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Abstract

We present a new SLAM system capable of producing high quality globally consistent surface reconstructions over hundreds

of metres in real-time with only a low-cost commodity RGB-D sensor. By using a fused volumetric surface reconstruction we

achieve a much higher quality map over what would be achieved using raw RGB-D point clouds. In this paper we highlight three

key techniques associated with applying a volumetric fusion-based mapping system to the SLAM problem in real-time. First, the

use of a GPU-based 3D cyclical buffer trick to efficiently extend dense every frame volumetric fusion of depth maps to function

over an unbounded spatial region. Second, overcoming camera pose estimation limitations in a wide variety of environments by

combining both dense geometric and photometric camera pose constraints. Third, efficiently updating the dense map according

to place recognition and subsequent loop closure constraints by the use of an “as-rigid-as-possible” space deformation. We

present results on a wide variety of aspects of the system and show through evaluation on de facto standard RGB-D benchmarks

that our system performs strongly in terms of trajectory estimation, map quality and computational performance in comparison

to other state-of-the-art systems.
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1 Introduction

The ability for a robot to create a map of an unknown environ-

ment and localise within that map is of extreme importance in

intelligent autonomous operation. Simultaneous Localisation

and Mapping (SLAM) has been one of the large focuses of

robotics research over the last two decades, with 3D mapping

becoming more and more popular within the last few years

over traditional 2D laser scan SLAM. The recent explosion

in full dense 3D SLAM is arguably a result of the release of

the Microsoft Kinect commodity RGB-D sensor, which pro-

vides high quality depth sensing capabilities for a little over

one hundred US dollars. Before the advent of the Kinect, 3D

SLAM methods required either time of flight (TOF) sensors,

3D LIDAR scanners or stereo vision, which were typically

either quite expensive or not suitable for fully mobile real-

time operation if dense reconstruction was desired. Another

recent technology which is often coupled with dense methods

is General-Purpose computing on Graphics Processing Units
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(GPGPU) which exploits the massive parallelism available in

GPU hardware to perform high speed and often real-time pro-

cessing on entire images every frame. Being an affordable

commodity technology, GPU-based programming is arguably

another large enabler in recent dense SLAM research.

Many visual SLAM systems and 3D reconstruction sys-

tems (both offline and online) have been published in recent

times that rely purely on RGB-D sensing capabilities because

of the Kinect’s low price and accuracy; Henry et al. (2012);

Endres et al. (2012); Stückler and Behnke (2013). The Kinect-

Fusion algorithm of Newcombe et al. (2011) is one of the

most notable RGB-D-based 3D reconstruction systems of re-

cent times, allowing real-time volumetric dense reconstruc-

tion of a desk sized scene at sub-centimetre resolution. By

fusing many individual depth maps together into a single vol-

umetric reconstruction, the models that are obtained are of

much higher quality than typical noisy single-shot raw RGB-

D point clouds. KinectFusion enables reconstructions of an

unprecedented quality at real-time speeds but comes with a

number of limitations, namely 1) restriction to a fixed small

area in space; 2) reliance on geometric information alone for

camera pose estimation; and, 3) no means of explicitly incor-

porating loop closures. These three limitations severely limit

the applicability of KinectFusion to the large scale SLAM

problem where it is desirable due to its real-time nature and

very high surface reconstruction fidelity.

In this paper we present solutions to the three aforemen-

tioned limitations such that the system can be used in a full

real-time large scale SLAM setting. We address the three

limitations respectively by 1) representing the volumetric re-



construction data structure in memory with a rolling cyclical

buffer; 2) estimating a dense photometric camera constraint

in conjunction with a dense geometric constraint and jointly

optimising for a camera pose estimate; and, 3) optimising the

dense map by means of a non-rigid space deformation param-

eterised by a loop closure constraint. In the remainder of this

section we provide a discussion on the existing work related

to the area of dense RGB-D SLAM. Following on from this

Sections 2, 3 & 4 address the issues of extended scale volu-

metric fusion, camera pose estimate, and loop closure, respec-

tively. Section 5 provides a comprehensive qualitative and

quantitative evaluation of the system using multiple bench-

mark datasets and finally Section 6 presents conclusions on

the work and future directions of our research.

1.1 Related Work

A large number of publications have been made over the last

few years specifically using RGB-D data for camera pose es-

timation, dense mapping and full SLAM pipelines. While

many visual SLAM systems existed prior to the advent of

active RGB-D sensors (e.g. Comport et al. (2007)), we will

focus mainly on the literature which makes specific use of

active RGB-D platforms. One of the earliest RGB-D track-

ing and mapping systems uses FAST feature correspondences

between frames for visual odometry and offloads dense point

cloud map building to a post-processing step utilising sparse

bundle adjustment (SBA) for global consistency by minimiz-

ing feature reprojection error (Huang et al. (2011)). One of the

first real-time dense RGB-D tracking and mapping systems

estimates an image warping function with both geometric and

photometric information to compute a camera pose estimate,

however only relies on rigid reprojection for point cloud map

reconstruction without using a method for global consistency

(Audras et al. (2011)). Similar work on dense RGB-D cam-

era tracking was done by Steinbrücker et al. (2011), also es-

timating an image warping function based on geometric and

photometric information. Recent work by Kerl et al. (2013)

presents a more robust dense photometrics-based RGB-D vi-

sual odometry system that proposes a t-distribution-based er-

ror model which more accurately matches the residual error

between RGB-D frames in scenes that are not entirely static.

Henry et al. (2012) presented one of the first full SLAM

systems based entirely upon RGB-D data, using visual feature

matching with Generalised Iterative Closest Point (GICP) to

build up a pose graph and following that an optimised surfel

map of the area explored. The use of pose graph optimisa-

tion versus SBA is studied, minimising feature reprojection

error in an offline rigid transformation framework. Visual fea-

ture correspondences are used in conjunction with pose graph

optimisation in the RGB-D SLAM system of Endres et al.

(2012). An octree-based volumetric representation is used to

store the map, created by reprojecting all point measurements

into the global frame. This map representation is provided

by the OctoMap framework of Hornung et al. (2013), which

includes the ability to take measurement uncertainties into ac-

count and implicitly represent free and occupied space while

being space efficient. An explicit voxel volumetric occupancy

representation is used by Pirker et al. (2011) in their GPSlam

system which uses sparse visual feature correspondences for

camera pose estimation. They make use of visual place recog-

nition and sliding window bundle adjustment in a pose graph

optimisation framework. To achieve global consistency the

occupancy grid is “morphed” by a weighted average of the

log-odds perceptions of each camera for each voxel. Stückler

and Behnke (2013) register surfel maps together for camera

pose estimation and store a multi-resolution surfel map in an

octree, using pose graph optimisation for global consistency.

After pose graph optimisation is complete a globally consis-

tent map is created by fusing key views together. In recent

work Hu et al. (2012) proposed a system that uses bundle ad-

justment in order to make use of pixels for which no valid

depth exists, and Lee et al. (2012) presented a system which

exploits GPU processing power for real-time camera tracking.

Both systems produce an optimised map as a final step in the

process.

A substantial number of derived works have been published

recently after the advent of the KinectFusion system of New-

combe et al. (2011), mostly focused on extending the range

of operation, with other related work on object recognition

and motion planning (Karpathy et al. (2013); Wagner et al.

(2013)). Recent work by Bylow et al. (2013) and Canelhas

et al. (2013) directly tracks the camera pose against the accu-

mulated volumetric model by exploiting the fact that the trun-

cated signed distance function (TSDF) representation used by

KinectFusion stores the signed distance to the closest surface

at voxels near the surface. This avoids the need to raycast a

vertex map for each frame to perform camera pose estima-

tion, which potentially discards information about the surface

reconstruction.

Roth and Vona (2012) extend the operational range of

KinectFusion by using a double buffering mechanism to map

between volumetric models upon camera translation and ro-

tation, using a voxel interpolation for the latter. However no

method for recovering the map is provided. Zeng et al. (2012)

replace the explicit voxel representation used by KinectFusion

with an octree representation which allows mapping of areas

up to 8m×8m×8m in size. However this method does increase

the chance for drift within the map and provides no means of

loop closure or map correction. Steinbrücker et al. (2013)

make use of a multi-scale octree to represent the signed dis-

tance function, allowing full color reconstructions of scenes

as large as an entire corridor including nine rooms spanning

a total area of 45m×12m×3.4m. After an RGB-D sequence

has been processed, a globally consistent camera trajectory is

resolved and the model is reconstructed. Keller et al. (2013)

present an extended fusion system made space efficient by us-

ing a point-based surfel representation, although lacking in

drift correction or loop closure detection. Chen et al. (2013)

present a novel hierarchical data structure that enables ex-

tremely space efficient volumetric fusion, using a streaming
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framework allowing effectively unbounded mapping range,

limited only by available memory. However the system lacks

any method for mitigating drift or enforcing global consis-

tency. Nießner et al. (2013) present an alternative space effi-

cient method for large scale dense fusion that uses an intelli-

gent voxel hashing function to minimise the amount of mem-

ory required for reconstruction, but again without a means of

correcting for drift.

An alternative approach to the modern SLAM problem is

introduced by Salas-Moreno et al. (2013), whereby known ob-

jects are detected, tracked and mapped in real-time in a dense

RGB-D framework. Pose graph optimisation is used to en-

sure global consistency on the level of camera poses and de-

tected object positions. This does allow loop closure, however

less influence is placed on a full scene reconstruction with

only point cloud reprojections being used for mapped loop

closure. Recent work by Henry et al. (2013b) uses multiple

smaller “patch volumes” to segment the mapped space into a

set of discrete TSDFs, each with a 6-degrees-of-freedom (6-

DOF) pose which is rigidly optimised upon loop closure de-

tection. This approach can be seen as similar to the SLAM++

approach of Salas-Moreno et al. (2013) whereby the patch

volumes are analogous to objects. While achieving global

consistency between each volume, there is no clear solution

presented for correcting the surface within any one given vol-

ume or stitching surfaces which are split between volumes,

leaving local surfaces disconnected.

Zhou et al. (2013) present an impressive method for re-

constructing 3D scenes that specifically targets the high-

frequency noise and low-frequency distortion effects often en-

countered with RGB-D data. By reconstructing fragments

of the scene which are then aligned and deformed very high

quality reconstructions can be obtained, however in what is

a strictly offline framework. Similar work also by Zhou and

Koltun (2013) presents a method which detects points of inter-

est in a scene and specifically optimises the camera trajectory

to preserve detailed geometry around these points, within an

offline frame.

An number of approaches that rely on keyframes have been

developed to tackle the problem of RGB-D mapping and

SLAM. Tykkälä et al. (2013) present a system which uses

real-time dense photometric keyframe-based camera track-

ing to determine a camera trajectory around an indoor envi-

ronment. Individual RGB-D frames are also fused into ex-

isting keyframes to improve reconstruction quality. An op-

tional bundle adjustment step can then be taken to optimise

the camera poses before a watertight Poisson mesh recon-

struction is computed as a post-processing step. Meilland

and Comport (2013) propose a model that unifies the benefits

of a dense voxel-based representation with a keyframe rep-

resentation allowing high quality dense mapping over large-

scales, although without detecting large loop closures or cor-

recting for drift. An intelligent forward composition approach

is proposed which enables efficient combination of reference

images to create a single predicted frame without repeated

redundant image warps. In our work we chose to avoid a

keyframe approach in spite of the resulting higher memory

requirement. A fully 3D voxel-based method removes the

need to implement specific schemes to overcome the prob-

lems associated with reconstructing complex non-concave ob-

jects and non-convex scenes.

