values to 100
milliseconds for defining threat
objects.  Given the performance limi-
tations of AI, the problem of control-
ling complex systems by responding
to rapidly changing data is a critical
bottleneck in applying knowledge-
based systems to this domain.
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Temporal reasoning: Time is an
important variable in real-time
domains. Typically, a real-time sys-
tem needs the ability to reason about
past, present, and future events, as
well as the sequence in which the
events happen.

Focus of attention: When a signifi-
cant event occurs, it is important that
the real-time system be able to focus
its resources on important goals. This
focus can involve bringing a new
knowledge source (a specialist) to
bear; modifying the set of sensors the
system is currently looking at; and
possibly, changing the rate at which
the data are being analyzed.

Guaranteed response times: The
system must be able to respond by the
time the response is needed.  Further-
more, one would like to produce the
best possible response within the
given deadline.

Integration with procedural compo-
nents: A real-time knowledge-based
system must typically be integrated
with conventional real-time software.
The conventional code will perform
tasks such as data compression, signal
processing, feature extraction, and
application-specific input-output
(I/O).

In the following sections, we exam-
ine the current state of the art in
applying knowledge-based problem-
solving techniques to real-time
domains.

Survey Results
The survey results are grouped into
applications, tools, and theory.
Reusability is the primary criterion
for distinguishing between applica-
tions and tools. An expert system
developed to solve a specific problem
is considered an application. An
expert system developed to solve
many problems is a tool. Applications
developed using these expert systems
are described in the tools section.
Finally, we also examine theoretical
issues for real-time domains that have
been addressed by AI researchers.

Real-Time Expert
System Applications

Applications have been divided into
the categories of aerospace, communi-

cation, financial, medical, process
control, and robotic systems.  A sum-
mary of the real-time research issues
that were addressed in each of the
applications can be found in table 1.

Aerospace

The following paragraphs summarize
applications of knowledge-based sys-
tems to real-time aerospace problems.

The Emergency Procedures Expert
System (EPES).   EPES was designed to
be one of the cooperating expert sys-
tems that would make up a Pilot's
Associate. EPES works in the domain
of in-flight emergency procedures to
detect an emergency, warn the pilot,
and initiate corrective action. The
system can be overridden by the pilot
at any time. A prototype of EPES was
implemented in ZetaLisp on a Lisp
machine. The knowledge base for
EPES includes parts, goals, and rules
and implements emergency proce-
dures from an F-16 flight manual.
EPES interfaces with the pilot using
an expert message display, as well as a
simulated aircraft control system
(Anderson et al.  1984).

The Expert System for Satellite Orbit
Control (ESSOC).   ESSOC was
designed to assist in a satellite's sta-
tion-keeping (delta V) maneuvers by
continuously processing satellite
telemetry data and determining the
appropriate commands to execute a
successful maneuver. ESSOC analyzes
data during routine satellite status
checks, diagnoses the cause of anoma-
lies, and recommends commands to
resolve the anomalies.  The expert
system dynamically communicates
with a real-time, high-fidelity satellite
simulation operating on a VAX
11/785.  ESSOC buffers data received
from the satellite simulator and
checks for the presence of buffered
data prior to executing each tradition-
al production system recognize-act
cycle.  ESSOC was developed in ART
on a Symbolics 3675 (Rook and
Odublyl 1986).

The Expert System for Inertial Mea-
surement Unit (EXIMU).   Real-time
monitoring of telemetry data from the
space shuttle's inertial measurement
unit (IMU) is the domain of the
EXIMU expert system. EXIMU parti-
tions the solution according to operat-

ing modes of IMU and problem-solv-
ing strategy. Currently, EXIMU mod-
ules address the preflight calibration
and alignment operating modes of
IMU. Mainline surveillance uses for-
ward-chaining search rules for evalu-
ating departures from nominal expec-
tations. EXIMU is microcomputer
based. An interrupt-driven telemetry
interface operating in the background
accepts incoming characters and
stores them in predefined memory
locations. An algorithmic program
retrieves the numeric values and does
the number crunching. The inference
engine then tests the rules and per-
forms the indicated actions (Campbell
1987).

Expert Navigator.   The Expert Navi-
gator was designed to monitor, man-
age, and reconfigure navigation sen-
sors (such as radio aids, inertial navi-
gation systems, and digital terrain
aids) on board an advanced tactical
aircraft. The expert system monitors
the ability of the navigation sensors to
support the aircraft's primary mission
and suggests alternatives when the
mission becomes threatened. The sys-
tem's knowledge is represented in
rules operating in a blackboard archi-
tecture. The system was implemented
in Lisp on a Symbolics 3600 processor
(Pisano and Jones 1984).

The Flight Expert System (FLES).
FLES prototype is designed to assist
an airplane pilot in monitoring, ana-
lyzing, and diagnosing faults in air-
plane systems. The system is based on
the Hearsay blackboard model.
Knowledge sources are sensor-inter-
rupt analyzers that receive interrupts
indicating sensor faults, construct
hypotheses about the causes of the
interrupts, and place the hypotheses
on the blackboard.  When a verifica-
tion procedure confirms a component
is inoperative, a diagnostic procedure
determines if the component is the
source of the fault or a side effect of
some other fault. The diagnostic pro-
cess is nonmonotonic in that the
absence of information about a sus-
pect component is used in the reason-
ing process.  The acceptable tolerance
for sensor data varies according to the
flight phase. Thus, a different monitor
with different tolerances is used for
monitoring the sensors in each flight
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AEROSPACE
Application High Guaranteed Temporal Asynch. Interrupt Continuous Noisy Focust of

Performance Response Reasoning Inputs Handling Operation Data Attention

AIRPLAN • • • • • • •
EPES •
ESSOC • • •
EXIMU • • • •
Expert Navigator •
FLES • • •
HEAT • • • • •
LES • •
L*STAR • • • • •
Malfunction Recovery
NAVEX • • • •
Pilot's Associate • • • •
PREMON • • •
SCARES • •
SECURE •

COMMUNICATIONS
Application High Guaranteed Temporal Asynch. Interrupt Continuous Noisy Focust of

Performance Response Reasoning Inputs Handling Operation Data Attention

ECESIS • • • • • • •
ERIK (f) • • • • •
HANNIBAL •
News Wire Monitoring • •

MEDICAL
Application High Guaranteed Temporal Asynch. Interrupt Continuous Noisy Focust of

Performance Response Reasoning Inputs Handling Operation Data Attention

BABY •
CAPS
EEG Analysis • •
FORTES
Polysomnographer • •
VM • • •

PROCESS CONTROL
Application High Guaranteed Temporal Asynch. Interrupt Continuous Noisy Focust of

Performance Response Reasoning Inputs Handling Operation Data Attention

ALFA •
CEALMON &
REALM
COOKER (f) • • • •
Diagnostic E.S. (f) • • •
ESCORT • • • •
Falcon •
LMA •
MCM • • • •
REACTOR •
Rotary Cement • • • •
Kiln Supervixor (f)
STOCHASM •
YES/MVS (f) • • • •

ROBOTICS
Application High Guaranteed Temporal Asynch. Interrupt Continuous Noisy Focust of

Performance Response Reasoning Inputs Handling Operation Data Attention

Autonomous
Vehicle Guidance (f) • • • • •
HERMIES (f) • • • • • • •
Ping Pong Player (f) • • • • • •

Table 1. Summary of Applications. 
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phase. FLES is implemented as a pro-
totype operating in a simulated envi-
ronment. FLES is coded in FranzLisp
and runs on a VAX computer (Ali and
Scharnhorst 1985).

The Heuristic Error Analyzer for
Telemetry (HEAT).   HEAT analyzes
space shuttle telemetry data that are
collected and downlinked to a ground
station every second. Once validated,
the telemetry data are then transmit-
ted to NASA mission controllers.
HEAT distinguishes between routine
telemetry errors caused by a loss of
signal as the shuttle moves out of
range and a more serious problem
requiring human attention. HEAT was
implemented in a FranzLisp version of
OPS5 on a VAX 11/780 operating
under Unix. To accommodate real-
time demands of the incoming
telemetry status data, a separate C
program was written that translates
the telemetry status data into a Lisp-
compatible format which is then
inserted into a queue called the AI log
file. A separate Lisp program inter-
venes to cause the OPS5 code to exe-
cute a specified number of rules and
then stop and check the log file for
additional data. Messages are read
either one at a time or in clusters of
20 or more depending on how far
HEAT is behind in processing.
Because the shuttle is out of range 12
minutes every hour, HEAT was also
designed to purge unused data when
there is nothing else to do, thus mini-
mizing the impact on memory usage.
Based on trial runs with simulated
data, the developers concluded that
OPS5 is not the optimal system archi-
tecture for real-time data processing.
One reason given is that the RETE
algorithm used in OPS5 was designed
for environments where the knowl-
edge base changes slowly (For an alter-
native view of Rete's applicability to
real-time domains, see Haley [1987]).
In real-time data analysis problems,
the knowledge base changes too rapid-
ly for the RETE algorithm to be opti-
mal (Skapura and Zoch 1986).

