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Abs t rac t .  Developments in dynamic contour tracking permit sparse 
representation of the outlines of moving contours. Given the increasing 
computing power of general-purpose workstations it is now possible to 
track human faces and parts of faces in real-time without special hard- 
ware. This paper describes a real-time lip tracker that uses a Kalman 
filter based dynamic contour to track the outline of the lips. Two al~er- 
native lip trackers, one that tracks lips from a profile view and the other 
from a frontal view, were developed to extract visual speech recognition 
features from the lip contour. In both cases, visual features have been in- 
corporated into an acoustic automatic speech recogniser. Tests on small 
isolated-word vocabularies using a dynamic time warping based audio- 
visual recogniser demonstrate that real-time, contour-based lip tracking 
can be used to supplement acoustic-only speech recognisers enabling ro- 
bust recognition of speech in the presence of acoustic noise. 

1 I n t r o d u c t i o n  

Since verbal communication is the easiest and most  natural  method of conveying 
information, the possibility of communicating with computers through spoken 
language presents an opportuni ty to change profoundly the way humans interact 
with machines. Voice interactive systems could relieve users of the burden of en- 
tering commands via keyboards and mice and prove indispensable in situations 
where the operator ' s  hands are occupied such as when driving a car or operating 
machinery. Much research has focused on the development of spoken language 
systems and rapid advances in the field of automatic  speech recognition (ASR) 
have been made in recent years [7, 23]. Although progress has been impressive, 
researchers have yet to overcome the inherent limitations of purely acoustic-based 
systems, particularly their susceptibility to environmental noise. Such systems 
readily degrade when exposed to non-stat ionary or unpredictable noise as might 
be encountered in a typical office environment with ringing telephones, back- 
ground radio music, and disruptive conversations. Acoustic solutions typically 
employ noise compensation methods during preprocessing or recognition to re- 
duce the effect of the noise. The preprocessing approaches often use spectral  
subtract ion or adaptive filtering techniques to remove the additive noise from 
the signal [14]. Hidden Markov Model (HMM) decomposition, where separate 
models are used for the clean speech and noise, is a common method used to 
provide compensation during recognition [21, 11]. While these approaches have 
proven to be effective, they ignore a basic tenet, that  is, the multi-modal nature  
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of human communication. Here we attempt to exploit this by using visual in- 
formation in the form of the outline of the lips to improve upon acoustic speech 
recognition performance. 

The majority of automatic lipreading research to date has focused primar- 
ily on establishing that visual information can be used to supplement acoustic 
speech recognition on small isolated-word vocabularies. The extraction of fea- 
tures in real-time has been largely ignored by lipreading researchers--deferring 
that complication to the future. Real-time feature extraction is obviously re- 
quired for practical audio-visual language understanding systems. However, to 
track in real-time, it is often necessary to reduce the dimensionMity of the image 
data through parameterisation which could result in the loss of important recog- 
nition information. This work demonstrates that, despite this loss of information, 
visual features obtained from tracking the lips in real-time can supplement au- 
tomatic acoustic speech recognisers. 

Two lip trackers, one that tracks lips from a profile view and the other from 
a frontal view, have been developed. Both are capable of locating, tracking, and 
compactly representing the lip outline in real-time at full video field rate (50/60 
Hz). The 'profile lip tracker' follows the outline of the upper and lower lips and 
needs no cosmetic assistance. Tracking from the frontal view is more difficult as 
the lips are set against flesh-tones with consequently weak contrast. Therefore, 
when the frontal view was used, the speaker wore lipstick to enhance the contrast 
around the lips. The tracker framework is identical for tracking assisted and un- 
assisted lips and thus for the frontal view, assisted lips were used to demonstrate 
the feasibility of using real-time dynamic contour-based lip trackers in audio- 
visual speech recognition applications. Preliminary work has begun on tracking 
natural lips from the frontal view and a tracking sequence using this tracker 
is presented as well, although, to date, no recognition experiments have been 
conducted using it. 

Visual features extracted from the lip trackers are incorporated into a dy- 
namic time warping (DTW) based isolated-word recogniser. Recognition perfor- 
mance is evaluated using acoustic only, visual only, and audio-visual information 
with and without added artificial acoustic noise. The experiments demonstrate 
that visual information obtained from tracking the lip contour from either view 
can improve upon acoustic speech recognition, especially in speech degraded by 
acoustic noise. 