As discussed there exists a large number of systems util-

ising RGB-D data for SLAM and related problems. How-

ever, most are either unable to operate in real-time, provide

an up-to-date optimised representation of the map at runtime

or any time it is requested or efficiently incorporate large non-

rigid updates to the map. Non-rigid surface correction is of

great interest specifically in the realm of volumetric fusion as

typically reconstructions are locally highly accurate but drift

slowly over large scales over time, where a smooth continu-

ous deformation of the surface is most suitable for correction.

In the following sections we will fully describe our approach

to RGB-D SLAM with volumetric fusion which is capable of

functioning in real-time over large scale trajectories, while ef-

ficiently applying non-rigid updates to the dense map upon

loop closure to ensure global consistency.

To clarify our definition of “real-time” there is no of-

fline step involved in our pipeline and multiple loops can be

closed immediately as they occur during the mapping process

(shown in Multimedia Extension 2). Our system architec-

ture can be compared to that of PTAM (Klein and Murray

(2007)), whereby camera tracking and mapping run in sepa-

rate threads. While the camera tracking component runs at

frame rate in one thread, the mapping component is freed

from the computational burden of updating the map for ev-

ery frame and instead occasionally receives information from

the tracking thread to update the map for consistency.

This paper brings together work presented in our three pre-

vious publications Whelan et al. (2012), Whelan et al. (2013a)

and Whelan et al. (2013b). In this paper we provide a num-

ber of additions to that work including a method for improv-

ing camera-frustum overlap for greater reconstruction range

(Section 2.4) and a means of reducing the amount of informa-

tion required to perform map deformation, increasing compu-

tational performance (Section 5.3.2). Most significantly this

paper presents an extensive evaluation of the presented sys-

tem not present in any previous work, including both quali-

tative and quantitative evaluation of trajectory estimation per-

formance, surface reconstruction quality and computational

performance.

Please note any provided sample parameter and threshold

values are those which were used for all experiments in this

paper and are provided as an aid to those who wish to re-

implement any aspect of this work.

2 Extended Scale Volumetric Fusion

In this section we will provide some background on the us-

age of volumetric fusion for dense RGB-D-based tracking

and mapping and describe our extension to KinectFusion, the
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Figure 1: Two dimensional example of the structure of the truncated signed

distance function representation of an implicit surface. Shown are example

signed distance values stored at voxels within the truncation distance of the

observed surface, with rays cast from the observing sensor.

most widely cited system that employs this approach, to allow

spatially extended mapping.

2.1 Background

Real-time volumetric fusion with RGB-D cameras was

brought to the forefront by Newcombe et al. (2011) with the

KinectFusion system. A significant component of the system

is the cyclical pipeline used for camera tracking and scene

mapping, whereby full depth maps are fused into a volumet-

ric data structure (TSDF), which is then raycast to produce

a predicted surface that the subsequently captured depth map

is matched against using ICP. The truncated signed distance

function (TSDF) is a volumetric data structure that encodes

implicit surfaces by storing the signed distance to the closest

surface at each voxel up to a given truncation distance from

the actual surface position. Points at which the sign of the

distance value changes are known as zero crossings, which

represent the actual position of the surface, shown in Figure

1. Each voxel also stores a weight for the distance measure-

ment at that point, effectively providing a moving average of

the surface position. In the case of KinectFusion, the TSDF

is stored as a three dimensional voxel grid in GPU memory

where dense depth map integration is accomplished by sweep-

ing through the volume and updating distance measurements

accordingly, while surface raycasting is carried out by simply

projecting rays from the current camera pose and returning the

depth and surface normals at the first zero crossings encoun-

tered. Surface normals are easily computed by taking the fi-

nite difference around a given position within the TSDF, as ex-

ploited by Bylow et al. (2013) and Canelhas et al. (2013). The

entire process is very amenable to parallelisation and greatly

benefits in execution time from being implemented on a GPU

(Newcombe et al. (2011)). A point to note is that the TSDF

representation has a minimal surface thickness limitation im-

posed by the selected truncation distance. This problem was

Figure 2: Visualisation of the volume shifting process for spatially extended

mapping; (i) The camera motion exceeds the movement threshold ms (direc-

tion of camera motion shown by the black arrow); (ii) Volume slice leaving

the volume (red) is raycast along all three axes to extract surface points and

reset to free space; (iii) The raycast surface is extracted as a point cloud and

fed into the Greedy Projection Triangulation (GPT) algorithm of Marton et al.

(2009); (iv) New region of space (blue) enters the volume and is integrated

using new modulo addressing of the volume.

highlighted and explored by Henry et al. (2013a) in their work

on multiple fusion volumes.

2.2 Volume Representation

Defining the voxel space domain asΨ ⊂ N
3 the TSDF volume

S at some location s ∈ Ψ has the mapping S (s) : Ψ → R ×
N×N3. Within GPU memory the TSDF is represented as a 3D

array of voxels. Each voxel contains a signed distance value

(S (s)T , truncated float16), an unsigned weight value (S (s)W ,

unsigned int8) and a byte for each color component R, G and

B (S (s)R, S (s)G, S (s)B) for a total of 6 bytes per voxel. The

integration of new surface measurements is carried out in a

similar fashion to Newcombe et al. (2011), when integrating

a new signed distance function measurement S (s)T
i

during the

fusion of a new depth map, each voxel s ∈ Ψ at time i is

updated with:

S (s)T ′

i =
S (s)W

i−1
S (s)T

i−1
+ S (s)W

i
S (s)T

i

S (s)W
i−1
+ S (s)W

i

(1)

S (s)W′

i = min(S (s)W
i−1 + S (s)W

i ,max weight) (2)

As is the case with previous approaches, we take S (s)W
i
= 1

to provide a simple moving average, and set max weight to

128. Bylow et al. (2013) have experimented with different

weighting schemes, however we have found the original value

of 1 used by Newcombe et al. (2011) to provide good per-

formance. Using only a cubic volume, we parameterise the

TSDF by the side length in voxels vs and the dimension in

metres vd. Both of these parameters control the resolution of

the reconstruction along with the size of the immediate “active

area” of reconstruction. In all experiments in this paper we set

vs = 512 for total GPU memory usage of 768MB. The 6-DOF

camera pose within the TSDF at time i is denoted as PT
i

, com-

posed of a rotation RT
i
∈ SO3 and a translation tT

i
∈ R3. The

origin of the TSDF coordinate system is positioned at the cen-

ter of the volume with basis vectors aligned with the axes of

the TSDF. Initially RT
0
= I and tT

0
= (0, 0, 0)⊤. The position

of the TSDF volume in voxel units in the global frame is ini-
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Figure 3: Visualisation of the interaction between the movement threshold

ms and the shifting process. Between frames 0 and 1 the camera does not

cross the movement boundary (dark brown) and no shift occurs. At frame

2, the pose crosses the boundary and causes a volume shift, recentering the

volume (teal) around PT
2

and updating g2. The underlying voxel grid quanti-

sation is shown in light dashed lines.

tialised to be g0 = (0, 0, 0)⊤. Note that the superscript T refers

to the TSDF pose and not the transpose ⊤ operator.

2.3 Volume Shifting

Unlike Newcombe et al. (2011) camera pose estimation and

surface reconstruction is not restricted to only the region

around which the TSDF was initialised. By employing mod-

ulo arithmetic in how the TSDF volume is addressed in GPU

memory we can treat the structure like a cyclical buffer which

virtually translates as the camera moves through an environ-

ment. Figure 2 provides a visual example and description of

the shifting process. It is parameterised by an integer move-

ment threshold ms, defining the cubic movement boundary (in

voxels) around gi which upon crossing, causes a volume shift,

shown in Figure 3. Discussion on the choice of value for ms is

provided in Section 5.3. Each dimension is treated indepen-

dently during a shift. When a shift is triggered, the TSDF is

virtually translated about the camera pose (in voxel units) to

bring the camera’s position to within one voxel of gi+1. The

new pose of the camera PT
i+1

has no change in rotation, while

the shift corrected camera position tT ′

i+1
is calculated from tT

i+1

by first computing the number of voxel units crossed:

u =

















vst
T
i+1

vd
















(3)

And then shifting the pose while updating the global position

of the TSDF:

tT ′

i+1 = tT
i+1 −

vdu

vs

(4)

gi+1 = gi + u (5)

Figure 4: Two dimensional visualisation of the association between extracted

cloud slices, the camera poses and the TSDF volume. Note that the camera

poses here are in global coordinates rather than internal TSDF coordinates. A

red dashed line links camera poses with extracted slices of the TSDF volume

(Pγ, Pβ and Pα with C2,C1 and C0 respectively). The large triangles repre-

sent camera poses that caused volume shifts while the small black squares

represent those that didn’t.

2.3.1 Implementation

There are two parts of volumetric fusion as described by New-

combe et al. (2011) that require indexed access to the TSDF

volume; 1) Volume Integration and 2) Volume Raycasting.

Referring again to Figure 2, the new surface measurements

shown in blue can be integrated into the memory previously

used for the old surface contained within the red region of the

TSDF by ensuring all element look ups in the 3D block of

GPU memory reflect the virtual voxel translation computed

in Equation 5. Assuming row major memory ordering, an el-

ement in the unshifted cubic 3D voxel grid can be found at the

1D memory location a given by:

a = (x + yvs + zv2
s) (6)

The volume’s translation can be reflected in how the TSDF

is addressed for integration and raycasting by substituting the

indices in Equation 6 with values that are offset by the current

global position of the TSDF and bound within the dimensions

of the voxel grid using the modulus operator:

x′ = (x + gi x) mod vs (7)

y′ = (y + giy) mod vs (8)

z′ = (z + giz) mod vs (9)

a = (x′ + y′vs + z′v2
s) (10)

The original KinectFusion work of Newcombe et al. (2011)

benefits greatly from memory caching and pipelining func-

tionality within GPU memory to achieve high computational

performance within the integration step. In our implementa-

tion we have found that use of a cyclical addressing method
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Figure 5: Visualisation of a shifted TSDF volume with extracted cloud slices and pose graph highlighted, using dynamic cube positioning discussed in

Section 2.4. The pose graph is drawn in pink, while small cuboids are drawn for camera poses that have cloud slices associated with them. Note that the

apparent striping of the boundaries between slices has been added in for visualisation purposes only.

has no significant effect on real-time performance. An ex-

planation for the lack of a drastic performance decrease is

that even after significant buffer cycling there still exists con-

tinuous blocks of memory which at least partially maintain

pipelining.