The Liquid Oxygen Expert System
(LES).   LES monitors measurements
from the launch-processing system
during loading of liquid oxygen into
the space shuttle. The measurements
come from a real-time process con-

troller and include values such as
temperature, pressure, flow rate, and
valve position. LES monitors using a
model consisting of about 1500
frames. It is one of the largest model-
based systems built to date.  LES
determines whether the sensor data
indicate an anomaly and notifies
monitoring personnel and initiates
troubleshooting procedures. If LES
cannot isolate the problem, it pro-
vides a list of suspected components
and recommends further steps to iso-
late the fault. LES is implemented in
ZetaLisp on a Symbolics computer
(Scarl, Jamieson, and Delaune 1984).

The Lockheed Satellite Telemetry
Analysis in Real Time (L*STAR).
L*STAR is a knowledge-based system
for performing real-time monitoring
and analysis of telemetry data from
the NASA Hubble space telescope
(HST).  In order to handle asyn-
chronous input and perform in real
time, the system consists of three or
more separate processes that run con-
currently and communicate by way of
a message-passing scheme and can
reside on the same or different com-
puters.  The data management task
gathers, compresses, and scales the
incoming telemetry data before send-
ing them to the other tasks.  The
inferencing task consists of a propri-
etary high-performance inference
engine written in C. It uses the
telemetry data to perform a real-time
analysis of the state and health of
HST. The I/O task receives telemetry
monitors from the data management
task, updates its graphic displays in
real time, and acts as the interface to
the console operator.  It was imple-
mented on a set of VAXes and
MicroVAXes and uses DECNET mail-
boxes as the message-passing mecha-
nism.  The knowledge-based system
has been interfaced to a real-time sim-
ulator (Kao et al. 1987).

Malfunction Recovery.   This system
consists of a self-organizing controller
that learns how to pilot a simplified
two-dimensional aircraft model by
continuously monitoring the model's
position and velocity as the model is
"flown" through a navigational mis-
sion. When trained, the system can
pilot the model between two points
without exceeding preestablished

position and velocity limits by acti-
vating any of eight directional actua-
tors, even when two of the actuators
permanently fail. The system demon-
strates "self-organizing control, learn-
ing, and malfunction recovery" (Cruz
1986; Vidal 1985).

The Navigation Expert (NAVEX) Sys-
tem.   NAVEX was developed to sup-
port reentry navigation for the space
shuttle program. NAVEX makes high-
speed decisions about shuttle velocity
and trajectory. The system was devel-
oped for use during reentry but could
easily be modified to support launch
as well. NAVEX was developed in
ART and Lisp and operates on a Sym-
bolics computer. Radar data and out-
put from the high-speed trajectory
determinator are monitored by
NAVEX, which then warns the opera-
tor of current or impending problems
and recommends possible actions. In
tests with data generated by a previ-
ous shuttle flight, Marsh and Healey
report NAVEX made the correct deci-
sions 100 percent of the time and
made its decisions faster than the
human controllers (Marsh 1984;
Healey 1986).

Pilot's Associate.   In this system,
Lockheed has interfaced symbolic pro-
cessors to a flight simulator.  The sys-
tem consists of a VAX-11/780 driving
a full, six-degree-of-freedom simulator
linked by Ethernet to three Symbolics
Lisp machines.  On the Lisp machines
are expert systems performing situa-
tion assessment, tactics and route
planning, and intelligent pilot-vehicle
interface.  Broadwell and Smith (1986)
report the system runs in "near real-
time."

The Predictive Monitoring System
(PREMON).   PREMON uses the
explicit model of a device to perform
real-time monitoring. The system has
been tested on the partial model of
the mirror cooling circuit of the Jet
Propulsion Laboratory space simula-
tor.  PREMON has three interacting
capabilities: (1) causal simulation to
generate predictions about the behav-
ior of a physical system, (2) sensor
planning to assess the importance of a
device's behavior and allocate sensor
resources appropriately, and (3) sensor
interpretation to verify expected sen-
sor values against actual sensor read-
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ings and raise alarms when necessary
(Doyle, Sellers, and Atkinson 1987).

The Spacecraft Control Anomaly Res-
olution Expert System (SCARES).
SCARES attempts to automate the
diagnosis of anomalies in the attitude
control system of a spacecraft with
the ultimate goal of achieving space-
craft autonomy.  SCARES has three
major components, only one of which
performs in real time. The SCARES
monitor performs three real-time
checks on downlinked telemetry data:
a limit check on individual telemetry
points, a rate check on two or more
telemetry points in the same channel,
and cross-channel checking tests for
telemetry consistency.  Hamilton
(1986) concludes that SCARES, which
is currently in a prototype stage,

shows "how expert system technology
can be applied in large real-time fault
diagnostic systems to detect, diag-
nose, and recover from complicated
anomalies."  SCARES is implemented
in Lisp on a Symbolics 3670.

SECURE.   In the domain of commer-
cial transport aircraft, SECURE con-
tinuously observes the flight environ-
ment and evaluates the situation for
possible faults that could threaten
flight safety.  Faults requiring further
action are detected by comparing the
correct aircraft state with the
observed aircraft state. A recovery
procedure is derived and patched into
the current flight, and the crew is
informed of the threat and the recov-
ery procedure if the crew's actions
have indicated that the threat has not
been noticed. SECURE's knowledge
base is frame based and is organized
according to the flight contexts of the
takeoff phase, flight phase, and land-

ing phase. Only the knowledge appro-
priate to the current flight context is
accessed.  SECURE was developed
using a script-based approach imple-
mented in MACLISP on a PDP-10
computer and works well with a "nor-
mal" flight containing common emer-
gencies. The first phase of the plan-
ning-based SECURE has successfully
flown a simplified DC-10 aircraft sim-
ulation running on a PDP-10 between
any pair of six airports and has
planned recovery actions for several
failures. About 230 rules describe the
planning control knowledge (Chen
1985).

Communications

This section summarizes the applica-
tion of knowledge-based systems to

real-time communication problems.

The Environmental Control Expert
System in Space (ECESIS).   ECESIS
was designed for use on a manned
space station to shift modes for various
subsystems of an environmental con-
trol-life support subsystem (EC-LSS) as
the station passes from shadow to sun.
ECESIS monitors the EC-LSS and per-
forms various actions in response to
detected events. The system is imple-
mented in Yet Another Production Sys-
tem (YAPS) and incorporates both rule-
based and semantic net architectures
(Dickey and Toussaint 1984).

Evaluating Reports Using Integrated
Knowledge (ERIK).   ERIK provides
automated interpretation of daily ship
reports from merchant ships through-
out the world as part of the United
States Coast Guard's Automated
Mutual-assistance Vessel Rescue
(AMVER) system. ERIK has several
mechanisms that represent a parti-

tioning of functions to achieve real-
time performance. An interface filter
performs some preliminary syntactic
conversions such as the stripping of
control characters from incoming
messages, case conversion, and so on.
A top-level controller aided by a key-
word parser makes early determina-
tion of the content of the text.  ERIK
is required to interpret or reject a mes-
sage in less than 60 seconds of pro-
cessing time and, in fact, averages
19.35 seconds of central processing
unit time per ship report.  It is imple-
mented in compiled Common Lisp on
a VAX 11/785 (Hardt and Rosenberg
1986).

HANNIBAL.   HANNIBAL interprets
data from sensors that monitor radio
communications to identify enemy

organizational units and their commu-
nication order of battle. The data
include information about the location
of the detected communication and its
signal characteristics. HANNIBAL uses
a blackboard architecture and is imple-
mented in AGE (Brown et al. 1982).

News Wire Monitoring.   A knowl-
edge-based system scans news wire
text in real time and triggers an alarm
when topics previously chosen by a
user are found. A natural language
interface allows the user to specify
topics. The prototype system filters
incoming text with a simple keyword
search and then parses sentences fur-
ther to derive primitive knowledge
structures corresponding to user selec-
tions. The system was implemented
on a Symbolics computer (Clippinger
1983).