2 L i p r e a d i n g  

It is well known that human speech perception is enhanced by seeing the speaker's 
face and lips--even in normal hearing adults [9, 17]. Several researchers [9] have 
demonstrated that the primary visible articulators (teeth, tongue, and lips) pro- 
vide useful information with regard to the place of articulation and Summerfield 
[20] concluded that such information conveyed knowledge of the mid- to high- 
frequency part of the speech spectrum--a region readily masked by background 
noise. 
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Motivated by this complementary contribution of visual information, re- 
searchers have recently developed audio-visual speech recognisers which have 
proven to be robust to acoustic noise [15, 22, 19, 5, 6]. These systems can be 
classified by the visual features they extract into three categories--pixel-based 
systems, lip-velocity systems, and lip-outline/measurement systems. The pixel- 
based systems [15, 22, 5] maximise retention of information about the visible 
articulators by using directly or indirectly the grey-level pixel data around the 
mouth region. Unfortunately, these systems tend to be highly susceptible to 
changes in lighting, viewing angle, and speaker head movements. They also 
usually employ computationatly expensive processing algorithms to locate the 
mouth and/or extract relevant recognition features. While these systems serve 
as excellent research platforms, the extensive processing required limits their use 
in real-time or near real-time applications. The lip-velocity systems [12] assume 
that it is the motion of the lips that contains the relevant recognition informa- 
tion especially with respect to determining syllable or word boundaries and thus 
extract the velocities of different portions of the lips. A similar limitation exists 
for this approach where computationally expensive procedures like optical flow 
analysis and morphological operations are used to extract the lip velocities which 
prevents their use in near real-time applications. The lip outline/measurement 
systems [10, 19] extract geometrical features from the lip outline or oral cavity. 
Typical features include the height, width, area, and spreading (width/height) 
of the mouth. These systems are able to extract visual features in real-time, 
although they avoid many of the complications of tracking in real-world images 
by tracking strategically placed reflective dots on the face. 

The recognition systems presented here fall into this last category, however, 
real-time feature extraction is achieved without the need for markers by param- 
eterising the lip outline and learning the dynamics of moving lips. 

3 L i p  t r a c k e r  

The lip trackers resulted from the tailoring of Blake et al.'s [2, 3] general pur- 
pose dynamic contour tracker to the specific task of tracking lips. The 2D outline 
of the lips is parameterised by quadratic B-splines which permits sparse repre- 
sentation of the image data. Motion of the lips is represented by the x and y 
coordinates of B-Spline control points, (X(t),Y(t)), varying over time. Stability 
of the lip tracker is obtained by constraining the lip movements to deformations 
of a lip template, (X, Y). Lip motion is modelled as a second order process 
driven by noise with dynamics that imitate typical lip motions found in speech. 
These dynamics are learned using a Maximum Likelihood Estimation (MLE) 
algorithm [4] from representative sequences of connected speech. Temporal con- 
tinuity is provided by a Kalman filter which blends predicted lip position with 
measurement/observation features taken from the image. To enable real-time 
tracking, the search for image features is confined to one dimensional lines along 
normals to the lip curve. The profile lip tracker uses high contrast edges for image 
features while the frontal lip tracker uses a combination of edges and intensity 
valleys. 
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4 Tracking 

The profile view is favourable for tracking because the mouth appears sharply 
silhouetted against the background whereas, in a frontal view, the lips are set 
against flesh-tones with consequently weak cont ras t - -a  problem for visual track- 
ers. However there is, of course, a potential loss of information in profile viewing 
in that  the tongue and teeth are no longer visible. There may also be a loss of 
shape information in the lip contour itself, since its width is no longer directly 
observable in profile, and our experiments suggest that  lip width is significant for 
audio-visual speech analysis. Figure 1 shows that the tracker can follow the lips 

Fig. 1.: Tracking the word '~our". Snapshots taken approximately every 40 ms. The 
tracker accurately follows the lower lip during the f-tuck (curling of the lip to form the 
Cfa' sound) in tracked frames 3 and ~ and continues tracking through the lowering of 
the jaw necessary for the 'our' sound. 

even during subtle lip movements such as the f-tuck in the word 'four'. Similar 
tracking results were obtained using a frontal view when lipstick was worn to 
enhance the contrast around the lips [8]. 