2.3.2 Surface Extraction

In order to recover the surface from the TSDF that moves

out of the region of space encompassed by the volume the

u value computed in Equation 3 is used with gi to index a

three dimensional slice of the volume to extract surface points

from. These points are extracted by three orthogonal raycasts

aligned with the axes of the TSDF through the slice, extract-

ing zero crossings as individual surface vertices. We filter out

noisy measurements at this point by only extracting points

that have a minimum voxel weight. The same 3D slice of

the volume is then reset to free space to allow integration of

new surface measurements. The extracted vertices are trans-

ferred to main system memory where further processing takes

place. The orthogonal raycast can result in duplicate vertices

if the TSDF is obliquely aligned to the surface being recon-

structed. A voxel grid filter is used to remove these points

by overlaying a voxel grid (with the same voxel size as the

TSDF) on the extracted point cloud and returning a new point

cloud with a point for each voxel that represents the centroid

of all points that fell inside that voxel. Each set of vertices

extracted from the TSDF in this fashion is known as a “cloud

slice”. From here, we rebuild the surface by incrementally tri-

angulating successive cloud slices using an incremental mesh

growing variant of the GPT algorithm to ensure surface con-

nectivity between slices (Marton et al. (2009)).

We choose not to perform marching cubes because this

would lock the TSDF data structure in GPU memory and de-

lay the reset of the extracted volume slice, impacting volume

shifting performance over all. Axis-aligned orthgonal raycast-

ing is extremely fast and allows us to offload the data from

the GPU and unlock the TSDF volume as quickly as possi-

ble. This way the GPU-based tracking and integration com-

ponents of the system can continue with minimal interrup-

tion while the extracted cloud slice is triangulated on the CPU

asynchronously. In addition to this the raycast vertex map

representation is easy to incrementally grow using the mesh

triangulation method we have adopted (Marton et al. (2009)).

We associate with each cloud slice the pose of the camera

at the time of the slice’s extraction. This is visualised in Fig-

ure 4. At this point we introduce camera poses in the global

coordinate frame outside of the TSDF volume Pi, composed

of a rotation Ri ∈ SO3 and a translation ti ∈ R
3. The global

pose Pi of a camera from the TSDF at time i is made up of:
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(i) (ii)

Figure 6: Visualisation of frustum-volume overlap for regular and dynamic

cube positioning, from left to right; (i) By keeping the camera centered in the

TSDF, there is poor overlap between the camera’s field of view and the vol-

ume; (ii) By using a circular (or spherical) parameterisation of the volume’s

position relative to the camera, greater overlap with and usage of the TSDF

can be achieved.

(i) (ii)

Figure 7: From left to right; (i) Input depth map registered to RGB chan-

nel; (ii) Color measurements from pixels highlighted in red are rejected for

being on depth discontinuities. Lighter surfaces are weighted higher in color

integration due to being well aligned with the camera sensor.

Ri = RT
i (11)

ti = tT
i +

vdgi

vs

(12)

We construct a pose graph incrementally using each global

camera pose Pi, that is, a camera pose for every frame where

some poses are attached to cloud slices. The full shifting and

surface extraction process is shown in Figure 5, where only

the poses with associated cloud slices are drawn.

2.4 Dynamic Cube Positioning

As mentioned in Section 2.2, we position the camera in the

center of the TSDF volume and roughly maintain this posi-

tion inside the TSDF at all times. This parameterisation of

the camera position relative to the volume is wasteful as most

of the volume is unused (i.e. behind the camera) and there

is little overlap between the camera frustum and the volume,

shown in Figure 6. By dynamically changing the position of

the volume relative to the camera depending on the camera’s

orientation we can achieve greater frustum-volume overlap

and make better use of the entire TSDF volume. In a typi-

cal SLAM setting a circular parameterisation is sufficient.

Defining βi to be the rotation around the y-axis of the cam-

era pose at time i, we can compute the new position of the

center of the TSDF volume relative to the camera as:

rT =

(

vd

2
· cos

(

βi +
π

2

)

, 0,
vd

2
· sin

(

βi −
π

2

))⊤
(13)

This dynamic parameterisation enables more intelligent use of

the volume and maintains a larger active reconstruction area

in front of the camera at all times, while also being easily

expandable to a full spherical parameterisation depending on

the expected camera motion.

2.5 Color Estimation

As well as estimating the surface itself in the reconstruction

process, we also estimate the color of the surface (purely for

visualisation purposes). Color is integrated into the TSDF in

a similar manner to depth measurements including value trun-

cation and averaging. The only distinction is that the predicted

surface color values obtained from the volume raycast are not

used in camera pose estimation. The motivation for this de-

cision is discussed into Section 3.2. Color fusion has similar

advantages to depth map fusion in that sensor noise and other

optical phenomena are averaged out from the final reconstruc-

tion over time.

2.5.1 Artifact Reduction

The estimated surface color is sometimes inaccurate around

the edges of closed objects in a scene due to poor calibra-

tion between the RGB and depth cameras or light diffraction

around objects. We have observed that there typically exists

stark discontinuities in the depth channel around such edges

which can in turn cause the background to blend with the fore-

ground surface or vice-versa. To address this issue we opt to

reject the integration of color measurements close to or on

strong boundaries in the depth image. A color measurement

is deemed to be on a boundary if some of its neighbours are

more than a given distance away from it in depth. We con-

sider a pixel neighbourhood window of 7 × 7 pixels around

each RGB value to be integrated. Figure 7 shows a source

depth image and rejected measurements on the TSDF surface

model. In addition to this it is ideal to weight color measure-

ments on surfaces well aligned with the sensor higher than

those at extreme angles. We weight each color measurement

update by the normal angle on the surface with respect to the

sensor, visualised in Figure 7. The more parallel the surface

is to the image plane, the higher the weight on the color mea-

surement.

Defining the image space domain as Ω ⊂ N
2, an RGB-D

frame Ii is composed of an RGB image rgbi : Ω → N
3, a

depth image di : Ω → R and a timestamp i. We also define

a normal map computed for di as ni : Ω → R
3. We list the

7



(i) (ii)

Figure 8: From left to right; (i) Light diffraction behind a foreground surface

has caused incorrect color integration (ii) Incorporating a discontinuity check

with surface angle weighting greatly reduces the visual artifacts captured.

algorithm for color integration in Algorithm 1 in Appendix

B. Note that we define the z-axis to point outward from the

sensor and in all experiments use an RGB-D frame resolution

of 640×480. An example reconstruction is shown in Figure

8 comparing surface coloring with and without the described

measures.

3 Camera Pose Estimation

A number of volumetric fusion systems use only depth infor-

mation for camera pose estimation (Newcombe et al. (2011),

Chen et al. (2013), Bylow et al. (2013), Keller et al. (2013),

Roth and Vona (2012), Zeng et al. (2012), Canelhas et al.

(2013)). A reliance on geometric information alone for cam-

era pose estimation has a number of well understood prob-

lems, such as the inability to function in corridor-like envi-

ronments and other scenes with few 3D features. To avoid

these problems like Henry et al. (2013b) we combine dense

geometric camera pose constraints with dense photometric

constraints to achieve a more robust pose estimate in more

challenging scenes. We base our approach on the dense pho-

tometric image warping method of Steinbrücker et al. (2011)

and Audras et al. (2011), performing dense RGB-D alignment

every frame in real-time. In tune with other components of the

pipeline we utilise a GPU implementation of the algorithm.

Following we describe the geometric and photometric compo-

nents of the camera pose estimation pipeline and our method

for combining them to form a single joint pose constraint.

3.1 Geometric Camera Pose Estimation

Many of the previous works on volumetric fusion estimate

the pose of the camera each frame relative to the TSDF by

aligning the current depth map with the TSDF, either by ray-

casting the volume to retrieve a vertex and normal map of

the predicted surface (as done originally by Newcombe et al.

(2011)) and performing iterative closest point (ICP) or by di-

rectly minimising the distance to the surface in the TSDF (By-

low et al. (2013), Canelhas et al. (2013)). We perform the for-

mer in order to avoid expensive global memory accesses in

the TSDF volume in GPU memory.

We aim to find the motion parameters ξ that minimize the

cost over the point-to-plane error between vertices in the cur-

rent depth frame and the predicted raycast surface:

Eicp =
∑

k

∥

∥

∥

∥

(

vk − exp(ξ̂)Tvk
n

)

· nk
∥

∥

∥

∥

2

, (14)

where vk
n is the k-th vertex in frame n, vk,nk are the corre-

sponding vertex and normal in the model, and T is the current

estimate of the transformation from the current frame to the

model frame. For simplicity of notation we omit conversions

between 3-vectors (as needed for dot and cross products) and

their corresponding homogeneous 4-vectors (as needed for

multiplications with T). We utilise projective data associa-

tion as originally proposed by Newcombe et al. (2011) for fast

point correspondence between the vertex maps by projecting

the vertices from the predicted surface v onto the depth map

vertices vn. Linearizing the transformation around the identity

we get:

Eicp ≈
∑

k

∥

∥

∥

∥

(

vk − (I + ξ̂)Tvk
n

)

· nk
∥

∥

∥

∥

2

(15)

=
∑

k

∥

∥

∥

∥

(

vk − Tvk
n

)

· nk − ξ̂Tvk
n · nk

∥

∥

∥

∥

2

(16)

=
∑

k

∥

∥

∥

∥

∥

∥

[

−Tvk
n × nk

−nk

]⊤
ξ + (vk − vk

n) · nk

∥

∥

∥

∥

∥

∥

2

(17)

=
∥

∥

∥Jicpξ + ricp

∥

∥

∥

2
(18)

Blocks of the measurement Jacobian and residual can be pop-

ulated in tandem and solved with a highly parallel tree reduc-

tion on the GPU to produce a 6 × 6 system of normal equa-

tions which are then transferred to the CPU and solved with

Cholesky decomposition to yield ξ̂. As in previous work we

compute the alignment iteratively with a three level coarse-to-

fine depth map pyramid scheme.

3.2 Photometric Camera Pose Estimation

As mentioned previously we choose to match between con-

secutive RGB-D frames with the photometric component in-

stead of matching to the predict surface reconstruction. De-

pending on the configuration of the TSDF there maybe be

poor overlap between the camera frustum and the volume,

which limits the amount of photometric information which

can be used, where distant photometric features are desir-

able to constrain camera rotation. As well as this, the res-

olution of the TSDF in terms of voxels may produce a ray-

cast image with a much lower resolution than the image pro-

duced by the RGB sensor. By default the Microsoft Kinect
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and Asus Xtion Pro Live, two of the most popular RGB-

D sensors, have automatic exposure and white balance en-

abled, which can cause unusual coloring of the surface recon-

struction over time, again hindering model-based photometric

tracking. While these functions of the camera can be disabled

we have found that it is sometimes desirable to keep them en-

abled, particularly in indoor environments where lighting can

vary to a certain degree.