Financial

Surprisingly enough, real-time finan-

… the feature that defines a real-time system is the system's ability to guarantee
a response after a fixed time has elapsed, where the fixed time is provided as part

of the problem statement.
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cial applications are not frequently
published. This fact might be because
most financial institutions are
extremely secretive about their auto-
mated analytic trading programs.
Firms known to be involved in intelli-
gent real-time trading systems include
American Express, Bear Stearns,
William Blair, Drexel Burnham Lam-
bert, First Boston, Merrill Lynch, Mor-
gan Stanley, Shearson Lehman,
Solomon Brothers, Thomas McKin-
non Securities, and the major banking
and insurance companies. For more
discussion on AI applications of secu-
rity trading, see Szuprowicz (1987).

Another survey (Behan and Lecot
1987) found several expert system
applications in the areas of financial
planning, intelligent text understand-
ing, portfolio management, trading,
intelligent customer service assis-
tance, insurance underwriting, credit
evaluation, and auditing. However,
these expert systems appear to be tra-
ditional, user-interactive decision
aids.

Behan did describe a couple of AI-
based systems that border on real-
time domains. For example, a natural
language parser developed by Arthur
D. Little, called the NL Parser, ana-
lyzes telex messages from Reuters and
United Press International that relate
to mergers and acquisitions. Another
system, called the Trader's Assistant,
also developed by Arthur D. Little,
provides assistance to security traders
by assessing such factors as the
instantaneous supply and demand of
the stock market and the significance
of current rumors. Both systems are
written in Lisp and run on Symbolics
Lisp machines.

Of the categories surveyed by
Behan, trading seems to offer the
highest potential payoff for a success-
ful real-time knowledge-based system.
As Behan points out, trading, especial-
ly foreign exchange trading, "is a fast
moving activity that depends on a
wide and complex scope of political,
economic, climatic, and financial fac-
tors." Furthermore, "large profits are
possible by only marginally improving
the success ratio on trading transac-
tions." A real-time expert system
capable of directly receiving and eval-
uating stock market and other finan-
cial quotes seems attractive.

Medical

This section reviews the application
of knowledge-based systems to real-
time medical problems.

BABY.   BABY is a forward-chaining,
rule-based system that monitors
infants in a newborn intensive care
unit. The system monitors data, looks
for significant patterns, and suggests
further evaluations. BABY also tracks
the clinical status of the newborns
and can answer questions about each
patient. BABY uses a Bayesian proba-
bilistic method for handling uncer-
tainty, similar to the method used in
PROSPECTOR. The system is written
in PASCAL (Rodewald 1984).

CAPS.   CAPS is a system that com-
bines a pattern-recognition module
with an expert system module to per-
form respiratory and anesthesia moni-
toring. The pattern-recognition mod-
ule characterizes and analyzes each
segment of a capnogram. (A capno-
gram is a carbon dioxide wave form
produced by monitoring patient-
respired gases during surgery.)  The
analysis of the capnogram is then
used by the expert system module to
generate a probable diagnosis and rec-
ommend therapy or equipment adjust-
ments.  The system was implemented
using the EXSYS tool on an IBM
PC/AT.  Rader, Crowe, and Marcott
(1987) report that the speed of the sys-
tem was not acceptable.

The EEG Analysis System.   In this
system, an expert system was devel-
oped to apply fast Fourier transforms
to data received directly from elec-
troencephalograms connected to renal
patients. The system is rule based and
uses certainty factors. It was written
in C and embedded in a Motorola MC
6801 microprocessor (Baas and Bourne
1984).

A Forth Oriented Real-Time
Polysomnographer Expert System
(FORTES).   FORTES was developed at
the Stanford University of Medicine
to perform real-time sleep staging.
Sleep staging is a means of classifying
a person's state while asleep.  It is
usually performed by a trained human
scorer who evaluates a linear time-
varying graph of the electroencephalo-
grams, electrocardiogram, and
eletromyographic activity while a per-

son is sleeping.  FORTES is imple-
mented on an IBM PC and is inter-
faced to a polygraph with a standard
digital to analog converter (Redington
1986).

The Ventilator Manager (VM).   VM
was one of the first and most signifi-
cant applications of knowledge-based
systems to a real-time domain.  VM
interprets online physiological data in
an intensive care unit. An automatic
monitoring system provides VM with
the values of 30 physiological mea-
surements at 2- or 10-minute inter-
vals. The data are used to manage
postsurgical patients receiving
mechanical ventilatory assistance.
VM maintains a set of patient-specific
expectations and goals for future eval-
uation. It is expectation driven and
uses the current and past patient his-
tory to establish guidelines for patient
measurements. The guidelines are
used to dynamically establish upper
and lower limits for comparison with
each new measurement from the
monitoring system. VM responds
with suggestions to clinicians and
periodic summaries. VM uses forward
chaining, checks that information pre-
viously acquired is still valid for mak-
ing conclusions, and cycles through
the rule set each time new informa-
tion is available (Fagan, Kunz, and
Feigenbaum 1979; Fagan 1980).

Process Control

This section reviews the application
of knowledge-based systems to real-
time process-control problems.

The Automated Load Forecasting
Assistant (ALFA).   ALFA provides an
electric utility company in New York
with hourly predictions of load as
much as 48 hours in advance. ALFA is
written in Lisp and runs on a large
IBM mainframe computer. The rule
base was derived from the expertise of
load forecasters and considers vari-
ables such as load growth, hour of the
day, day of the week, day of the year,
holidays, special events, and prevail-
ing weather conditions. Weather data
are obtained directly from the Nation-
al Weather Service. A real-time pat-
tern-matching algorithm searches a
10-year database for eight hourly load
entries that best match the predicted
weather pattern. ALFA generates its
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forecasts in 20 seconds, compared to
the two hours required by a human
load forecaster. As a result, forecasts
can be generated at any time, and
what if scenarios can be explored (Jab-
bour et al. 1986).

The Computerized Emergency Action
Level Monitor (CEALMON) and the
Reactor Emergency Action Level
Monitor (REALM).   CEALMON is a
small expert system to do real-time
monitoring in a nuclear power plant.
It is coded in Gold Hill Common Lisp
for the IBM PC and embodies a rule-
based problem-solving paradigm using
forward-chaining logic.  Sensor data
have been simulated by reading from
a file at regular intervals. The main
purpose of the system is to make the
operator aware of changes in the sta-
tus of emergency action levels and
give an explanation.

A successor to CEALMON, called
REALM, is being developed in KEE
and will interface with one of the
plant computers in order to collect
data (Touchton 1986).

COOKER.   COOKER is a real-time
process monitoring and operator advi-
sory system for batch manufacturing
processes. It runs on a Symbolics 3640
Lisp machine connected by an IBM
AT microcomputer to a Honeywell
TDC 2000 process control system and
a programmable logic controller.
COOKER has four main subsystems:
data frames, data gatherer, operator
interface, and inference engine.  The
latter three subsystems run as concur-
rent processes.  The data gatherer
sends data requests to, and buffers
data from, the IBM AT.  The operator
interface manages all windows, dis-
playing advice and questions to the
operator, and receives replies. The
inference engine handles unbuffering
data from the data gatherer into data
frames, receives replies from the oper-
ator, runs the monitoring and prob-
lem-recognition mechanism on the
goals, and runs any problem solving
required by the goals.  The system
uses a knowledge representation
scheme called Goal/Subgoal (GSG).
Allard and Kaemmerer (1987) report
that COOKER has been installed in a
manufacturing plant.

Diagnostic Expert System.   Instru-
mentation and equipment for seven

steam turbine generators at the Texas
Utility Generating Company are
being diagnosed each hour using the
Diagnostic Expert System developed
by Westinghouse Electric. About 110
different types of sensor data (from
instrumentation and generator equip-
ment) are transmitted by telephone
line or satellite to the centralized
diagnostic center in Orlando, Florida.
The expert system then performs the
diagnosis on a VAX-11/780 and trans-
mits its recommendations to the
plant (Osborne et al. 1985a).

The Expert System for Complex Oper-
ations in Real Time (ESCORT).
ESCORT was designed to aid opera-
tors of information systems that pro-
duce large quantities of changing data.
It is currently configured to aid pro-
cess operators in oil production plat-
form control rooms where as many as
500 analog and 2500 digital signals
can confront the operator, a cognitive
overload that is especially critical
when problems occur.  Partial shut-
downs of platform operations can
occur every half hour, and total shut-
downs sometimes occur once a week.
ESCORT provides advice on plant
crises within 1 second and presents its
advice in a simple and concise man-
ner so the cognitive load on the opera-
tor will be reduced, not increased.
ESCORT is implemented on a Xerox
1108 Lisp workstation running
Interlisp-D and Loops and is connect-
ed by Ethernet to a PDP-11 running a
simulation of part of a North Sea plat-
form process plant and associated pro-
cess control systems (Sachs, Paterson,
and Turner 1986).

