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Abstract 

Background: Surface-guided radiation therapy can be used to continuously monitor a patient’s surface motions 

during radiotherapy by a non-irradiating, noninvasive optical surface imaging technique. In this study, machine 

learning methods were applied to predict external respiratory motion signals and predict internal liver motion in this 

therapeutic context.

Methods: Seven groups of interrelated external/internal respiratory liver motion samples lasting from 5 to 6 min 

collected simultaneously were used as a dataset,  Dv. Long short-term memory (LSTM) and support vector regression 

(SVR) networks were then used to establish external respiratory signal prediction models (LSTMpred/SVRpred) and 

external/internal respiratory motion correlation models (LSTMcorr/SVRcorr). These external prediction and external/

internal correlation models were then combined into an integrated model. Finally, the LSTMcorr model was used to 

perform five groups of model updating experiments to confirm the necessity of continuously updating the external/

internal correlation model. The root-mean-square error (RMSE), mean absolute error (MAE), and maximum absolute 

error (MAX_AE) were used to evaluate the performance of each model.

Results: The models established using the LSTM neural network performed better than those established using 

the SVR network in the tasks of predicting external respiratory signals for latency-compensation (RMSE < 0.5 mm at a 

latency of 450 ms) and predicting internal liver motion using external signals (RMSE < 0.6 mm). The prediction errors of 

the integrated model (RMSE ≤ 1.0 mm) were slightly higher than those of the external prediction and external/inter-

nal correlation models. The RMSE/MAE of the fifth model update was approximately ten times smaller than that of the 

first model update.

Conclusions: The LSTM networks outperform SVR networks at predicting external respiratory signals and internal 

liver motion because of LSTM’s strong ability to deal with time-dependencies. The LSTM-based integrated model 

performs well at predicting liver motion from external respiratory signals with system latencies of up to 450 ms. It is 

necessary to update the external/internal correlation model continuously.
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Introduction

During the radiotherapy of thoracic–abdominal tumors, 

respiratory motion can cause tumor displacement that 

affects the accuracy of radiotherapy [1]. In particular, ste-

reotactic body radiation therapy (SBRT) technique [2] has 

increased requirements in terms of irradiation accuracy 
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and, therefore, will be impacted more by respiratory 

motion. To manage the tumor motion caused by respi-

ration, motion-encompassing [3, 4] and breath-holding 

methods [5–8] as well as forced shallow-respiratory with 

abdominal compression [9], respiratory-gating [10, 11], 

and respiration-synchronized techniques [12] are used 

clinically. Both respiratory-gating and respiration-syn-

chronized techniques require the real-time tracking of 

tumors. Tumor tracking techniques can be divided into 

two categories. �e first is direct real-time tracking tech-

nique, in which X-ray imaging is used to locate tumors 

or implanted metal markers, or electromagnetic methods 

are used to track implanted coils in the target volume. 

�ese methods either require additional irradiation or 

are invasive [13–16]. �e second approach involves the 

indirect real-time tracking technique, in which tumor 

position is predicted based on external surrogate respira-

tory signals acquired using optical or infrared devices 

[17, 18] or spirometry [19]. Owing to its non-radiological 

and non-invasive nature, the indirect real-time track-

ing technique can be applied in the clinic using surface-

guided radiation therapy (SGRT). �is technique has 

many advantages such as imaging without the require-

ment of dosing, real-time feedback, 3D sub-millimeter 

spatial resolution, non-invasive and non-contact appli-

cation, ease of use, and an enhanced field of view (FOV) 

[20]. �ese advantages make SGRT well-suited to real-

time tracking and respiratory gating, and many studies 

have reported applications of SGRT in the treatment of 

lung [21] and breast tumors [22], laryngeal cancer [23], 

etc.

Establishing an accurate external respiratory signal pre-

diction model and an appropriate external/internal cor-

relation model between external surrogates and internal 

tumor motion is the key to the successful implementa-

tion of indirect real-time tumor tracking technology [24]. 

�e external respiratory signal prediction and external/

internal respiratory motion correlation models allow for 

the compensation of system latency and the prediction of 

internal tumor motion, respectively. In respiratory gat-

ing in clinical settings, the latency of SGRT can result in 

treatment inefficiencies and/or geographic misses [25]. 

According to the AAPM TG 142 report [26], latency 

should be within 100  ms, a tolerance that assumes a 

moving object traveling at a speed that is not higher 

than 20 mm/s, corresponding to a positional uncertainty 

of 2  mm [26]. However, the total latency measured in 

clinical practice is often greater than 100  ms, and cases 

involving latencies of 200–400  ms are often reported 

[27, 28]. In such cases, the positional uncertainty of the 

tumor can reach more than 8 mm, which can cause unex-

pected loss of target dose coverage and result in cold 

spots [29]. Moreover, the positional uncertainty caused 

by high latency can also lead to interplay effects, blurring 

and spatial deformation of the dose distribution [30], and 

substantial discrepancies between planned and delivered 

doses [31]. �e system latency is inherent in a real-time 

tracking system associated with the processes of obtain-

ing external imaging data, predicting internal tumor 

position from the external/internal correlation model, 

and adjusting the radiation beam accordingly [32]. Dif-

ferent studies have shown that the system latencies of 

different real-time tracking devices range from tens of 

milliseconds to more than 400 ms [32–34]. As mentioned 

previously, a latency of 100 ms will result in a tumor posi-

tional uncertainty of 2 mm [26].