Given two consecutive RGB-D frames [rgbn−1,dn−1] and

[rgbn,dn] we compute a rigid camera transformation between

the two that maximises photoconsistency. Defining V : Ω →
R

3 to be the back-projection of a point p, dependent on a met-

ric depth map M : Ω → R and camera intrinsics matrix K

made up of the principal points cx and cy and the focal lengths

fx and fy:

V(p) =

(

(px − cx)M(p)

fx

,
(py − cy)M(p)

fy
,M(p)

)⊤
(19)

We also defined perspective projection of a 3D point v =

(x, y, z)⊤ including dehomogenisation by Π(v) = (x/z, y/z)⊤.

The cost we wish to minimise depends on the difference in

intensity values between two images In−1, In : Ω→ N:

Ergbd =
∑

p∈L

∥

∥

∥

∥

In(p) − In−1

(

Πn−1(exp(ξ̂)TVn(p))
)

∥

∥

∥

∥

2

(20)

Where L is the list of valid interest points populated in Algo-

rithm 2 (see Appendix B) and T is the current estimate of the

transformation from In to In−1. Similar to the geometric pose

estimation method we solve for this transformation iteratively

with a three level image pyramid.

3.2.1 Preprocessing

For both pairs we perform preprocessing on the RGB image

and depth map. For each depth map we convert raw sensor

values to a metric depth map M : Ω→ R and we compute an

intensity image I = (rgbR∗0.299+rgbG∗0.587+rgbB∗0.114)

with I : Ω → N. Following this a three level intensity and

depth pyramid is constructed using a 5×5 Gaussian kernel for

downsampling. We compute the partial derivatives ∂In

∂x
and ∂In

∂y

using a 3 × 3 Sobel operator coupled with a 3 × 3 Gaussian

blur with σ = 0.8. Each of these steps is carried out on the

GPU acting in parallel with one GPU thread per pixel.

3.2.2 Precomputation

As with the ICP method described in Section 3.1, we use pro-

jective data association between frames to population point

correspondences. For the sake of speed we only include point

correspondences with a minimum gradient in the intensity im-

age, with the motivation that other low gradient points will

not have a significant effect on the final transformation. We

implement this optimisation by using a list of interest points,

which involves a much larger set of points than a point fea-

ture extractor could provide. Compiling this list of points as

a parallel operation is done using a basic parallel reduction

exploiting shared memory in each CUDA thread block as in-

spired by a similar operation by van den Braak et al. (2011).

Algorithm 2 in Appendix B lists the operation as it would op-

erate for each level of the pyramid.

In the computation of the Jacobian matrix the projection

of each point in Mn−1 is required. For each pyramid level

the 3D projection Vn−1(p) of each point p in the depth map is

computed prior to beginning iteration. Only projecting certain

points based on a condition results in performance hindering

branching and a reduction in pipelining. Empirically it was

found to be faster to simply project the entire depth map rather

than only project points required in correspondences.

3.2.3 Iterative Transformation Estimation

Our iterative estimation process takes two main steps; (i) pop-

ulating a list of valid correspondences from the precomputed

list of interest points and (ii) solving the linear system for an

incremental transformation and concatenating these transfor-

mations. The first step involves a reduction similar to the one

in Algorithm 2, but rather than reducing from a 2D array to

a 1D array it reduces from a 1D array to another 1D array; a

distinction which results in a notable difference in implemen-

tation. On the first iteration for frame n we set the estimated

camera transformation matrix T to the identity, where

T =

[

R t

0 0 0 1

]

∈ SE3 (21)

with a rotation R ∈ SO3 and translation t ∈ R
3. Before each

iteration we compute the projection of T into the image before

uploading to the GPU as

RI = KRK−1, tI = Kt. (22)

Algorithm 3 in Appendix B lists the process of populating a

list of point correspondences from the list of interest points

which can then be used to construct the Jacobian. With a list

of valid correspondences we need only solve a least-squares

equation

arg min
ξ

∥

∥

∥Jrgbdξ + rrgbd

∥

∥

∥

2
(23)

to compute an improved camera transformation estimate

T′ = exp(ξ̂)T (24)

ξ̂ =

[

[ω]× x

0 0 0 0

]

(25)

with ξ = [ω⊤x⊤]⊤, ω ∈ R
3 and x ∈ R

3. We first normalise

the intensity difference sum σ computed in Algorithm 3 to

enable a weighted optimisation σ′ =
√
σ/kC. Computation

of the σ value in parallel is in fact an optimisation exploiting

the atomic arithmetic functions available in the CUDA API.

From here Jrgbd and rrgbd can be populated including usage
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of σ′ for weighting. Equation 23 is then solved using a tree

reduction on the GPU followed by Cholesky factorisation of

the linear system on the CPU.

3.3 Combined Camera Pose Estimate

We combine the cost functions of both the geometric and

photometric estimates in a weighted sum, independent of the

number of points used for each estimate. The sum of the

RGB-D and ICP cost is defined as

E = Eicp + wrgbdErgbd (26)

where wrgbd is the weight and was set empirically to 0.1 to re-

flect the difference in metrics used for ICP and RGB-D costs

(metres and 8-bit intensity respectively). A key distinction

between our approach and that of Tykkälä et al. (2011) is

that we are combining two cost functions between a frame-

to-model registration (for the ICP component) and a frame-

to-frame registration (for the RGB-D component). For each

step we minimize the linear least-squares problem by solving

the normal equations

[

Jicp

vJrgbd

]⊤ [

Jicp

vJrgbd

]

ξ =

[

Jicp

vJrgbd

]⊤ [

ricp

rrgbd

]

(27)

(J⊤icpJicp + wrgbdJ⊤rgbdJrgbd)ξ = J⊤icpricp + vJ⊤rgbdrrgbd (28)

where v =
√

wrgbd. The products J⊤J and J⊤r are computed

on the GPU using a tree reduction. The normal equations are

then solved on the CPU using Cholesky factorisation. The

final estimate returns a locally optimal (in the least-squares

sense) camera pose which jointly minimizes the photomet-

ric error between the current RGB-D frame and the last and

the geometric error between the current depth map and the

TSDF surface reconstruction. This combined method pro-

vides a very accurate and stable trajectory estimate as well as

surface reconstruction, which we expand upon in Section 5.

It should be noted that although there are a number of

atomic operations in Algorithms 2 and 3, these are primarily

operating on values contained in shared thread block mem-

ory, minimising impact on execution performance and overall

degradation to serial execution. Our computational perfor-

mance results in Section 5.3 and our previous work (Whelan

et al. (2013a)) also demonstrates that use of such atomic oper-

ations (in the standard reduction setting they are used in here)

does not hinder real-time performance.

4 Loop Closure

Using the techniques from Sections 2 and 3 permits the re-

construction of large scale dense 3D mesh-based maps in real-

time, however like all egomotion estimation systems drift will

accumulate over space and time, warranting a method to cor-

rect the map to achieve global consistency when possible. A

simple approach to this problem would be to associate each

vertex in the mesh with the nearest camera pose, optimise the

pose graph and reflect the camera pose transformations in the

mesh vertices. This would however cause sharp discontinu-

ities at points on the surface where the association between

camera poses changes and ignores other important properties

of the surface. For this reason we have chosen a non-rigid

method of correcting the map. We now frame the system as

a more traditional SLAM setup with a frontend (for camera

tracking and surface extraction) and a backend (for pose graph

optimisation and map optimisation). A detailed system archi-

tecture diagram is shown in Figure 9.

The frontend is made up of the extended scale volumet-

ric fusion method described in Section 2 coupled with the

combined geometric and photometric camera pose estima-

tion method described in Section 3. The final component

of the frontend not yet described is a visual place recogni-

tion module that relies on the DBoW place recognition sys-

tem (Galvez-Lopez and Tardos (2011)) which we describe in

Section 4.2.

The backend provides a means of performing deformation-

based dense map correction making use of incremental pose

graph optimisation coupled with a non-rigid map optimisa-

tion. We use iSAM (Kaess et al. (2008)) to optimise the cam-

era pose graph according to loop closure constraints provided

by our place recognition module. The optimised trajectory is

then used in conjunction with matched visual features to con-

strain a non-rigid space deformation of the map. We adapt the

embedded deformation technique of Sumner et al. (2007) to

apply it to large scale dense maps captured with a pose graph

backend and utilise efficient incremental methods to prepare

the map for deformation.

We apply the SLAM principal to our framework by

building constraints between multiple regions of the surface

through frames anchored to the map via the place recognition

system. These frames (and associated global camera poses)

are connected to the pose graph, which upon optimisation

propagates back to the surface through the deformation.

Following we provide a detailed description of each com-

ponent involved in the global consistency pipeline including

pose graph representation, place recognition and loop closure,

deformation graph construction and map optimisation.

4.1 Pose Graph

All camera poses added to the pose graph are given in global

coordinates, as described in Section 2.3.2. A camera pose Pi

is estimated for every processed frame. We evaluate the trade

offs of using every pose versus a subset of poses in Section

5. As discussed in Section 2.3.2 some camera poses also have

an associated cloud slice as shown in Figure 10 where the re-

lationship between pose Pγ and cloud slice C j is shown. This

provides a useful association between camera poses and the

extracted surface, capturing both temporal and spatial proxim-

ity. In order to model the uncertainty of inter-pose constraints

derived from dense visual odometry we can approximate the

constraint uncertainty with the Hessian as Σ = (J⊤J)−1, where
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Figure 9: System architecture diagram. Differently colored function blocks are executing asynchronously in separate CPU threads. The ms quantity denotes

the volume shifting threshold and mp denotes the place recognition movement threshold.

J is the combined measurement Jacobian computed in Equa-

tion 28.

4.2 Place Recognition

We use Speeded Up Robust Feature (SURF) descriptors with

the bag-of-words-based DBoW loop detector for place recog-

nition (Galvez-Lopez and Tardos (2011)). Adding every

RGB-D frame to the place recognition system is non-optimal,

therefore we utilise a movement metric sensitive to both rota-

tion and translation which indicates when to add a new frame

to the place recognition system. Defining r(R) : SO(3)→ R
3

to provide the rotation vector form of some rotation matrix R,

we compute a movement distance between two poses a and

b that compounds both translation and rotation into a single

quantity as:

mab =
∥

∥

∥r(R−1
a Rb)

∥

∥

∥

2
+ ‖ta − tb‖2 (29)

For each frame we evaluate the movement distance between

the current frame pose and the pose of the last frame added

to the place recognition system according to Equation 29. If

this metric is above some threshold mp, a new frame is added.

Empirically we found mp = 0.3 provides good performance.

Alternatively the two quantities can be separately thresholded

such that motion is acknowledged when either
∥

∥

∥r(R−1
a Rb)

∥

∥

∥

2

goes above a specified angle θt threshold or ‖ta − tb‖2 goes

above a distance mt threshold. We have not found place recog-

nition rates to vary significantly between schemes.