The Fault Analysis Consultant (Fal-
con).   Falcon monitors and analyzes
alarm signals in a chemical process
plant. Falcon consists of five modules:
supervisor, simulator, monitor, fault
analyzer, and a human-machine inter-
face module. The monitor module is
time critical. It continuously exam-
ines process data and determines
whether a disturbance exists.  It con-
verts the sensor data to a symbolic
value (for example, low, normal, or
high) and sends it to the fault analyz-
er.  Trends and rates of change are
computed from the data and also con-
verted.  The fault analyzer can use
either a rule-based or model-based

approach to find the cause of the dis-
turbances (Chester, Lamb, and Dhur-
jati 1984).

The Logic Machine Architecture
(LMA).   LMA, developed by Argonne
National Laboratory, is a package of
Pascal subroutines that encapsulate
functions required to perform reason-
ing. LMA is divided into four software
layers: abstract data types, database
support functions, inference mecha-
nisms, and a theorem prover.  Proce-
dures residing in one layer have access
only to those procedures in the next
lower layer.  LMA has been applied as
a control system to keep the reactor-
inlet temperature constant at the
experimental breeder reactor nuclear
power plant (Lusk and Stratton 1983).

The Materials Composition Manage-
ment (MCM) System.    The MCM
system combines heuristic and ana-
lytic process control to address the
problem of chemical manufacturing
process control. The system is imple-
mented on a Lisp machine and con-
sists of the heuristic control virtual
machine (HCVM) and an application
shell. HCVM is a generic "event-driv-
en object-oriented computational
framework" for developing real-time
heuristic control applications (D'Am-
brosio et al. 1987). The architecture
for HCVM resembles a blackboard
architecture and consists of a control
mechanism and a group of modules.
Each module can contain either Lisp
code, if-then rules, or another HCVM
instantiation. The MCM communica-
tions handler manages all communi-
cation between MCM and the exter-
nal world.  Packet handlers time
stamp and unbundle data packets
received by the communications han-
dler. Data handlers screen and store
the data, which can trigger task han-
dlers. A scheduler controls the execu-
tion of triggered task handlers. The
application shell provides a tool set
for monitoring, examining, and
dynamically controlling module activ-
ity within HCVM (D'Ambrosio et al.
1987; Raulefs et al. 1987).

REACTOR.   REACTOR assists
nuclear reactor operators in the diag-
nosis and treatment of accidents.
REACTOR is an expert system that
monitors a nuclear reactor facility,
detects deviations from normal oper-
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ating conditions, determines the sig-
nificance of the situation, and recom-
mends an appropriate response. The
knowledge base contains event-orient-
ed knowledge and function-oriented
knowledge. The event-oriented
knowledge, expressed in if-then rules,
describes expected behavior under
known accident conditions and is
based on experience with past acci-
dents, experiments, and analyses of
computer simulations. When an event
occurs that does not match a known
pattern, the function-oriented knowl-
edge is used. The function-oriented
knowledge represents the reactor sys-
tem's configuration and the manner
in which its components work togeth-
er to perform a given function. The
function-oriented knowledge is repre-
sented in a response tree and shows
the success paths that can be used to
provide a group of actions to prevent
damage to the reactor core or a release
of radioactivity. Forward chaining rea-
sons from known facts to a conclu-
sion. If no conclusion can be reached
because of missing information, back-
ward chaining determines what data
are missing so instruments can be
read, or an operator can be queried to
obtain the missing data. REACTOR is
implemented in Lisp and uses FOR-
TRAN to provide color graphic dis-
plays for the operator. Response
requirements for REACTOR are
expressed in terms of "taxing the oper-
ator's patience" (Nelson 1982, 1984).
Nelson (1984) also reports on an inter-
esting survey on the application of
expert systems to nuclear reactor
operations.

Rotary Cement Kiln Expert System
Supervisor.    This expert system pro-
vides process control in cement man-
ufacturing. It is encoded in York
Portable Prolog and is installed on
several computers, including an IBM
PC. An interface was written to con-
nect external inputs from RS-232 and
A/D facilities to Prolog.  The Rotary
Cement Kiln Expert System Supervi-
sor uses both a long-term and a short-
term memory. The long-term memory
contains rules, and the short-term
memory contains data pertinent to
the current state, which can be
replaced in total or in part by new
data as they are used. The operating

mechanism consists of programs that
use the current data by calling appro-
priate rules from the knowledge base
plus a capability to generate new
strategies under changing environ-
mental conditions which confer the
ability to supervise the process direct-
ly or through conventional control
systems. A calculation tool module
also exists that contains arithmetic
operators and links to programs such
as plant dynamic simulations of fault
diagnosis routines (Norman and
Naveed 1985).

STOCHASM.   STOCHASM is a com-
puter program for performing real-
time fault detection and diagnosis for
the lubrication oil subsystem in a gas
turbine propulsion unit on a United
States Navy surface ship. The system
utilizes knowledge of the order in
which alarms are triggered to diagnose
the cause of malfunctions.  Malkoff
(1986) reports the system had learning
capabilities that allowed it to auto-
matically adapt to changes in the sys-
tem and the environment.
STOCHASM was interfaced to a sim-
ulator and works in real time.  Several
different approaches for performing
temporal reasoning were developed
and analyzed.

The Yorktown Expert System/Multi-
ple Virtual Storage Manager
(YES/MVS).   YES/MVS is a real-time
MVS computer operator aid imple-
mented on three virtual memory
machines operating the VM/370 oper-
ating system. It uses an augmented
version of OPS5 written in MACLISP,
with a compatibility package to per-
mit use with Yorktown LISP. The
modified version of OPS5 features
compiled, rather than interpreted,
executions; special LISP macros; and
an efficient matching process to pro-
vide improved run-time performance.
The OPS5 repetitive cycle phase was
modified to include a "pickup" func-
tion during each cycle in which newly
received messages are added to work-
ing memory. The OPS5 conflict-reso-
lution strategy was modified to per-
mit the use of explicit priorities so
that when deciding which instantia-
tions to fire, OPS5 will first consider
those instantiations with the highest
priority. YES/MVS makes time of day
and time intervals available and pro-

Research which focuses
on speeding up a version
of the algorithm (or some
derivative of it) that can

guarantee response times
should be a high priority.
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vides a TIMED-MAKE LISP function
that causes a specified element to be
placed in working memory at a speci-
fied future time or after some speci-
fied time interval. This feature is
good, for example, in periodically
querying the state of various MVS
resources and in sequencing actions
that require delays between them. In
one application of YES/MVS, a night
operator's work was greatly reduced
(Karnaugh et al. 1985; Ennis et al.
1986; Brooks 1987).

Robotic Systems

Autonomous vehicle research has
been under way for over 20 years.  An
entire survey of the field is beyond the
scope of this article, but we present
the results from a few of the recent
projects that are up and running and
use knowledge-based problem-solving
techniques to aid in real-time moni-
toring and control.  For a complete
discussion, see Weisbin (1987).

Autonomous Vehicle Guidance.   A
vehicle guidance system was created
that incorporates a knowledge man-
agement module, sensor modules, and
control modules. High-level reasoning
and planning are provided by the
knowledge management module,
which observes sensor information
generated by sensor control modules,
infers the prevailing situation, and
generates plans to change the situa-
tion toward a desired state.  Plans are
then implemented by control modules
responsible for tasking sensors and
applicable actuators to change the
vehicle's state. The knowledge man-
agement module is able to reason into
the future to project the progression of
a task and construct expectations of
future occurrences. These projections
provide input into the planning pro-
cess. Unexpected real-time occur-
rences are handled by the lower-level
real-time control modules through
previously stored contingency plans
that attempt to stabilize the situation.
This scheme allows the slower
knowledge management module time
to catch up with events. The knowl-
edge management module and sensor
and control modules reside in separate
processors and communicate through
a data bus. In a mobile ground robot
application, the modules were imple-

mented mostly in Pascal (Harmon
1983).

The Hostile Environment Robotic
Machine Intelligence Experiment
Series IIB (HERMIES-IIB).   HERMIES-
IIB is the latest in a series of sophisti-
cated mobile robots developed at Oak
Ridge National Laboratory.  All high-
level decisions are done with an
expert system shell—C Logical Pro-
duction System (CLIPS) (a derivative
of OPS5)—which runs on one node of
an NCUBE parallel processor and is
linked to a set of navigation proce-
dures (Burks et al. 1987).