External respiratory motion prediction algorithms 

developed in previous studies can be divided into two 

categories. �e first include algorithms based on exist-

ing models, primarily the least-squares fitting algorithm 

[35], algorithms based on the extended Kalman filter 

[36], and fuzzy logic algorithms [17, 37]. Such algorithms 

are based on the assumption that the existing respiratory 

pattern remains stationary and periodic—an assumption 

that might be incorrect [24]. �e second category con-

cerns model-free prediction algorithms, including neural 

networks [38–40], regression analysis [41], and support 

vector regression (SVR) [42]. �e advantage of these 

algorithms is that they do not require a stable respiratory 

pattern.

External/internal correlation algorithms developed in 

other studies primarily apply linear [43, 44], piecewise 

linear [45], polynomial [46], and combined polynomial 

[47] models or adaptive filters, neural networks [48, 49], 

or SVR [50]. However, relatively simple linear polyno-

mial models suffer from poor robustness and produce 

relatively large prediction errors for samples with large 

volatility [46]. Algorithms such as filters, neural networks 

such as long short-term memory (LSTM), and SVR net-

works are stronger at processing nonlinear problems 

and have better real-time dynamic prediction perfor-

mance. �e LSTM neural network was first proposed by 

Hochreiter and Schmidhuber [51] in 1997. It has been 

recognized for its outstanding performance in processing 

sequence information and is widely used in speech recog-

nition and machine translation tasks [52, 53]. SVR is an 

important application branch of support vector machines 

(SVMs) that is used to minimize structural risks and seek 

globally optimal solutions. SVR applies nonlinear trans-

formation to convert actual nonlinear problems into 

high-dimensional feature spaces in which the nonlinear 

problems can be solved by constructing linear decision 

functions [54]. Based on the characteristics and advan-

tages of LSTM and SVR mentioned above, the LSTM 

and SVR networks were used to establish an external/

internal respiratory motion correlation model (external/
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internal correlation model) and an external respiratory 

signals prediction model (external prediction model) in 

this study.

Indirect real-time tracking techniques based on exter-

nal surrogate respiratory signals are completely free of 

additional radiation and are noninvasive. To implement 

these techniques, an external prediction model must be 

combined with an external/internal correlation model. 

All of the previous studies in this area were limited to 

external respiratory motion or internal tumor/organ 

motion prediction alone and did not reflect actual clinical 

situations, in which latency compensation and the pre-

diction of internal tumor position should be performed 

simultaneously. Considering the limitation of the previ-

ous studies above, these models were combined into an 

integrated model for clinical practice in this study. �e 

integrated model uses external respiratory motion signals 

to predict internal liver motion and compensates for sys-

tem latency. �e performance of the respective networks 

and their combination was compared and analyzed. 

Finally, to reflect the temporally changing relationship 

between external and internal respiratory motion [55, 

56], the necessity of continuously updating the model 

was also verified.

Methods

Dataset

�e respiratory motion data of seven volunteers col-

lected by the Institute of Robotics and Cognitive Sys-

tems of the University of Lübeck in Germany [47, 57] 

were used. �e respiratory motion signals of the chest 

surface and internal liver were collected in the x- (left–

right), y- (superior-inferior), and z- (anterior–poste-

rior) directions, respectively. �e samples collected for 

each volunteer were taken as individual sets of data, 

which were combined to form the final dataset,  Dv. �e 

respiratory motion signals of the internal liver were 

obtained using 4D ultrasound and template matching 

to track the motion of the liver vessel bifurcation point. 

In the template matching process, phase-only correla-

tion (POC) [58] was performed followed by normalized 

cross-correlation (NCC) [59] with interpolation on the 

target volume to determine the point of optimal registra-

tion; details on this process can be found in [47]. Exter-

nal respiratory motion samples were obtained using an 

AccuTrack 250 system to track the motion of LEDs fixed 

on the surface of each volunteer’s chest [47]. �e dura-

tion of respiratory motion sample collection for each set 

was 5–6 min, and approximately 6500 to 8100 sampling 

points were obtained in each direction per set. �e sam-

pling frequency of the internal respiratory motion sam-

ple was 20 Hz. Each external respiratory motion sample 

was resampled to make it consistent in length with the 

corresponding internal respiratory motion sample. Prior 

to model training, preprocessing operations such as out-

lier deletion, smoothing, filtering, and standardization 

were performed on  Dv.