Upon receiving a new RGB-D frame [rgbi,di] the place

recognition module first computes a set of SURF keypoints

and associated descriptors Ui ∈ Ω×R64 for that frame. These

features are cached in memory for future queries. The depth

image di is also cached, however to ensure low memory us-

age it is compressed in real-time using lossless compression

(Deutsch and Gailly (1996)). Following this, the existing bag-

of-words descriptor database is queried. If a match is found

the SURF keypoints and descriptors Um and depth data dm

for the matched image are retrieved for constraint computa-

tion. A number of validation steps are performed to minimise

the chance of false positives. They are as follows:

4.2.1 SURF Correspondence Threshold

Given Ui and Um we find correspondences by a k-nearest

neighbour search in the SURF descriptor space. We use the

Fast Library for Approximate Nearest Neighbors (FLANN)

to perform this search and populate a set of valid correspon-

dences G ∈ Ω × Ω, thresholding matches using an L2-norm

between descriptors in R
64. We discard the loop closure can-

didate if |G| is less than some threshold; a value of 35 has been

found to provide adequate performance in our experiments.

4.2.2 RANSAC Transformation Estimation

Given G and dm, we first attempt to approximate a 6-DOF

relative transformation between the camera poses of frames

i and m using a RANSAC-based 3-point algorithm (Fischler

and Bolles (1981)). Each matching keypoint in G is back-

projected from image m to a 3D point, transformed according

to the current RANSAC model and reprojected into the image

plane of frame i (using standard perspective projection onto

an image plane) where the reprojection error quantified by the

L2-norm in R
2 is used for outlier detection. Empirically we

chose a maximum reprojection error of 2.0 pixels for inliers.

If the percentage of inliers for the RANSAC estimation is be-

low 25% the loop closure is discarded. Otherwise, we refine

the estimated transformation by minimising all inlier feature

reprojection errors in a Levenberg-Marquardt optimisation.

4.2.3 Point Cloud ICP

At this point only candidate loop closures with strong geo-

metrically consistent visual feature correspondences remain.

As a final step we perform a non-linear ICP step between

di and dm. Firstly we back-project each point in both depth

images to produce two point clouds. In order to speed up

the computation, we carry out a uniform downsampling of

each point cloud in R
3 using a voxel grid filter. Finally,
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Figure 10: Two-dimensional example showing the current position of the

TSDF shifting volume as a checkerboard pattern and the previously extracted

cloud slices as textured columns. Also shown is the pose graph as small green

points as well as a pose Pγ which caused a volume shift. The association

between Pγ and the extracted cloud slice is shown with a dotted red line. A

k = 4 connected sequential deformation graph is also shown, demonstrating

the back-traversal vertex association algorithm on a random vertex v.

using the RANSAC approximate transformation estimate as

an initial guess, we iteratively minimise nearest neighbour

correspondence distances between the two point clouds us-

ing a Levenberg-Marquardt optimisation. We accept the fi-

nal refined transformation if the mean L2
2
-norm of all corre-

spondence errors is below a threshold. Typically we found a

threshold of 0.01 to provide good results.

Once a loop closure candidate has passed all of the de-

scribed tests, the relative transformation constraint between

the two camera poses is added to the pose graph maintained

by the iSAM module. Section 4.4 describes how this con-

straint is used to update the map.

4.3 Space Deformation

Our approach to non-rigid space deformation of the map is

based on the embedded deformation approach of Sumner et al.

(2007). Their system allows deformation of open triangu-

lar meshes and point clouds; no connectivity information is

required as is the case with many deformation algorithms

(Karan (2000); Jacobson and Sorkine (2011)). Exploiting this

characteristic, Chen et al. (2012) applied embedded deforma-

tion to automatic skeletonised rigging and real-time animation

of arbitrary objects in their KinÊtre system. Next we describe

our adaptation of embedded deformation to apply it to large

scale dense maps with a focus on automatic incremental de-

formation graph construction.

4.3.1 Deformation Graph

Sumner et al. (2007) propose the use of a deformation graph

to facilitate space deformation of a set of vertices. A defor-

mation graph is composed of nodes and edges spread across

the surface to be deformed. Each node Nl has an associated

position N
g

l
∈ R

3 and set of neighbouring nodes N(Nl). The

neighbours of each node are what make up the edges of the

graph. Each node also stores an affine transformation in the

form of a 3× 3 matrix NR
l

and a 3× 1 vector Nt
l
, initialised by

Figure 11: Two-dimensional example of deformation graph construction.

On the left a spatially-constrained graph is constructed over a pre-loop clo-

sure map suffering from significant drift. The nodes highlighted in red are

connected to nodes which belong in potentially unrelated areas of the map.

On the right our incremental sampling and connectivity strategy is shown

(two-nearest neighbours for simplicity) which samples and connects nodes

along the pose graph, preventing unrelated areas of the map being connected

by the deformation graph.

default to the identity and (0, 0, 0)⊤ respectively. The effect

of this affine transformation on any vertex which that node

influences is centered at the node’s position N
g

l
.

4.3.2 Incremental Graph Construction

The original approach to embedded deformation relies on a

uniform sampling of the vertices in R
3 to construct the defor-

mation graph. Chen et al. (2012) substitute this with a method

that uses a 5D orientation-aware sampling strategy based on

the Mahalanobis distance between surface points in order to

prevent links in the graph between physically unrelated ar-

eas of the model. Neither strategy is appropriate in a dense

mapping context as drift in odometry estimation before loop

detection may cause unrelated areas of the map to completely

overlap in space. This issue also arises in determining con-

nectivity of the graph. Applying sampling and connectivity

strategies that are only spatially aware can result in links be-

tween completely unrelated points in the map, as shown in

Figure 11. The effects of applying a nearest neighbour strat-

egy are visualised in Figure 12. For this reason we derive a

sampling and connectivity strategy that exploits the camera

pose graph for deformation graph construction and connec-

tion. The method is computationally efficient and incremen-

tal, enabling real-time execution. Our sampling strategy is

listed in Algorithm 4 in Appendix B.

We connect deformation graph nodes returned by our sam-

pling strategy in a sequential manner, following the temporal

order of the pose graph itself. That is to say our set of graph

nodes N is ordered. We sequentially connect nodes up to a

value k. We use k = 4 in all of our experiments. For example,

a node l will be connected to nodes (l ± 1, l ± 2). We show

k = 2 connectivity in Figure 11. Note the connectivity of end

nodes which maintains k-connectivity.
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(i) (ii)

Figure 12: From left to right; (i) Highly distorted map produced when a naı̈ve nearest neighbour sampling and connectivity strategy is used; In this example,

parts of the floor close the point of loop closure have been associated with the nearby window through the deformation graph. When optimised, these parts of

the scene attempt to “stick together”, drastically distorting the surrounding geometry. (ii) Non-distorted map loop closure using our proposed sampling and

connectivity strategy. When the deformation graph is intelligently constructed across the map using our scheme, incorrect surface association problems as

shown on the left are avoided.

4.3.3 Incremental Vertex Weighting

Each vertex v has a set of influencing nodes in the deformation

graph N(v). The deformed position of a vertex is given by

Sumner et al. (2007):

v̂ =
∑

k∈N(v)

wk(v)
[

NR
k (v − N

g

k
) + N

g

k
+ Nt

k

]

(30)

where wk(v) is defined as (all k summing to 1):

wk(v) = (1 −
∥

∥

∥v − N
g

k

∥

∥

∥

2
/dmax)2 (31)

Here dmax is the Euclidean distance to the k+1-nearest node of

v. In previous work based on this technique the sets N(v) for

each vertex are computed in batch using a k-nearest neighbour

technique. Again, being based on spatial constraints alone this

method fails in the example shown in Figure 11. To overcome

this issue we derive an algorithm that assigns nearest neigh-

bour nodes to each vertex using a greedy back-traversal of the

sampled pose graph nodes.

Referring back to Figure 10 and Section 2.3.2, we recall

that each pose that causes a volume shift has an associated

set of vertices contained within a cloud slice. We can exploit

the inverse mapping of this association to map each vertex

onto a single pose in the pose graph. However, the associated

pose is at least a distance of
vd

2
away from the vertex, which is

not ideal for the deformation. In order to pick sampled pose

graph nodes for each vertex that are spatially and temporally

optimal, we use the closest sampled pose to the associated

cloud slice pose as a starting point to traverse back through

the sampled pose graph nodes to populate a set of candidate

nodes. From these candidates the k-nearest neighbours of the

vertex are chosen. We list the algorithm for this procedure in

Algorithm 5 in Appendix B and provide a visual example in

Figure 10.

The per-vertex node weights can be computed within the

back-traversal algorithm, which itself can be carried out in-

crementally online while the frontend volume shifting com-

ponent provides new cloud slices. The ability to avoid

computationally expensive batch steps for deformation graph

construction and per-vertex weighting by using incremental

methods is the key to allowing low latency online map opti-

misation at any time.

4.4 Optimisation

On acceptance of a loop closure constraint as described in

Section 4.2 we perform two optimisation steps, firstly on the

pose graph and secondly on the dense vertex map. The pose

graph optimisation provides the measurement constraints for

the dense map deformation optimisation in place of user spec-

ified constraints that were necessary in the original embedded

deformation approach. Pose graph optimisation is carried out

using the iSAM framework (Kaess et al. (2008)). We benefit

from the incremental sparse linear algebra representation used

internally in iSAM, such that execution time is reasonable in

terms of online operation.

4.4.1 Map Deformation

Sumner et al. (2007) define three cost functions over the de-

formation graph and user constraints to optimise the set of

affine transformations over all graph nodes N. The first max-

imises rigidity in the deformation:

Erot =
∑

l

∥

∥

∥

∥

NR
l

⊤
NR

l − I
∥

∥

∥

∥

2

F
(32)

Where Equation 32 is the alternative Frobenius-norm form

provided by Chen et al. (2012). The second is a regularisation
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term that ensures a smooth deformation across the graph:

Ereg =
∑

l

∑

n∈N(Nl)

∥

∥

∥NR
l (Ng

n − N
g

l
) + N

g

l
+ Nt

l − (Ng
n + Nt

n)
∥

∥

∥

2

2

(33)

The third is a constraint term that minimises the error on a set

of user specified vertex position constraints Q, where a given

constraint Qp ∈ R3 and φ(v) is the result of applying Equation

30 to v:

Econ =
∑

p

∥

∥

∥φ(v) − Qp

∥

∥

∥

2

2
(34)

We link the optimised pose graph to the map deformation

through the Econ cost function. With P being the pose graph

(composed of rotations and translations Ri and ti) before loop

constraint integration we set P′ to be the optimised pose graph

returned from iSAM. We then add each of the camera pose

translations to the deformation cost as if they were user spec-

ified vertex constraints, redefining Equation 34 as:

EconP
=

∑

i

∥

∥

∥φ(ti) − t′i
∥

∥

∥

2

2
(35)

A uniform constraint distribution across the surface obtained

from this parameterisation aids in constraining both surface

translation and orientation. However at some points the sur-

face orientation may not be well constrained. In order to over-

come this issue we add additional vertex constraints between

the unoptimised and optimised 3D back-projections of each

of the matched inlier SURF keypoints detected in Section 4.2,

where Pi (Ri and ti) is the camera pose of the matched loop

closure frame:

Esur f =
∑

q

∥

∥

∥φ((RiGq) + ti) − ((R′iGq) + t′i)
∥

∥

∥

2

2
(36)

The final total cost function is defined as:

wrotErot + wregEreg + wconP
EconP

+ wsur f Esur f (37)

With wrot = 1, wreg = 10, wconP
= 100 and wsur f = 100,

we minimise this unnormalised cost function using the iter-

ative Gauss-Newton algorithm choosing weighting values in

line with those used in Sumner et al. (2007). The optimisa-

tion consistently converges to a satisfactory result with these

weights, similar to the findings of Chen et al. (2012). As high-

lighted in previous work, the Jacobian matrix in this problem

is sparse, enabling the use of sparse linear algebra libraries for

efficient optimisation. We use the CHOLMOD library to per-

form sparse Cholesky factorisation and efficiently solve the

system (Davis and Hager (1999)). We then apply the opti-

mised deformation graph N to all vertices over all cloud slices

C in parallel across multiple CPU threads. As discussed in

Section 2.3.2 we compute an incremental mesh surface repre-

sentation of the cloud slices as they are produced by the fron-

tend. The incremental mesh can be deformed by applying the

deformation graph to its vertices. In our experience an in-

cremental mesh typically contains more minuscule holes than
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Figure 13: Boxplot of the ATE RMSE in metres per sequence evaluated. In

each box the red central line is the median, the box edges the 25th and 75th

percentiles and the whiskers extend to the minimum and maximum estimates.