Ping Pong Player.   This real-time
expert system supports a ping pong-
playing robot. The expert system inte-
grates sensor data, robot capabilities,
and task constraints and generates an
acceptable plan of action. The system
also considers changes occurring in the
environment during planning and
robot motion. Sensor data are generat-
ed at a rate of 60 hertz and include
three-dimensional position, velocity,
and spin vectors plus a time coordi-
nate. These data are used to predict
where the ball will go.  An expert sys-
tem then plans the appropriate motion
for hitting the ball back.  A blackboard-
based architecture is used to interrelate
initial planning, temporal updating,
and exception handling. The system
plays against both human and machine
opponents and is reported to be a "very
good player" (Andersson 1987).

Real-Time 
Expert System Tools

In this section, a summary of knowl-
edge-based development tools
designed specifically for real-time
applications is presented.

Activation Framework (AF)

AF is a software framework written in
C that supports the implementation
of real-time AI programs on multiple
interconnected computers that can be
geographically distributed. One of the
principle features of AF is the use of
message priority levels as the basis for
distributed scheduling and focus-of-
attention mechanisms. AF evolved
from the HEARSAY II architecture.
The major reasoning mechanism is C
and Lisp procedures.  Green (1987)

reports that they are "starting to apply
the system to the the problem of the
navigator for an autonomous vehicle
and to the smart conveyor belt robot."

Blackboard Objects (BLOBS)

BLOBS is a general-purpose language
for building systems that simulate and
interpret complex sensor data.  BLOBS
blends blackboard system concepts
with an object-oriented system; it was
initially developed for an air traffic
control study for the simulation of air-
craft and the interpretation of their
detection by radar.  Objects can be
built to define aircraft and radar and to
"represent a hypothesis about events
and simulations which are perceived
to have occurred within the simula-
tion." BLOBS supports the concept of a
blackboard partitioned into panels that
represent groupings of types of objects
with facilities for restricting access to
certain information. Objects can com-
municate through passed messages or
a demon that is activated when certain
conditions are achieved on the black-
board. BLOBS is implemented in
POP11 in the POPLOG environment
operating under VMS on a VAX com-
puter. BLOBS is relevant to other com-
plex situations such as chemical
plants and nuclear power plants (Zan-
conato 1988).

The Experimental Expert System
Flight Status Monitor (EESFSM)

EESFSM is being developed at the
Dryden Flight Research Facility at the
NASA Ames Research Center.  EESF-
SM is designed to be a test bed for
concepts in rules, inference mecha-
nisms, and knowledge structures to be
used in a real-time expert system that
will monitor the health and status of
the flight control system of state-of-
the-art, high-performance, research
aircraft.  The application system
accepts telemetry downlink data from
the aircraft and applies various infer-
ence mechanisms to deduce condi-
tions of concern or alarm. The appli-
cation system interfaces with both a
flight system engineer on the ground
and a research test pilot in the vehicle
(Duke and Regenie 1985).

Expert Controller

UME Corporation of Larkspur, Cali-
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fornia, sells a tool called Expert Con-
troller. It is a shell and a processor box
that has two RS-232 ports for direct
interface to programmable logic con-
trollers which monitor and control an
application.  The expert system devel-
opment tool runs on a PC, and after
the application is completed, it is
ported to the controller box to be
stored in memory. The box contains a
custom, complimentary metal-oxide
semiconductor (CMOS) chip and is
based on a 64-byte word.  The compa-
ny claims the systems can run 5000
rules per second and use as many as
16,000 rules. UME's Expert Controller
is being used in an automotive hood-
stamping process control application
at General Motors (Schwartz 1987).

Forth

It has long been recognized that Forth
offers significant advantages over
other languages in speed and compact-
ness.  Several efforts have used Forth
in the development of real-time
expert systems. One effort involved
rewriting OPS5 in a multitasking ver-
sion of Forth and demonstrated that
"high-speed, intelligent software oper-
ating in a restricted environment" can
be achieved (Dress 1986). In another
application, the Forth-Based Produc-
tion System (FORPS) combined the
"real-time capabilities of Forth" with
the "artificial intelligence qualities of
a production system" to develop an
obstacle avoidance program for an
overhead manipulator transport sys-
tem (Matheus and Martin 1986). A
memory manager using a heap data
structure was developed in Forth for a
real-time expert system implemented
on a Macintosh computer to permit
"optimal use of memory even when
the size and temporal characteristics
of data blocks are a priori unknown"
(Dress 1985).

Prolog has been implemented as an
embedded real-time operating system
using a version of Forth as the basis
for a frame- and rule-based real-time
expert system that serves as the astro-
naut interface for a series of vestibular
investigations to be performed during
a space lab mission (Paloski, Odette,
and Krever 1986). The Forth-based
Prolog combines Forth's ability for
"handling classical real-time tasks
such as data acquisition, experiment
control, serial communication, and
graphical data display" with Prolog's
"procedure call mechanism, back-
tracking control, and built-in
database."

Texas Instruments has built an
expert system to perform industrial
control of a water treatment plant.
The tool is written in Forth and deliv-
ered on a specially developed 80186
board (Schwartz 1987).  Park (1986)
describes a concurrent system (called
EXPERT-5) that consists of two shells
running on separate M68000-based
coprocessors mapped into the memo-
ry structure of a third system. The
supervisor system is a blackboard con-
troller running under MS-DOS on a
PC.  Forth Inc. offers a forward-chain-
ing rule-based tool called Fuzzy Forth
that is deployed using the Novix
Forth 6 MHz chip. Built for McDon-
nell Douglas Aircraft, the system
clocked 30,000 rules/second on the
Novix chip (Schwartz 1987).

Fuzzy Inference Chip

A VLSI implementation of an infer-
ence mechanism has been developed
by AT&T Bell Laboratories. The chip
is suitable for real-time use in intelli-
gent robot systems and decision-mak-
ing areas of command and control.
The inference mechanism imple-
ments fuzzy logic and is capable of
executing in parallel all the separate

rules that make up a fuzzy relation.
The inference engine's architecture
consists of a rule-set memory, an
inference-processing unit, and a con-
troller. Timing simulations have
shown that the chip can operate at a
rate of 20.8 megahertz. With a format
of 124 bits/rule, a single inference pro-
cess uses 256 clock cycles. Approxi-
mately 80,000 fuzzy logic inferences
can then be performed each second.
The chip uses custom CMOS technol-
ogy and is in fabrication (Togai and
Watanabe 1986).

G2

G2 allows the knowledge engineer to
directly build and manage a real-time
expert system, including simulation
testing of the knowledge base prior to
online use. G2 is a product of the
Gensym Corporation in Cambridge,
Massachusetts, and is now available.
G2, which is implemented in Com-
mon Lisp, is available on a wide range
of general-purpose computer systems
as well as dedicated symbolic process-
ing systems.  G2 has sophisticated
facilities for temporal reasoning, focus
of attention, truth maintenance, real-
time scheduling, and interprocess
communication (Wolfe 1987).

The Hybrid Expert System 
Controller (Hexscon)

Hexscon combines conventional logic
programming with expert system
technology for use as a real-time pro-
cess controller. The use of conven-
tional techniques is in recognition of
the fact that there are many real-time
operations which are handled ade-
quately and rapidly by conventional
programming logic.  The expert sys-
tem portion runs a separate process
under the real-time operating system.
A common data representation per-
mits communication between the two

An important conclusion from this analysis is that many of the common knowledge rep-
resentations and inferencing techniques are not suitable for real-time applications.
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parts. A production system using if-
then rules provides the basic represen-
tation framework, and the rules are
compiled into a compact form to min-
imize the impact on working memo-
ry. Problems to be handled by the
expert system are assigned a priority
to assure that the more important
problems are worked on first. Time is
partitioned into past, present, and
future frames with past and future
time frames residing on disk files to
conserve microcomputer memory.
Belief and confidence parameters per-
mit distinguishing between uncertain-
ty and lack of information. Impor-
tance parameters indicate the relative
importance of facts in a rule and
weight the belief and confidence
parameters for determining when a
rule fires. Multiple lines of reasoning
can be pursued and then combined
using a combination of evidence tech-
nique to produce a single overall value
of belief and confidence for different
and, possibly, conflicting results.
Hexscon was designed to occupy no
more than 512K of memory. It is
implemented in Pascal for an 8086
processor and can operate both in an
interactive simulation mode to sup-
port knowledge-base development and
a real-time control mode.  This effort
is especially significant because it is
one of few that takes into account
size and memory limitations. Its tar-
get computer architecture was the
1750A (Wright et al. 1986).

ONSPEC Superintendent

Heuristics Inc. of Sacramento, Califor-
nia, offers a PC expert system devel-
opment tool called ONSPEC Superin-
tendent.  The system is implemented
in Pascal and can be used to drive pro-
grammable logic controllers. It
requires a math coprocessor and runs
under the FlexOS real-time operating
system (Schwartz 1987).