Natural (un-aided) lips can also be tracked from the frontal view using the 
dynamic contour framework; however, instead of using edges for image features, 
the intensity valley between the lips is used to locate the corners of the mouth 
and upper lip. This valley has been shown to be robust to variations in lighting, 
viewpoint, identity and expression [13] and proves to be a reliable feature for 
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lip tracking. Figure 2 shows a tracked sequence of the word 'five' using valley 
features for the upper lip and edge features for the lower lip. This mode of 

Fig. 2.: Tracking the word "five" using the valley tracker. Snapshots taken approxi- 
mately every 60 ms. Whilst tracking is stable and the outline closely approximates the 
inner mouth region, the upper lip contour becomes confused by the presence of the teeth 
mistaking them for the inner lip and continues to track them throughout the sequence. 

tracking, being frontal and free of the need for cosmetics, is attractive as a 
basis for audio-visual analysis. However, there are problems with the system as 
developed thus far. First, the upper tracked contour has an affinity both for 
the inside lip and for the teeth when visible, whereas clear differentiation of 
lips and teeth is a requirement for the application. Secondly, it is difficult to 
pinpoint mouth corners accurately--the dark visual feature (valley) tends to 
extend beyond the mouth, resulting in the slightly elongated contour. We know 
from visual speech recognition experiments (detailed later) that the width of 
the mouth (oral cavity) contains important recognition information for word 
discrimination tasks, so further work is needed before this tracker is entirely 
adequate for speech recognition applications. 

Incidental head movements do not affect tracking performance as long as the 
lip tracker remains locked, however, rapid or large head movements may cause 
the tracker to lose lock and become unstable. Additionally, since the position 
of the head naturally influences the position of the lips, head movements may 
corrupt the recognition data. To compensate for this we are investigating the 
coupling of a head tracker to the lip tracker [18]. 

5 F e a t u r e  E x t r a c t i o n  

An essential part of any recognition system is the extraction of features that reli- 
ably represent the objects in the data set. The features must compactly represent 
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the data in a suitable form for recognition. For acoustic speech signals the fea- 
tures are typically the result of spectral analysis on the waveform [16]. Thus the 
acoustic pre-processing consisted of the extraction of 8 "mel-scale" filter-bank 
coefficients from overlapping 32ms windows and 20ms frames. The 20ms frame 
interval was chosen to coincide with the 50 Hz video rate to facilitate integration 
of the two modalities without additional sub-sampling or linear interpolation. 
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Fig. 3.: A~ne components 1 through 6 f  or four repetitions of the word 'previous'. Each 
component has been thresholded, set to zero mean and unity variance and linear time 
normalised. Significant shape correlation exists in components 2 (Y translation), 3 (X 
scale), ~ (Y scale) and 5 (Y shear) across all four repetitions suggesting that they may 
contain useful recognition information. 
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Several different visual processing methods were examined in order to gain 
insight into which lip movements/deformations would be most beneficial for 
speech recognition. All visual features resulted from the projection of the lip 
outline, represented as a sequence of control points, onto a sub-space spanned 
by a reduced basis. The first basis chosen was the affine basis. Our experience 
in tracking had shown that  the affine basis was insufficient to model all de- 
formations of the lips, but given a successfully tracked lip sequence, we felt 
that  projection onto the affine basis would still provide useful recognition in- 
formation. Others [10, 19] have reported success using similar features obtained 
through tracking dots on the face. Additional visual feature representations were 
obtained through principal components analysis (PCA) where it was found that  
99% of the deformations of the outer lip contour were accounted for by the first 6 
principal components [8]. Furthermore, since we believed that  global horizontal 
displacement of the lip centroid was not necessary for speech production and 
only a bi-product of spurious head movements (global vertical displacement is 
present as a result of the asymmetrical movement of the upper and lower lips), 
a third recognition basis was created by subtracting horizontal displacement (X 
translation) from each set of control points and then performing PCA on the re- 
maining data. Similar to the original principal components analysis, it was found 
that  99% of the remaining lip motions were accounted for by just 6 components. 

When choosing features to be used in recognition experiments it is impor- 
tant  that  the features chosen be repeatable across multiple repetitions of the 
same token (word), yet be sufficiently different between repetitions of dissimilar 
words. This was of special concern as Bregler at al. [5] had concluded that  the 
outline of the lip was not sufficiently distinctive to give reliable recognition per- 
formance. However, several of the features in the affine basis do in fact satisfy 
these criteria. This can be seen in figure 3 where traces of the six affine features 
for multiple repetitions of the word 'previous' are shown. In the figure we see 
that  components 2 (vertical translation), 3 (horizontal scale), 4 (vertical scale) 
and 5 (vertical shear) are consistent across all four repetitions which suggests 
that  they may contain useful recognition information. Similarly, components 1 
(horizontal translation) and 6 (horizontal shear) show little consistency which 
was expected as neither appears to play a role in the production of speech.. 