Each dataset was ran ten times to account for the randomness induced by the

place recognition system in Section 4.2.

a batch mesh, which in path planning is functionally almost

identical but less visually appealing. In all results we show

the batch mesh computed over the set of optimised vertices.

5 Evaluation

We evaluate our system both quantitatively and qualitatively

in terms of trajectory estimation, surface reconstruction and

computational performance. We processed a combined total

of over 79,000 unique RGB-D frames in our evaluation.

5.1 Trajectory Estimation

To evaluate the accuracy of our camera trajectory estimation

we present results on the widely used RGB-D benchmark of

Sturm et al. (2012). This benchmark provides synchronised

ground truth poses for an RGB-D sensor moved through an

environment, captured with a highly precise motion capture

system. We evaluated multiple runs over ten datasets with

quantitative results shown in Table 1 and a boxplot shown in

Figure 13. We use the absolute trajectory (ATE) root-mean-

square error metric (RMSE) to evaluate our system, which

measures the root-mean-square of the Euclidean distances be-

tween all estimated camera poses and the ground truth poses

associated by timestamp (Sturm et al. (2012)).

Consistent performance is achieved on all sequences eval-

uated, with a notably higher error on the fr1/desk2 and

fr1/room datasets. This can be explained by the high aver-

age angular velocity on these sequences which causes motion

blur, increases the effect of rolling shutter and violates the

assumption of projective data association. From the results

it can be seen that a higher RMSE is correlated with a high

average angular velocity. Provided there is a low standard

deviation in frame rate and good overlap between successive

frames a strong trajectory estimate is achievable. Figure 14

shows two dimensional plots of the differences between the
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Figure 14: Two dimensional plot of estimated trajectories versus ground truth trajectories on evaluated sequences.

Dataset RMSE (m) Median (m) Max (m) ω̄ (◦−1)

fr1/desk 0.0407 0.0352 0.0905 23.33

fr1/desk2 0.0747 0.0639 0.2309 29.31

fr1/room 0.0813 0.0739 0.2511 29.88

fr1/xyz 0.0180 0.0155 0.0392 8.92

fr1/rpy 0.0311 0.0213 0.0991 50.15

fr1/plant 0.0500 0.0425 0.1148 27.89

fr2/desk 0.0376 0.0315 0.0879 6.34

fr2/xyz 0.0341 0.0234 0.0979 1.72

fr3/long 0.0329 0.0297 0.0698 10.19

fr3/nst 0.0372 0.0335 0.0735 7.43

Table 1: Statistics on ATE on evaluated datasets. Trajectory values are in

metres as the mean over ten runs of each dataset. The mean angular velocity

is given as ω̄ in degrees per second, retrieved from the dataset specifications.

estimated trajectories and the ground truth trajectories. In all

real world datasets evaluated in this paper the auto exposure

and auto white balance features of the RGB-D camera were

enabled.

5.1.1 Comparative Evaluation

We compare the trajectory estimation performance of our sys-

tem to three recent state-of-the-art visual SLAM systems,

DVO SLAM of Kerl et al. (2013), RGB-D SLAM of En-

dres et al. (2012) and multi-resolution surfel maps (MRS)

of Stückler and Behnke (2013). Table 2 summarises the re-

sults, where our values represent the best estimate over ten

runs. From these we can see the performance of our sys-

tem is comparable to other leading approaches, where per-

formance of each algorithm is typically within no more than

3cm in total RMSE. We acknowledge the strong performance

of the DVO SLAM system of Kerl et al. (2013) in trajectory

estimation and perform a further comparison with their sys-

tem in terms of reconstruction accuracy and larger trajecto-

ries in Section 5.2.2. We also provide a small comparison of

results between our system and benchmark results provided

by Meilland and Comport (2013) from their unified keyframe

Dataset Ours (m) DVO (m) RGB-D (m) MRS (m)

fr1/desk 0.037 0.021 0.023 0.043

fr1/desk2 0.071 0.046 0.043 0.049

fr1/room 0.075 0.053 0.084 0.069

fr1/xyz 0.017 0.011 0.014 0.013

fr1/rpy 0.028 0.020 0.026 0.027

fr1/plant 0.047 0.028 0.091 0.026

fr2/desk 0.034 0.017 0.057 0.052

fr2/xyz 0.029 0.018 0.008 0.020

fr3/long 0.030 0.035 0.032 0.042

fr3/nst 0.031 0.018 0.017 -

Table 2: Comparison of ATE RMSE on evaluated datasets and SLAM sys-

tems. All units given are in metres. MRS was unable to produce an estimate

on the fr3/nst dataset.

Dataset Ours (m) Unified (m)

fr1/desk 0.031 0.018

fr2/desk 0.028 0.093

fr1/room 0.068 0.144

fr2/large no loop 0.256 0.187

Table 3: Comparison of ATE Median error on evaluated datasets and SLAM

systems. All units given are in metres.

SLAM system in Tables 3 and 4, again showing comparable

performance (using their chosen metric of ATE Median and

Max error, as opposed to RMSE). Note that the results on the

fr2/large no loop dataset are taken from our previous work,

Whelan et al. (2013a).

Dataset Ours (m) Unified (m)

fr1/desk 0.078 0.066

fr2/desk 0.079 0.116

fr1/room 0.231 0.339

fr2/large no loop 0.878 0.317

Table 4: Comparison of ATE Max error on evaluated datasets and SLAM

systems. All units given are in metres.
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5.2 Surface Reconstruction

We present a number of quantitative and qualitative results on

evaluating the surface reconstructions produced by our sys-

tem. In our experience a high score on a camera trajectory

benchmark does not always imply a high quality surface re-

construction due to the frame-to-model tracking component

of the system. In previous work we found that although

other methods for camera pose estimation may score better

on benchmarks, the resulting reconstructions are not as accu-

rate if frame-to-model tracking is not being utilised (Whelan

et al. (2013a)). We evaluate seven different datasets captured

in a handheld fashion across a wide range of environments,

demonstrating the viability of our system for use over large

scale trajectories both indoors and outdoors (within sensing

limitations) and across multiple floors. It should be noted that

it is technically possible for self-intersection to occur in the

surface upon deformation. We have found this to be quite rare

in pratice as most deformations are quite smooth and do not

deform the map in erratic ways (visualised in Multimedia Ex-

tension 1). This aspect of the algorithm is one of the trade offs

made in favor of computational performance.

5.2.1 Comparison to 2-pass Optimisation

In order to evaluate the accuracy of the deformation process

we compare the resulting maps produced when a 2-pass ap-

proach is taken versus a single pass approach with a defor-

mation for map correction. The 2-pass approach involves the

following steps;

1. Build a pose graph with a camera pose for every frame.

2. Detect visual loop closures using the method described

in Section 4.2.

3. At the end of the dataset, optimise the camera pose graph

taking loop closure constraints into account.

4. Rerun the dataset using the optimised pose graph in place

of the visual odometry frontend.

From here we can compare the two maps to determine a mea-

sure of similarity. This presents an interesting question as al-

though the pose graphs for both the 2-pass and deformation-

based maps are identical, the maps themselves may differ

slightly due to the fact the 2-pass approach gives up frame-

to-model registration on the second pass where the frustum-

volume intersection may also slightly change. This means

there will not be any reliable 1-to-1 point correspondences

between the maps. For this reason we measure the map sim-

ilarity by the residual error of a dense ICP-based registration

of the maps. Given that both maps lie in the global coordinate

frame we can iteratively minimise nearest neighbour point-

wise correspondences between the two maps using standard

point-to-plane ICP. This allows us to account for a small rigid

transformation error between the two maps. We measure the

remaining root-mean-square residual error between point cor-

respondences as the residual similarity error between the two

Figure 15: Heatmap showing the difference between the deformed recon-

struction and 2-pass reconstruction of the Indoor dataset. Blue indicates no

error and scales to pure green indicating an deviation of 0.08m.

maps. Table 5 lists statistics on the seven evaluated datasets

including the 2-pass residual registration error as well as the

same error computed on maps deformed with a subsampled

pose graph, which we discuss in Section 5.3. It is clear that

the deformation approach brings the map into strong align-

ment with the 2-pass output, with only a few millimetres in

difference. This can be seen in Figure 15. Multimedia Exten-

sion 1 shows the map correcting deformation occurring for the

Indoors and Two floors datasets, as well as flythroughs of the

final meshes. Images of all datasets are provided in Figures

22-28 in the Appendix. The Apartment dataset has a notably

higher error than the other sequences, owing to the complex-

ity of the trajectory and scene. However observing the recon-

struction in Figure 28 it can be seen that a high quality map is

still achieved.

5.2.2 Surface Reconstruction Comparison

In Figure 16 we present a comparison of the reconstructions

produced by each of the systems evaluated in Section 5.1.1

on the fr1/xyz data. From this qualitative comparison it is evi-

dent that our approach benefits greatly from the use of a fused

volumetic frontend, removing substantial noise from the re-

construction and producing a much cleaner model than other

approaches. While the output from RGB-D SLAM, MRSMap

and DVO SLAM can be fed through a signed distance fusion

pipeline to produce a similar output, this would strictly be a

post-processing step that is not required by our own system to

produce such reconstructions.

We also compare our reconstruction results on all of our

seven evaluated datasets to the output produced by the open

source DVO SLAM system of Kerl et al. (2013), using the

provided default configuration parameters. DVO SLAM per-

formance statistics are listed in Table 6. In all datasets the

DVO SLAM system frontend executed at 30Hz. The final
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Dataset Length(m) vd(m) dp(m) Vertices Volume(m3) 2-pass(mm) 2-pass fast(mm) Figure

Coffee 30.18 4.5 0.4 909,422 7,993 1.2 1.8 22

Indoors 49.57 7 0.4 1,603,116 21,918 2.7 4.9 23

Garden 71.49 6 0.8 2,418,331 28,340 2.1 2.5 24

Outdoors 152.05 6 0.8 2,961,966 34,711 2.3 8.8 25

Two floors 173.88 6 0.8 4,016,273 47,066 2.1 8.0 26

In/outdoors 317.95 6 0.8 5,985,669 70,145 2.8 7.5 27

Apartment 61.27 2.5 0.3 6,205,222 30,299 19.0 20.4 28

Table 5: Statistics on seven handheld datasets captured over a wide variety of environments using our approach.