Personal Consultant Plus (PC Plus)

Texas Instruments is addressing some
of the important problems in online
process control with the addition of
PC Online to their set of PC Plus
expert system development tools. PC
Online allows PC Plus to interact
online with process data. PC Online
supports process and knowledge base

synchronization modes (for example,
event driven, sampling, continuous
loop, or wall clock time).  Reporting
and trend-analysis capabilities are pro-
vided by PC Online as is support for
multiple interfaces to data-acquisition
and analysis programs. The new prod-
uct enhances those PC Plus features
which already provide some of the
capabilities a real-time expert system
needs.  PC Plus supports reasoning
about trends reflected in a history of
previous sensor data. Thus, potential-
ly erroneous sensor data can be
detected by comparing data with the
trend (Carlson 1987).

The Process Diagnostic System (PDS)

PDS provides online, real-time diag-
nosis of machine processes. It is
implemented in SRL and written in
FranzLISP on a VAX running VMS.
PDS addresses two problems in the
analysis of sensor-based data: spurious
readings and sensor degradation.  Ret-
rospective analysis support is provid-
ed by PDS by storing successive read-
ings of a sensor or successive values of
any other node. Storing successive
values permits the kinds of time-
domain analysis (for example, rate of
change, averages, filtering, and curve
smoothing) used both at the front end
of diagnostic systems and during the
diagnosis itself.  Metadiagnosis
detects sensor degradation through
the use of rules that monitor a sen-
sor's behavior, then adapts rules to
reflect the reduction in importance of
a malfunctioning sensor. The infer-
ence mechanism performs forward
propagation of belief from sensor
nodes so that all directly or indirectly
affected nodes and rules are reevaluat-
ed (Osborne et al. 1985b; Fox, Lowen-
feld, and Kleinosky 1983).

The Process Intelligent
Control (PICON)

PICON was the first commercial real-
time expert system tool for develop-
ing process control applications. It is
implemented in LISP on the TI
Explorer and LMI Lambda/Plus
machines.  PICON was designed in
response to the following require-
ments: (1) high speed, context-sensi-
tive rule activation; (2) efficient recy-
cling of memory elements that are no

longer needed and maintenance of
sensor histories; (3) interactive accep-
tance of command sequences from the
operator; and (4) communication
between multiple expert systems.
The knowledge base used by PICON
can be organized into a hierarchical
framework to support the association
of rules with contexts. A focus mech-
anism then searches only those rules
applicable to the current context.
Archived sensor histories can be used
by rules to detect sensor degradation.
Rule syntax allows referral to time
intervals.  Sensors represented in
PICON's knowledge base can be
assigned a currency interval to indi-
cate the length of time that a sensor
reading remains valid and a sampling
interval to indicate the rate at which a
sensor is to be sampled. The architec-
ture of PICON supports parallel pro-
cessing on a Lambda machine by allo-
cating real-time sensor interfacing and
low-level inferencing to a Motorola
68010 processor.  This part of PICON
is implemented in C for speedier exe-
cution and is responsible for main-
taining current, valid sensor data
based on the corresponding currency
and sampling intervals. The remain-
der of PICON then resides in the Lisp
processor portion of the Lambda
machine.  PICON has been used in
several real-time applications, includ-
ing petrochemical and industrial pro-
cess control, aerospace and communi-
cations, electromechanical system
fault isolation and diagnosis, robotics,
and a prototype satellite electric
power system controller (SICON)
(Moore et al. 1984; Leinweber and
Gidwani 1986; Leinweber 1987).
Picon has been extended to work in
the VAX/VMS environment and is
now available from GigaMOS Sys-
tems Inc. in Lowell, Massachusetts.

The Procedural
Reasoning System (PRS)

PRS was built to perform reasoning
and planning in dynamic and uncer-
tain worlds.  The system maintains a
process stack (containing all relevant
procedures) that can be viewed as the
system's current intentions for
achieving its goals or reacting to some
observed situation.  It has been
applied to the handling of many of the
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possible malfunctions of the reaction
control system on the space shuttle,
including procedures for handling
faulty sensors and diagnosing jet fail-
ures under diverse conditions. It was
completed using multiple communi-
cating instantiations of PRS and a
small simulator for providing real-
time input to the system. This appli-
cation showed the system's ability to
coordinate various plans of action,
modify intentions appropriately, and
shift its focus of attention. PRS was
also applied to the route planning,
navigation, and malfunction-handling
tasks of an autonomous robot. The
system was implemented on a Sym-
bolics 3600 Lisp Machine (Georgeff
1987).

The Real Time Expert 
System Club of Users (RESCU)

RESCU is a real-time expert system
for production plants that was devel-
oped with the support of the Alvey
Directorate and a 25-member club of
users.  It was applied to a quality con-
trol activity for an ethoxylates deter-
gent plant. Shaw (1987) reports that
RESCU is operational and provides
consistent support 24 hours a day,
connected to plant sensors.

Violet and Annie

Violet and Annie are PC/MS-DOS-
based tools implemented in C and are
available from Intelligent Applica-
tions, Inc., in Columbia, Maryland.

Violet provides the intelligent inter-
pretation and control of complex
instruments for vibration-based
mechanical health monitoring. A PC-
based expert system shell is used to
analyze and interpret the output of a
spectrum analyzer.  These facilities
are applicable to a wide range of vibra-
tion-based mechanical health-moni-
toring applications, including data
history management, trend analysis,
failure forecasting, and comparison
across multiple-load conditions.

Annie couples PC-based expert sys-
tem shells with transducer or process
control-based measurement systems
for process monitoring and mechani-
cal health diagnosis. Annie can auto-
matically measure values when
required and keep track of histories,

time constraints, and trends (New
Product Announcements 1987).

XNET

This network-management expert
system is a shell developed for use
with a data network that extends over
a large territory and operates 24 hours
a day with complex support and diag-
nostic equipment and management
tools which provide data requiring
skilled interpretation. XNET moni-
tors and analyzes network data
online. Key test data are sampled in
real time and include line error rates,
network activity, loop-back test
results, and so on. The expert system
shell was developed specifically for
network management and uses a rule-
based representation for knowledge.
XNET repetitively receives network
test data, diagnoses the data, and
records any diagnosis made. This
cycle repeats until interrupted by the
operator (Mueller and Cynar 1987).

The Yorktown Expert 
System Language One (YES/L1)

YES/L1 is a general-purpose language
for developing real-time, rule-based
programming applications. Imple-
mented in OPS5 and MacLisp, the
tool reflects earlier experience with
YES/MVS (Karnaugh et al. 1985; Ennis
et al. 1986), a real-time MVS comput-
er operator aid, and incorporates a
number of features aimed at providing
real-time support. Real-time facilities
include interprocess communication,
timed reminders, and event waiting.
Other efforts to provide speedier per-
formance include the conversion of
YES/L1 source to PL/I compiled code,
the use of a RETE pattern-matching
algorithm modified to resolve con-
flicts about which rule to fire, and a
focus mechanism plus support for
grouping rules into context blocks.
YES/L1 is currently undergoing tests
on the VM and MVS/XA operating
systems (Cruise et al. 1987; Brooks
1987).

Real-Time Expert 
System Theoretical Issues

The following paragraphs describe
ongoing research in key theoretical
areas for real-time knowledge-based

systems.

Performance

The slow execution speed of rule-
based systems has prohibited their use
in domains requiring high perfor-
mance and real-time response.
Research by Gupta (1985) indicates
that current rule-based interpreters
spend almost 90 percent of their time
in the match step and only around 10
percent of the time in the conflict-res-
olution and the act steps.

The RETE algorithm (Forgy 1982) is
an efficient procedure for determining
the set of rules (that is, the match set)
that is activated by a dynamically
changing database. It capitalizes on
the temporal redundancy of the
database by caching the instances of
patterns and the matches for "joins"
across database modifications. The
algorithm makes no commitment or
decision regarding which activated
rule will actually be executed.

The RETE algorithm works by com-
piling the antecedent conditions of all
rules into a special kind of data flow
network.  On a database modification,
the algorithm maintains the set of
rules that are applicable given the cur-
rent state of the database without
regard to the applicability of any indi-
vidual rule. The modifications filter
through the network, updating the
state stored within the network. The
output of the network consists of a
specification of changes to the con-
flict set.