6 R e c o g n i t i o n  E x p e r i m e n t s  

Both the profile and the frontal lip tracker (with lipstick) were used to explore the 
extent to which lip contour information could aid speech recognition. Separate 
isolated-word, audio-visual recognition experiments were conducted using visual 
features extracted from each of the trackers. Raw visual and audio data were 
gathered simultaneously and in real-time (50 Hz) on a Sun IPX workstation 
with Datacell $2200 framestore. The visual data consisted of the mouth outline 
represented as (x, y) control points (i0 for the side view and 13 for the frontal 
view) and the audio data 8-bit #-law sampled at 8 KHz. 

Recognition experiments were conducted using audio-only, visual only, and 
combined audio-visual DTW recognition. Composite feature vectors were created 
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by concatenating the acoustic and vision features, although it was possible to 
vary the relative weighting between the two modalities during recognition. Each 
feature was normalised to zero mean and unity variance over the entire frame 
sequence. The 20 repetitions of each word were partitioned into three sets. Two 
repetitions were used as exemplar patterns for matching, seven were used as a 
training set, and eleven as a test set. 

6 .1 R e c o g n i t i o n  u s i n g  t h e  prof i l e  v i e w  

Although the main experiments were done using the frontal view, it seemed im- 
portant to run at least a pilot experiment using the side-view, given that tracking 
in profile is robust even without cosmetic aids. This was done to demonstrate  
that real-time (50Hz), unaided visual tracking for audio-visual speech analysis is 
indeed a possibility, albeit currently on a modest scale. A 10-word digit database 
was used. 

Significant improvements in error rate were realised by incorporating the vi- 
sual data-stream. Figure 4 shows the error rates for experiments conducted with 
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Fig. 4.: Side View: Error rate variation on the test set as sound to vision weighting 
is varied. The incorporation of visual features extracted from the lip profile improves 
recognition performance at all noise levels. With a clean audio signal, vision is only 
marginally beneficial. However, as the audio signal becomes noisy, the contribution of 
vision is noticeably improved with a reduction in error rate from 15~o to 5.5~o for the 
0 dB signal and from 19~ to 6.5~o for -3 dB. With the audio quality further degraded 
to -6 dB, the error rate drops from 31~ to 6.5~. 
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audio signals at various SNRs with different vision to sound weightings. Several 
points are evident from this graph. The first is that  the audio-only recogniser 
performs better  than the visual-only recogniser at high signal to noise ratios. 
This merely reflects the higher information content in audio data with respect 
to speech recognition in typical noise-free dialogue. Secondly, incorporation of 
the vision information improved performance at all noise levels--with the largest 
improvements occurring at the lowest signal to noise ra t ios- -a  key finding of this 
research. It is this increase in recognition performance due to the incorporation 
of visual informat ion--a  term we refer to as the incrementa l  vision rate--- that  is 
a true measure of the added benefit of lip reading. As an example, one sees that  
at a SNR of -3 dB, an incremental vision rate (error rate reduction) of 12.5% 
(19% to 6.5%) is achieved for optimally combined vision/speech compared with 
speech alone. 

6.2 R e c o g n i t i o n  us ing  t h e  f r o n t a l  v iew 

In the frontal view, vision data was represented in each of the three previously 
discussed bases--affine, pca, and pca minus X translation. Experiments were 
conducted on a 40-word database consisting of numbers and commands that  
might be used in an interactive voice system controlling a car phone, fax machine, 
or similar office equipment. Plots of error rates using the frontal lip tracker at 
various SNRs with different vision to sound weightings were similar to figure 4 in 
that  incorporation of the vision information improved recognition performance 
at all noise levels [8]. The best error rates for each method of feature extraction 
are shown in figure 5 on sound at -3 dB SNR. All three bases provide a similar 

B e s t  error rates  for e a c h  bas i s  
Basis Acoustic Visual Combined Incremental Vision 

training test training test training test Rate 
affine 13.9% 16.6% 44% 52% 8.2% 9.3% 7.3% 
PCA 13.9% 16.6% 42% 51% 9.6% 9.3% 7.3% 