(i) (ii) (iii)

(iv) (v) (vi)

Figure 16: Comparison of reconstructions on the fr1/xyz dataset; (i) Point cloud reconstruction with our approach showing a smooth surface reconstruction.

(ii) Reprojected keyframe reconstruction from RGB-D SLAM, showing a noisy surface with quantization effects. (iii) Reprojected keyframe reconstruction

from DVO SLAM again showing a noisy surface with quantization effects. (iv) Triangular mesh reconstruction with our approach. (v) OctoMap (Hornung

et al. (2013)) reconstruction from RGB-D SLAM, while in this form useful for motion planning, appears very jagged and is quantized to the nearest voxel.

(vi) Point cloud sampled at highest resolution from surfel map with MRSMap showing an evident discretization effect.

pose graph optimisation and additional keyframe loop clo-

sure search time is listed in the “Post-processing” column.

The DVO SLAM system uses no specific method for map

reconstruction and must rely on point cloud reprojection of

raw RGB-D keyframes to reconstruct the map after the pose

graph has been optimised. This results in many redundant and

repeated points in the map. To remedy this problem we ap-

ply a voxel grid downsampling filter (as mentioned in Section

2.3.2) with a resolution of 1cm to the output keyframe ver-

tices to keep the map size tractable. These numbers are listed

in the “Vertices” and “Vertices (filtered)” columns. As listed

the system successfully reconstructs the Coffee and Indoors

datasets, however in contrast to our approach post-processing

time of between 7 and 31 seconds is required to optimise the

final pose graph and resolve any additional keyframe loop clo-

sures (where our system does not require any post-processing

or final batch steps). Failure to detect loop closures results in

failed reconstructions on the Garden, Outdoors, Two floors,

In/outdoors and Apartment datasets which could perhaps be

remedied by using a bag-of-words visual features-based ap-

proach similar to ours (Galvez-Lopez and Tardos (2011)) or

indeed as suggested by Kerl et al. (2013) the FAB-MAP al-

gorithm (Cummins and Newman (2010)). Camera pose esti-

mation failures were also encountered in the Outdoors, Two

floors, In/outdoors and Apartment datasets, particularly in

regions of the sequences which were mostly planar or had

strong visual aliasing, such as staircases. From these results

and those listed in Table 2 we observe that the method for de-

tecting loop closures used by Kerl et al. (2013) is very strong

in small sized environments but scales poorly as the explored
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Dataset Vertices Vertices (filtered) Post-processing (s) Verdict Figure

Coffee 34,813,313 3,925,307 7.41 Successful 17 (i)

Indoors 56,927,008 15,960,983 31.65 Successful 17 (iii)

Garden 145,054,728 15,385,263 159.52 Loop Closure Failure N/A

Outdoors 104,948,878 9,106,848 190.76 Loop Closure & Tracking Failure N/A

Two floors 237,308,674 26,724,533 841.93 Loop Closure & Tracking Failure N/A

In/outdoors 275,096,207 18,836,984 5501.58 Loop Closure & Tracking Failure N/A

Apartment 83,102,006 6,068,711 74.79 Loop Closure & Tracking Failure N/A

Table 6: Statistics on seven handheld datasets captured over a wide variety of environments processed using the DVO SLAM system.

(i) (ii) (iii) (iv)

Figure 17: From left to right; (i) DVO SLAM keyframe reprojection of the Coffee dataset. The surfaces are notably noisy and quantization effects are evident.

(ii) Our reconstruction of the Coffee dataset, showing a smooth uniform reconstruction. (iii) DVO SLAM keyframe reprojection of the Indoors dataset. Again

surfaces are very noisy and highly quantized. In contrast to our reconstruction, the ceiling has been mapped in most of the sequence, however being quite

distant from the sensor suffers badly from discretization effects. (iv) Our reconstruction of the Indoors dataset. The ceiling has not been reconstructed in

this sequence since the configuration of the TSDF volume size caused it to fall outside of the area of reconstruction. This is however easily remedied by

modifying the relative parameterisation of the volume with respect to the sensor, similar to the dynamic cube positioning technique we discussed in Section

2.4.

area size grows, both in terms of accuracy and computational

performance (embodied in the consistently increasing post-

processing time).

In Figure 17 we qualitatively compare the reconstruction

quality of our approach versus the maps produced by DVO

SLAM on the Coffee and Indoors datasets. For clarity we

compare vertices only as DVO SLAM provides no method for

mesh surface reconstruction. These results show that the re-

construction produced by our approach is much smoother and

contains significantly fewer redundant vertices. Additionally,

there are no raw RGB-D point cloud quantization effects in

our reconstructions. The reprojection principle taken to pro-

ducing the map from DVO SLAM keyframes does result in

entire frame back-projection which produces a “fuller” look-

ing map, however far away points in current generation RGB-

D sensors are known to be extremely noisy and highly inac-

curate (Khoshelham and Elberink (2012)).

5.2.3 Surface Ground Truth

We evaluate the surface reconstruction quality of our ap-

proach quantitatively using synthetic data produced in an

identical manner to the datasets created by Handa et al.

(2012). Each dataset contains 30Hz RGB-D frames from a

camera placed in a synthetic office environment. The camera

Figure 18: Mesh reconstruction of the first synthetic dataset. Note that the

rough triangulation of parts of the chairs is due to a poor viewing angle

throughout the sequence.

trajectories were generated from real world data which was

previously ran through our visual odometry frontend. Given

that the datasets were produced using a procedural raytracing

process (using POVRay), there is no actual surface to com-

pare against. However, each RGB-D frame does have ground

truth depth information which we compare against. For each

frame in a dataset we compute a histogram of the per depth

pixel L1-norm error between the ground truth depth map and
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Figure 19: Temporal histograms of predicted depth versus ground truth depth

on synthetic datasets. A frame from the dip in accuracy around the center of

the first dataset is shown in Figure 20 (i) while a frame from the peak in

accuracy in the center of the second dataset is shown in Figure 20 (ii).

the predicted surface depth map raycast from the TSDF, nor-

malising by the number of valid pixels before aligning all his-

tograms into a two dimensional area plot. We evaluated two

synthetic datasets of the same scene with different camera mo-

tions. The temporal error histograms are shown in Figure 19

while frames from each dataset are shown in Figure 20. Over-

all the synthetic surfaces are reconstructed very well, however

occasional raycasting artifacts (particularly around the edges

of objects and on nearby surfaces) can hinder the reconstruc-

tion quality score, as in the first dataset. These artifacts occur

due to the use of a fixed step size during ray casting and the

absence of any special method to render smooth edges, both

for performance reasons. Observing the final reconstruction

in Figure 18 it is clear that the slight dip in accuracy did not

effect the reconstruction quality by any significant amount.

Typically around 95% of the estimated depth of the surface is

within 5mm of ground truth.

5.3 Computational Performance

We evaluate the computational performance of both the fron-

tend and backend of the system. The evaluation platform

was a standard desktop PC running Ubuntu 12.04 with an In-

tel Core i7-3960X CPU at 3.30GHz, 16GB of RAM and an

nVidia GeForce 680GTX GPU with 2GB of memory.

5.3.1 Frontend Performance

To evaluate the performance of the frontend (including vol-

ume integration, camera pose estimation, volume raycast-

ing and volume shifting, essentially all teal colored function

blocks in Figure 9) we provide frame processing timing re-

(i)

(ii)

Figure 20: One frame from each surface ground truth evaluation dataset.

Each shows in clockwise order the ground truth RGB, predicted RGB, pre-

dicted surface phong shaded colored by voxel weight and ground truth depth

map. From top to bottom; (i) Here raycasting artifacts are visible in the pre-

dicted surface in the bottom right causing a high error in the evaluation; This

is evident particularly in the top right-hand corner of the frame where the wall

is visible through the side of the desk. (ii) Overall the surface is being well

estimated and there are no raycasting artifacts.

ms Avg (ms) Min (ms) Max (ms) StdDev (ms)

1 34.15 25.93 41.58 3.30

2 32.21 25.63 39.29 3.14

4 31.08 25.38 39.02 2.77

8 30.57 25.42 37.44 2.48

16 29.94 24.97 37.25 2.26

32 30.26 25.33 40.30 2.39

64 30.49 25.06 43.95 2.73

Table 7: Computational performance of the volumetric fusion thread on the

fr1/desk dataset. The shifting threshold ms is given in voxels while the frame

processing timings are given in milliseconds. Highlighted is the optimal

choice based on execution time.
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sults on the fr1/desk sequence comparing different choices of

the ms parameter discussed in Section 2.3. This parameter af-

fects the frequency and size of each volume shift, which in

turn affects frontend performance. Results are shown in Table

7. A shifting threshold of 16 voxels was found to be optimal,

providing the best computational performance with an aver-

age frame rate comfortably below the frame rate of the sensor

(30Hz) and with minimal spikes in execution time.

5.3.2 Backend Performance

We quantify the computational performance of the backend in

the context of an online real-time SLAM system by measur-

ing the latency of the system. That is, how long is takes for 1)

a loop closure to be recognised when one is encountered and

2) map correction to be completed. Table 8 shows execution

time and latency statistics on our test platform for the first six

datasets, while Table 10 shows performance statistics on the

Apartment dataset. We also experimented with subsampling

the pose graph used in the iSAM-based pose graph optimisa-

tion by the same sampling metric used in Algorithm 4. This

affects the number of poses used in the final pose graph opti-

misation and the number of points available to constrain the

map deformation in Equation 35. Our results (shown in Ta-

bles 9 and 11) show that using a subsampled pose graph (akin

to using only keyframes) instead of an every frame pose graph

reduces execution time (and therefore latency) by up to almost

an order of magnitude in some cases, while only mildly affect-

ing map quality (quantified as “2-pass fast” in Table 5). As

expected the appearance-based frontend scales very well over

hundreds of metres while the backend is capable of correcting

millions of vertices for global consistency in only 1-3 sec-

onds. The results presented in Tables 10 and 11 demonstrate

the capability of our approach to deal with complex trajecto-

ries with multiple loop closures. This is further highlighted

by the plot of the camera trajectory on the Apartment dataset

shown in Figure 21.

Multimedia Extension 2 shows the entirety of the

In/outdoors dataset running in real-time including the two on-

line loop closures while Multimedia Extension 3 shows the

Apartment dataset. Note that in these videos the vertex count

is higher due to the weight-based filtering mentioned in Sec-

tion 2.3.2 being disabled, resulting in more extracted vertices

from the TSDF slices.