Gupta (1985) and Gupta, Forgy, and
Newell (1987) explore various meth-
ods for speeding up the execution of
rule-based systems.  They examine
the role of parallelism for high-speed
execution and examine various archi-
tectural features in the design of com-
puters for rule-based systems. The
analysis was carried out with several
real production systems that were
built with OPS5 and Soar. Contrary to
initial expectations, they showed that
the speedup which can be obtained
from parallelism is quite limited, only
about tenfold. The reasons for the
small speedup are (1) the small num-
ber of rules relevant to each change to
the database, (2) the large variation in
the processing requirements of rele-
vant rules, and (3) the small number
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of changes made to the database
between synchronization steps.

Furthermore, they observe that to
obtain this limited factor of tenfold
speedup, it is necessary to exploit par-
allelism at a fine granularity. They
propose that a suitable architecture to
exploit such fine-grain parallelism is a
shared-memory multiprocessor with
32 to 64 processors.

It should be noted that none of the
systems which were studied would be
considered real-time monitoring or
control applications. In fact, in a real-
time application involving many
changes to the database each cycle,
parallelism could provide a much
greater boost to execution speed than
the factor of 10 indicated by Gupta.
Furthermore, as Gupta points out, the
analysis is dependent on prevailing
programming styles and loses some of
its validity as programming styles
evolve.  Also further complicating the
analysis, the simulation results do not
include the scheduling, synchroniza-
tion, and memory contention over-
heads that will be experienced in a
shared-memory multiprocessor, and
to this extent the results represent an
upper bound on the amount of speed
up that is attainable for the nonreal-
time applications.

Guaranteed Response Times

Currently, ad hoc techniques are used
for making a system produce a
response within a specified time inter-
val.  Usually, the programmer is
responsible for making the system run
in real time.  The programmer builds
the system, runs it, discovers it won't
work in real time, and then continues
to modify the program until it does
run in real time. As discussed by
O'Reilly and Cromarty (1985), this
hand tuning suffers from several
major deficiencies.

First, ad hoc methods cannot be car-
ried beyond the current project. Sec-
ond, performance becomes brittle in
the face of changes in both problem
specification and the type or quantity
of data.  Third, the hand-tuning pro-
cess is extremely time consuming
because the programmer is performing
an unconstrained search through the
space of possible program modifica-
tions to identify the subset that meets

the required constraints.  Finally, a
formal basis is lacking and the process
results in performance that is only
"coincidently real-time" (that is, real-
time performance is determined by
running the program against a less-
than-exhaustive set of test cases).  Ide-
ally, one would like to be able to
prove that the knowledge-based sys-
tem can respond within a fixed time
interval without requiring a full
understanding of the database at run
time.

Production Systems.   An analysis by
O'Reilly and Cromarty (1985) shows
that a production system which uses
forward chaining is exponential time.
The number of rules that will fire
explodes exponentially with the depth
of the inference tree.

They also show that in backward
chaining (whether one uses depth-first
or breadth-first search), every incre-
ment in the depth of the tree gives an
exponential increase in the number of
tree nodes and a combinatorial
increase in the number of paths to
search.  The greater the branching fac-
tor of a node, the quicker the expo-
nential explosion.

It should be noted that because an
algorithm's performance degrades
exponentially, it is still possible to
place bounds on the response time.
However, worst-case analysis proba-
bly results in response times that are
unacceptable.

Real-Time for RETE.   Haley (1987)
discusses several issues involved in
using rule-based systems for applica-
tions that must perform in real time.
He focuses on needing proof rather
than accepting the real-time perfor-
mance of a less-than-exhaustive set of
test cases. The main point of the
paper is a description of aspects of the
RETE algorithm that are not well
suited to the formal analysis required
to assure real-time performance. His
analysis shows that one cannot a pri-
ori calculate the cost (that is, the
number of joins, where a join is an
instantiation of a variable across pat-
terns) of adding an assertion to the
database using the RETE algorithm.
Instantiating a join results in unpre-
dictable response times.  Haley pre-
sents several methods for bounding
the cost of matching a rule, including:

1. Join matching limitations: Estab-
lish some finite limit on the

number of matches for a join.
2. Pattern instantiation restrictions:

Establish a limit on the
number of instances of a pattern.
3. Relation instance restriction:

Establish some finite limit on the
number of instances of a relation.
4. Cardinality restrictions: Establish

some finite limit on the
number of instances of a relation

given a set of values for some
subset of its arguments.
Concern exists that these restric-

tions might compromise the power
and flexibility of the production sys-
tem approach.

It is interesting to note that Haley's
paper shows that the RETE algorithm
in its purest form can result in unpre-
dictable response times, but research
by Gupta and others is concentrating
on how to speed up the algorithm
using special-purpose hardware.
Although many applications require
high performance but not guaranteed
response times, many of the applica-
tions for which this special-purpose
hardware is intended are truly real
time. Thus, research which focuses on
speeding up a version of the algorithm
(or some derivative of it) that can
guarantee response times should be a
high priority.

Frame-Representation Languages.
Frame languages are a common type
of knowledge representation and are
primarily used to define semantic
nets.  The instance relation is often
used to allow properties and default
values to be inherited from generic-
type frames and to retrieve and pro-
cess all instances of a given type at
run time. By adding a second relation,
is-a, and using it to organize type
frames in an organizational hierarchy,
frame languages can support object-
oriented programming.

The inheritance network forms a
tree with a single root given the fol-
lowing definition of simple inheri-
tance: Each class can have at most
one super class; only two relations are
allowed, is-a and instance.

Retrieving a value from a slot con-
sists of following a simple linear list.
Worst-case times can easily be calcu-
lated for retrieving and storing values
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in the hierarchical tree (O(d)), where d
is the depth of the inheritance tree.
Thus, frame languages using only
simple inheritance are suitable for
keeping tight bounds on response
times in real-time problems.

Although original frame languages
provide only these two relations (is-a
and instance), many of the new lan-
guages allow the user to define new
relations between frames. Also,
objects can have more than one super-
class (this is called multiple or mixed
inheritance). Although multiple
inheritance allows the user to gain
further expressiveness, it brings a
whole new range of problems that
must be solved. The inheritance net-
work effectively becomes an arbitrary
directed graph.  Retrieving a value
from a slot now involves some type of
search, such as depth first or breadth
first. Our earlier analysis of such
strategies concluded that they might
not be suitable for real-time applica-
tions because of their exponential
nature.

An important conclusion from this
analysis is that many of the common
knowledge representations and infer-
encing techniques are not suitable for
real-time applications.  Furthermore,
no one seems to be considering the
ramifications of using exponential-
time algorithms in a real-time appli-
cation.

Making a Best Guess 
Given a Deadline

For many real-time monitoring and
control applications, a variety of tasks
exists in which the amount of time
available to make a decision does not
always allow careful consideration of
all the options. Thus, the problem is
to come up with the best possible
decision in the time available. Sur-
prisingly enough, little work has been
reported in the AI literature in this
important area of research.

Decision Analytic Techniques.
Horvitz (1987, 1988) presents several
areas of research on problem-solving
trade-offs in reasoning systems.  Areas
of research on problem-solving trade-
offs include (1) strategic control, (2)
structural control, and (3) the explana-
tion of computation. Horvitz
describes the application of utility-

decision theory to the task of control-
ling problem-solving trade-offs.  Value
trade-offs encountered in reasoning
systems that Horvitz has examined
include (1) immediacy versus the
accuracy or precision of a solution, (2)
the degree of certainty versus the
level of abstraction, (3) solving a sub-
problem versus solving other subprob-
lems, (4) metareasoning versus object-
level reasoning, and (5) inference
transparency versus inference opti-
mality.

Progressive Deepening

Winston (1984) describes a method
known as progressive deepening to
keep computing within time bounds.
This method analyzes (searches) each
situation to depth 1, then depth 2,
then depth 3, and so on, until the
amount of time set aside for the anal-
ysis is reached. Thus, a response is
always ready. The response is deter-
mined by the analysis at one level less
deep than the analysis in progress
when time runs out. Winston shows
that this method does not waste
much time in extra analysis at shal-
low levels.

Progressive Reasoning

Wright, et al. (1986) describe a method
they call progressive reasoning that
lets Hexscon obtain the best possible
decision within the time available.
The system has four levels of reason-
ing, with the first implemented in
conventional logic, followed by three
levels of reasoning in the knowledge-
based part.  Each successive level uses
data that are more time-consuming to
retrieve and process than the previous
level. The progressive reasoning
described by Wright is a subset of pro-
gressive deepening.

AIRPLAN

Masui, McDermott, and Sobel (1983)
describe a system called AIRPLAN
that is being developed to assist air
operations officers with the launch
and recovery of aircraft on a carrier.
The task with which AIRPLAN
assists has strong time constraints.
Situations can arise in which the
amount of time available is insuffi-
cient to adequately explore the impli-
cations of whatever event has just

occurred. AIRPLAN provides four lev-
els of assistance to the air operations
officers: (1) Display raw data, (2) iden-
tify problems and roughly character-
ize the possible solutions, (3) refine
the characterization of possible prob-
lems; and (4) identify future problems.