PCA no X 13.9% 16.6% 41% 49% 9.6% 9.8% 6.8% 

Fig. 5.: Frontal View: Best recognition error rates for  the a~ne,  PCA, and PCA with- 
out horizontal translation bases on sound at -3 dB SNR. The error rate o] the acoustic- 
only recogniser is nearly twice that of the audio-visual recogniser demonstrating the 
benefit of incorporating visual information into the acoustic speech recogniser. All three 
bases provide a similar increase in recognition performance. This is encouraging as 
the geometrically derived a~ne  basis presents an opportunity for speaker-independent 
recognition while the PCA bases are particular to a given speaker. 

increase in recognition performance. These results demonstrate that  there is 
useful recognition information contained in the lip outline contrary to Bregler et 
al. [5] who claims that  the outline of the lip is too coarse for accurate recognition. 
Furthermore, the comparable performance of the affine basis with respect to 
the derived bases suggests the possibility of developing a speaker independent 
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recognition system with the visual features represented as affine transformations 
of the lip template. 

6.3 Evaluat ing  visual  shape components  

Having determined the utility of lip shape information, the recognition perfor- 
mance of individual motion components was measured in order to determine 
which contribute most to recognition performance. It was hoped that a coher- 
ent picture would result yielding the lip movements most beneficial for speech 
recognition. Figure 6 shows the recognition performance achieved using vision 

~ e r r o r  rates only vision component using a single 
sis Vision only Combined Incremental Vision 
onent training test Itraining test Rate 

[_Full affine 44% 52% 8.2% 9.3% 7.3% 
X Trans 93% 93% 14% 17% 0.0% 
Y Trans 76% 81% 13% 14% 3.0% 
X Scale 59% 63% 9% 12% 5.0% 
Y Scale 75% 79% 14% 16% 0.7% 
Y Shear 77% 86% 14% 13% 3.2% 
X Shear 86% 90% 14% 17% 0.0% 
Full PCA 42% 51% 9.6% 9.3% 7.3% 

I 
1 ~ 70% 74% 11% 12% 4.6% 

2 ~ 91% 91% 14% 17% I 0.0% 

3 ~ 82% 88% 14% 17% 0.0% 

4 ~ 70% 75% 9% 11% 5.2% 

5 ~ 73% 82% 12% 12% 4.6% 

6 ~ 89% 94% 14% 14% 0.0% 

Fig. 6.: Results of recognition performance using only one vision component from each 
of the bases. Recognition using sound alone at -3 dB was 14~o for the training set and 
17~ for the test set. Full a~ne and Full PCA refer to overall recognition performance 
using all six components of each basis. The lip deformations represented by PCA com- 
ponents 1,4,5 and a~ne components Y Trans, X Scale, and Y Shear contribute the 
most to recognition performance implying that the recognition information of the lip 
outline can be expressed with just a few shape parameters. 

components from each of the bases singly. Error rates are shown for the compo- 
nents used individuMly and in concert with the acoustic features. The tests were 
conducted on speech at a SNR of -3 dB. These results suggest that most of the 
recognition information is contained in only a few (2-4) shape parameters. 
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7 C o n c l u s i o n s  a n d  F u t u r e  W o r k  

Despite doubts expressed by other researchers [5], it has been shown that  dy- 
namic contours can be used to track lip outlines, with sufficient accuracy to be 
useful in visual and audio-visual speech recognition. Moreover, tracking can be 
performed at real-time video rates (50 Hz). Recognition experiments conducted 
on a 40-word database demonstrated that  isolated words could be accurately 
recognised in speech severely degraded by artificial noise. Experiments reported 
here used Dynamic Time Warping as the recognition algorithm; however, given 
the state of the art in speech analysis [16], it is natural to t ry  Hidden Markov 
Model recognition. Such experiments are in progress and initial indications are 
that  vision similarly makes a significant contribution to lowering error-rates in 
accordance with results from others [1, 6]. 

It is known that  human lip-readers rely on information about the pres- 
ence/absence of the teeth and the tongue inside the lip contour [20]. For this 
reason it is likely that  the best recognition results will ultimately be obtained 
from frontal views with this additional information extracted. Towards this end, 
we are developing a real-time un-assisted frontal lip tracker capable of extract- 
ing the lip contour as well as determining the presence/absence of the teeth and 
tongue; furthermore, we are investigating how the coupling of a head tracker to 
the lip tracker can be used to compensate for global head movements during 
tracking and recognition [18]. 
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