6 Conclusion

In this paper we have presented a real-time dense SLAM sys-

tem which makes use of a dense every-frame volumetric fu-

sion frontend for camera pose estimation and surface recon-

struction in combination with a non-rigid map deformation

backend to correct the mapped dense surface upon loop clo-

sure. We have provided an extensive evaluation, both quan-

titatively and qualitatively on common benchmarks and our

own datasets demonstrating the system’s ability to produce

large scale dense globally consistent maps in real-time.

Figure 21: Camera trajectory plot within the Apartment dataset, showing the

“loopy” path the camera took through the environment.

One limitation in our system is the reliance on projective

data association for camera pose estimation which limits the

kinds of motion that our visual odometry frontend can handle.

However this restriction works in our favour as with increased

camera motion comes increased motion blur and rolling shut-

ter effects. Approaches exist to correct for such effects in real-

time such as that of Meilland et al. (2013), however this would

cause an increased computational requirement when aggre-

gated to any existing system.

Our current implementation does not support the reintegra-

tion of areas of the map which are revisited into the volumetric

fusion frontend. This results in aliasing in areas that receive

multiple passes. However representing the surface as a set

of cloud slices maintains spatiotemporal information about

the map which can be used for change detection, scene dif-

ferencing or even the merging of cloud slices from multiple

passes. Reintegration or re-fusing of the mesh-based map in

real-time is a challenging problem due to the sheer volume

of data. Some existing approaches discussed in Section 1.1

support this but lack a means for correcting for drift or global

consistency online in real-time. Commonly adopted space ef-

ficient data structures need to be fully restructured upon large

updates to the map, which in turn would hinder real-time per-

formance greatly. Other discussed approaches are either of-

fline, or sacrifice local surface connectivity to achieve surface

refusing. Real-time large scale dense fused 3D reconstruc-

tion which supports online drift correction, provides a glob-

ally consistent representation of the map at any time and al-

lows map re-use and re-fusing is a challenging problem which

we aim to address in our future work. We also plan to research

new methods for estimating camera pose uncertainty and scal-

ability over hundreds of metres.
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Quantities
Datasets

Coffee Indoors Garden Outdoors Two floors In/outdoors(1) In/outdoors(2)

DBoW images 280 301 658 1171 1584 1662 2706

Poses 1544 2993 8634 5240 12952 17306 25586

Nodes 58 55 72 178 191 211 364

Vertices 932,056 1,352,919 2,256,475 2,805,083 3,896,281 3,560,994 5,867,125

Process Timings (ms)

Frontend 465 602 622 587 657 521 543

iSAM 257 510 1412 1299 3326 4386 6545

Deformation 266 390 1112 928 2197 3040 4473

Total latency 988 1502 3146 2814 6180 7947 11561

Table 8: Computational performance statistics on six datasets using an every frame pose graph. Quantities shown are at the moment of loop closure. The

In/outdoors dataset contains two looping points which are both listed.

Quantities
Datasets

Coffee Indoors Garden Outdoors Two floors In/outdoors(1) In/outdoors(2)

DBoW images 277 305 672 1173 1593 1713 2782

Poses 283 307 674 1186 1594 1716 2783

Nodes 52 49 68 167 181 196 339

Vertices 943,721 1,371,560 2,246,028 2,841,135 3,904,113 3,569,842 5,850,152

Process Timings (ms)

Frontend 488 589 651 597 467 540 793

iSAM 46 67 110 288 378 271 1140

Deformation 110 105 170 377 381 148 842

Total latency 644 761 931 1262 1226 959 2775

Table 9: Computational performance statistics on six datasets using a subsampled pose graph. Quantities shown are at the moment of loop closure. The

In/outdoors dataset contains two looping points which are both listed.

Apartment dataset with full pose graph

Loop number 1 2 3 4 5

DBoW images 119 526 708 982 1428

Poses 367 1638 2163 2824 3937

Nodes 14 61 80 105 165

Vertices 492,960 2,792,446 3,800,812 4,482,186 6,296,542

Process Timings (ms)

Frontend 807 858 1596 703 604

iSAM 29 202 277 230 648

Deformation 51 336 425 425 932

Total latency 887 1396 2298 1358 2184

Table 10: Computational performance statistics on the Apartment dataset using an every frame pose graph. Quantities shown are at the moment of loop

closure.

Apartment dataset with subsampled pose graph

Loop number 1 2 3 4 5

DBoW images 119 529 708 982 1430

Poses 123 531 715 988 1433

Nodes 13 59 77 100 157

Vertices 492,718 2,791,445 3,799,464 4,490,170 6,295,379

Process Timings (ms)

Frontend 789 868 1557 789 593

iSAM 19 64 93 88 235

Deformation 31 181 252 285 508

Total latency 839 1113 1902 1162 1336

Table 11: Computational performance statistics on the Apartment dataset using a subsampled pose graph. Quantities shown are at the moment of loop

closure.
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Pirker, K., Rüther, M., Schweighofer, G., and Bischof, H. (2011).

GPSlam: Marrying sparse geometric and dense probabilistic vi-

sual mapping. In Proc. of the British Machine Vision Conf., pages

115.1–115.12.

Roth, H. and Vona, M. (2012). Moving volume KinectFusion. In

British Machine Vision Conf. (BMVC), Surrey, UK.

Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly, P. H. J.,

and Davison, A. J. (2013). SLAM++: Simultaneous localisation

and mapping at the level of objects. In Proc. Computer Vision and

Pattern Recognition (CVPR).
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A Index to Multimedia Extensions

The multimedia extensions to this article are at: http://www.ijrr.org.

Extension Type Description

1 Video Indoors and Two floors dataset

deformation visualisations.

2 Video In/outdoors dataset full real-time

reconstruction.

3 Video Apartment dataset full real-time

reconstruction.

B Algorithms
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Algorithm 1: Color Integration

Input: rgbi Current RGB image

di Current depth map

ni Current normal map

S (s)i Current TSDF volume

s ∈ Ψ Current voxel

p ∈ Ω Current pixel

do
c← 0

for each pk in 7 × 7 area around p do

if |di(pk) − di(p)| > depth threshold or di(pk) = 0 then
c← c + 1

if c < count threshold then
wc = min(1.0,ni(p)z/max weight)

S (s)R′
i
= (S (s)W

i−1
S (s)R

i−1
+ wcrgbi(p)R)/(S (s)W

i−1
+ wc)

S (s)G′
i
= (S (s)W

i−1
S (s)G

i−1
+ wcrgbi(p)G)/(S (s)W

i−1
+ wc)

S (s)B′
i
= (S (s)W

i−1
S (s)B

i−1
+ wcrgbi(p)B)/(S (s)W

i−1
+ wc)

end

Algorithm 2: Interest Point Accumulation

Input:
∂In
∂x

and
∂In
∂y

intensity image derivatives

s minimum gradient scale for pyramid level

Output: L list of interest points

kL global point count

Data: α thread block x-dimension

β thread block y-dimension

γ pixels per thread

ι shared memory local list

κ shared memory local index

blockIdx CUDA block index

threadIdx CUDA thread index

in parallel do
i← β ∗ blockIdx.y + threadIdx.y

j← α ∗ γ ∗ blockIdx.x + γ ∗ threadIdx.x

if threadIdx.x = 0 and threadIdx.y = 0 then
κ ← 0

syncthreads()

for l← 0 to γ do
p← (i, j + l)

g2 =
∂In
∂x

(p)2 +
∂In
∂y

(p)2

if g2 ≥ s then
idx← atomicInc(κ)

ιidx ← p

syncthreads()

b← α ∗ γ ∗ threadIdx.y + γ ∗ threadIdx.x

for l← 0 to γ do
a← b + l

if a < κ then
idx← atomicInc(kL)

Lidx ← ιa

end

Algorithm 3: Correspondence Accumulation

Input: L list of interest points

dδ maximum change in point depth

[In−1,Mn−1] previous intensity depth pair

[In,Mn] current intensity depth pair

RI camera rotation in image

tI camera translation in image

Output: C correspondence list of the form (p,p′,∆)

kC global point count

σ global intensity difference sum

Data: α thread block x-dimension

γ pixels per thread

ι shared memory local list

κ shared memory local index

blockIdx CUDA block index

threadIdx CUDA thread index

in parallel do
i← α ∗ γ ∗ blockIdx.x + γ ∗ threadIdx.x

if threadIdx.x = 0 then
κ ← 0

syncthreads()

for l← 0 to γ do
p← Li+l

z← Mn(p)

if isValid(z) then

(x′, y′, z′)⊤ ← z(RI (p, 1)⊤) + tI

p′ ← ( x′
z′ ,

y′

z′ )
⊤

if isInImage(p′) then
d ← Mn−1(p′)
if isValid(d) and |z′ − d| ≤ dδ then

idx← atomicInc(κ)

ιidx ← (p,p′, In(p) − In−1(p′))

syncthreads()

b← γ ∗ threadIdx.x

for l← 0 to γ do
a← b + l

if a < κ then

atomicAdd(σ, ιa
2
∆

)

idx← atomicInc(kC)

Cidx ← ιa

end

Algorithm 4: Incremental Deformation Node Sampling

Input: P camera pose graph made up of Ri and ti

i pose id of last added node

dp pose sampling rate

Output: N set of deformation graph nodes

do
l← |N |
if l = 0 then

N
g

l
← t0

l← l + 1

i← 0

Plast ← Pi

for i to |P| do

if ‖ti − tlast‖2 > dp then

N
g

l
← ti

l← l + 1

Plast ← Pi

end

24



Algorithm 5: Back-Traversal Vertex Association

Input: C cloud slices

N set of deformation graph nodes

bp number of poses to traverse back

PC j
pose associated with cloud slice C j

Output: N(v) for each v

do

foreach C j do

foreach v ∈ C j do
l← binary search closest(PC j

,N)

N′ ← ∅
n← 0

for i← 0 to bp do
N′n ← Nl

n← n + 1

l← l − 1

sort by distance(N′, v)

N(v)← N′
1→k

end
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Figure 22: Dataset of a small coffee room. Inset shows everyday objects such as bins and fridges are captured in high detail and how the deformation

approach works well in smaller environments.

Figure 23: Corridor loop closure dataset. The inset shows map consistency at the point of loop closure. Multimedia Extension 1 shows the actual map

correcting deformation occurring.
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Figure 24: Large cluttered outdoor dataset. Inset shows chairs and metal bars are reconstructed well.

Figure 25: Large outdoor dataset. Inset shows brickwork is clearly visible.
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Figure 26: Dataset composed of two floors. Inset shows everyday objects such as chairs and computers are captured in high detail. Multimedia Extension 1

shows the actual map correcting deformation occurring.

Figure 27: Large indoor and outdoor dataset made up of over five million vertices. Insets show the high fidelity of small scale features in the map. Multimedia

Extension 2 shows this entire dataset running from start to finish in real-time, including online loop closure.
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Figure 28: Sequence over two floors of an apartment with over six million vertices. Small details such as bathroom fixtures and objects around the

environment are clearly reconstructed. Multimedia Extension 3 shows this dataset running from start to finish in real-time, including online loop closure.
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