When AIRPLAN receives a report,
it updates its display. It then deter-
mines the consequences of the report;
if it discovers a problem, it character-
izes the options as good or bad. If no
backlog of unanalyzed reports exists,
AIRPLAN continues with its analysis,
and the result is a set of recommenda-
tions. When there are no reports to
consider, it generates hypothetical
future events and possible solutions.
When a new report is received, AIR-
PLAN uses demon rules to "interrupt
itself" and record the report and its
probable urgency; it then returns to
whatever it task was previously per-
forming. The approach used in AIR-
PLAN is another special case of pro-
gressive deepening.

Time-Constrained Inference Network

Sorrells (1985) describes an inference
strategy designed to work in time-
constrained military domains. The
inference strategy considers the most
influential knowledge first and less
significant data as time permits.  This
time-constrained inference strategy
utilizes a semantic network to repre-
sent domain knowledge and a time-
merit value to guide the search. The
certainty of the expert system
response increases in proportion to
the amount of processing time avail-
able. It has been successfully demon-
strated in a prototype system for
weapon-to-threat assignment.

Variable Precision Logic

Michalski and Winston (1986)
describe a variable precision logic
(VPL) that is concerned with the prob-
lems of reasoning with incomplete
information and resource constraints.
It offers mechanisms for handling
trade-offs between the precision of
inferences and the computational effi-
ciency of deriving them. Two aspects
of precision are specificity of conclu-
sions and the certainty of belief in
them. The paper primarily addresses
certainty and employs censored pro-
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duction rules as the underlying com-
putational mechanism. Censored pro-
duction rules are simply augmented
ordinary production rules with an
exception condition and are written in
the form "if A then B unless C," where
C is the exception condition.

Censored production rules are
intended for situations in which the
implication A=>B holds frequently,
and the assertion C holds rarely. A
system using censored production
rules is free to ignore the exception
condition when resources are tight.
Given increased time, the exception
conditions are examined, lending
credibility to high-speed answers or
changing them. The strong point of
such a logical system is that it
exhibits variable certainty of conclu-
sions, reflecting variable investment
of computational resources in con-
ducting reasoning.

Jackson (1987) has implemented
VPL with ART in a toy real-time
monitoring problem of deciding if a
car is being driven safely.

Haddawy (1986) has implemented a
VPL system in Common Lisp on a
Symbolics 3640.  He presents two
simple examples. The first deals with
bird classification and highlights
approximate inference methods. The
second deals with driving a car and
shows the ability of the system to
vary the depth of censor chaining in
response to time limits. The paper
only investigates the trade-off
between inference time and certainty.

Conclusions
From the results of the survey, we see
that considerable effort is being put
into developing intelligent real-time
systems, a much more difficult area
than has traditionally been
approached using expert systems.  In
real-time problem solving, many
human limitations—their tendencies
to overlook relevant information, to
respond inconsistently, to respond too
slowly, and to panic when the rate of
information flow is too great—are
most apparent, and the need to over-
come these shortcomings is at its
greatest.

Limitations of Current 
Tools for Real Time

In this article, we have reviewed a
variety of applications built with a
number of tools. Over 100 different
expert system-building tools (shells)
are commercially available. Addition-
ally, several proprietary shells have
been developed in house by different
corporations. Of the commercially
available shells, only Picon (Moore et
al. 1984; Leinweber and Gidwani
1986; Leinweber 1987) and G2 (Wolfe
1987) have been built explicitly for
real-time monitoring and control
applications.

Real-time domains present com-
plex, dynamic problems because of
their dependence on the time factor. A
real-time expert system must satisfy
demands that do not exist in conven-
tional domains. However, current
shells are not generally appropriate for
real-time applications for the follow-
ing reasons: (1) The shells are not fast
enough (research from the Defense
Advanced Research Project Agency's
Pilot's Associate program indicates
current tools are two to three orders
of magnitude too slow.), (2) the shells
have little or no capabilities for tem-
poral reasoning, (3) the shells are diffi-
cult to integrate in an efficient man-
ner with conventional software, (4)
the shells have little or no facilities
for focusing attention on significant
events, (5) the shells offer no integra-
tion with a real-time clock, (6) the
shells have no facilities for handling
asynchronous input, (7) the shells
have no way of handling software-
hardware interrupts, (8) the shells can-
not efficiently take input from exter-
nal stimuli other than a human, (9)
methods do not exist for verifying and
validating the shells or the knowledge
bases they execute, (10) the shells can-
not guarantee response times, and (11)
the shells run on hardware that was
not built for harsh environments.
Very few of the applications described
in this article, discussed the issue of
guaranteed response times.

Trying to apply current shells to
real-time domains is like trying to use
Prolog for a number-crunching appli-
cation or Fortran for a symbolic pro-
cessing application. One can try and
stretch a tool for whatever the appli-

cation calls for. However, the purpose
of these tools is to increase one's pro-
ductivity. Using them for real-time
applications to which they are not
well suited seems futile. Much
research is needed in building special
knowledge-based tools for real- time
domains. In trying to fill this void, the
GENSYM Corporation was created to
pursue research and development in
real-time applications of expert sys-
tems (Spang Robinson Report 1986).

Requirements for a 
Real-Time Expert System

The real-time expert system imple-
mentations surveyed in this article
were reviewed to examine the prob-
lems that are important from an
expert system viewpoint; to study
how the problems have been
addressed; and to see what can be
learned about the features which
would be desirable in a general-pur-
pose, real-time expert system. Addi-
tionally, some major theoretical
issues in real-time expert systems
were included in the survey.

Based on consideration of the sur-
veyed research and development, the
following classes of features can be
expected of a real-time expert system:

Efficient integration of numeric-
symbolic computing: Many algo-
rithms have been developed for solv-
ing various real-time problems such
as data compression, signal process-
ing, and feature extraction. These
algorithms need to be efficiently inte-
grated with the symbolic processing
module.

Continuous operation: A real-time
expert system must be capable of con-
tinuous operation, even if a fault with
the associated real-time system has
been encountered. Real-time systems
do not necessarily cease functioning
when a fault develops. Because the
system must run continuously for
long periods of time, close attention
must also be paid to garbage collec-
tion.

Focus-of-attention mechanism: A
capability should exist for assigning a
context in which certain rules apply.
There should also be a capability for
focusing the system's resources when
a significant event occurs.

Interrupt-handling facility: An abili-
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ty to manage asynchronous messages
should be possible so that ongoing
processing can be interrupted and
resumed after a higher-priority mes-
sage is processed.

Optimal environment utilization:
The expert system should make opti-
mal use of its operational environ-
ment. Techniques used by applica-
tions found in the survey included
using compiled rather than interpret-
ed code.

Predictability: The behavior of the
expert system should be predictable.
That is, for a given time constraint,
the ability of the expert system to pro-
vide a response should be deter-
minable.  This statement infers that
garbage collection must be done "on
the fly," not at the processor's discre-
tion.

Temporal reasoning facility: The
knowledge representation scheme
should permit representation of tem-
poral relationships. A capability
should exist for maintaining, access-
ing, and statistically evaluating his-
torical data.

Truth maintenance facility:
Empirical data indicate that in some
domains, some data decay in quality
as a function of time. This decay was
found to be true in some environ-
ments where sensors are the source of
data. As the validity of the data goes
to zero, mechanisms are needed to
retract all assertions based on the
now-invalid data.

Closing Remarks

Robert C. McArthur of the Arthur D.
Little Company once told an execu-
tive training seminar that "real-time
expert systems are real hard to devel-
op" (Marsh 1986).  Perhaps this state-
ment explains why many more expert
system applications exist in conven-
tional domains than in real-time
domains. Nonetheless, knowledge-
based problem-solving techniques
offer a great potential for adding need-
ed intelligence to real-time domains.
The results of this survey indicate
that a substantial amount of research
is still needed.

Very few of the applications sur-
veyed have progressed beyond the pro-
totype stage to be used everyday in a

real-time domain. We concluded that
one of the main reasons for this situa-
tion is that expert system developers
have often tried to apply traditional
tools to applications for which they
are not well suited. Tools specifically
built for real-time monitoring and
control applications need to be built.
An immediate goal should be the
development of high-performance
inference engines that can guarantee
response times.

Real-time domains offer a new and
challenging environment for the
application of knowledge-based sys-
tems. However, many hard problems
need to be solved before we will see
the widespread use of real-time
knowledge-based systems.
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