LSTM network and SVR network

LSTM network

Sets of training and training label samples  (Xtrain = [x1, 

 x2, …,  xm] and  Ytrain = [y1,  y2, …,  ym], respectively) and 

testing and testing label samples  (Xtest = [xm+1, x m+2, …, 

 xm+n] and  Ytest = [ym+1,  ym+2, …,  ym+n], respectively) were 

obtained for the LSTM network. �e LSTM network 

comprises multiple memory blocks, each of which con-

tains one cell and three gates (input, forget, and output 

gates) [60]. �rough a forward propagation process, the 

LSTM network turns input data into output samples. �e 

entire forward propagation of one block from input to 

output is carried out as follows:

�e output bt
l
 of the input gate is

where

�e output btφ of the forget gate is

where

�e output btw of the output gate is

where

From these outputs, the output stc of the cell is obtained 

as

where
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the final output of the block, btc , is then calculated as the 

product of btw and a function of stc:

It should be noted that, in the above equations, f, g, and 

h denote the activation functions used by the three gates, 

the input, and the final output, respectively.

SVR network

Sets of training and testing samples  (Dtrain = {(x1,y1), 

 (x2,y2), …,  (xm,ym), yi ∈ R} and  Dtest = {(xm+1,y m+1), (x 

m+2,y m+2), …,  (xm+n,ym+n), yi ∈ R}, respectively) were 

obtained for the SVR network, which attempts to find a 

model f(x) in which y* = f(xi) and  yi are as close as possi-

ble [54, 61]. For a maximum tolerable deviation between 

y* and  yi of ϵ, the SVR problem can be formalized as

where C is the regularization constant and lǫ is the 

ϵ-insensitive loss function.

By introducing the slack variables ξi and ξ̂i , Eq. (10) can 

be expressed as

�e Lagrange multiplier ui can then be introduced to 

obtain the SVR solution as

where b is the model parameter to be determined and 

f(x) is the final model found by the SVR method.

(9)b
t
c = b

t
wh(s

t
c).

(10)min
w,b
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+ C

m
∑
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,

(11)min

w,b,ξi ,ξ̂i

1

2
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2
+ C

m∑

i=1

(ξi, ξ̂i).

(12)f (x) =

m∑

i=1

(α̂i − αi)x
T
i x + b,

External respiratory signals prediction models

�e LSTM prediction (LSTMpred) and SVR prediction 

(SVRpred) models were established using the LSTM neu-

ral and SVR networks, respectively, to predict the respir-

atory motion of the chest surface at the system latency. 

Both LSTMpred and SVRpred use the current external 

respiratory motion signals  St to predict the future exter-

nal respiratory motion signals  St+i. Considering that the 

length of the training and label datasets should be the 

same during the training of the SVR model, a  St-to-St+i 

length ratio of 1:1 was selected for both models. As the 

typical system latency ranges from tens of milliseconds 

to more than 400 ms, the respiratory motion prediction 

algorithm results were assessed at latencies of 50, 150, 

200, and 450 ms, i.e., the i = 1, 3, 4, and 9 latencies were 

set to 50, 150, 200, and 450 ms, respectively.

�e external respiratory motion data of dataset  Dv were 

divided at ratios of 9:1 into training and testing data for 

the LSTMpred and SVRpred models. After testing, com-

parison, and adjustment to determine the best network 

performance, appropriate parameters were selected for 

the two external prediction models. For the LSTMpred 

model, mean square error (MSE) loss was chosen as the 

loss function and the network was trained using an Adam 

optimizer with a learning rate of 0.001 and a batch size 

of 64. A dropout rate of 20% over 60 total epochs and 20 

time steps was used in the LSTMpred model adjustment 

process. �e number of layers and neurons in each layer 

are shown in Fig.  1. For the SVRpred model, the radial 

basis function (RBF) kernel was selected as the kernel 

function, and the gamma and penalty parameter C of 

SVRpred were set as 0.1 and 1000, respectively.

External/internal respiratory motion correlation models

�e LSTM and SVR networks were used to establish 

the external/internal correlation models LSTMcorr and 

Fig. 1 Structure of LSTMpred and LSTMcorr models
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SVRcorr, respectively, which use the current external 

respiratory motion signal  St to predict the current inter-

nal liver respiratory motion sample  It. �e preprocessed 

dataset  Dv was divided at 9:1 ratios into training and test-

ing data for the LSTMcorr and SVRcorr models. Because 

the external and internal samples had the same length 

and corresponded to each other, a  St-to-It ratio of 1:1 was 

selected for both models.

�e structure and parameter selection processes 

applied in obtaining the external/internal correlation 

models were equivalent to those used for the external 

prediction models except that 40 instead of 60 epochs 

were used to train LSTMcorr. �e external/internal cor-

relation and external prediction models differ primar-

ily in terms of the training and label data used to train 

the respective models. Both sets of models were devel-

oped based on a Pytorch deep learning framework using 

Python.

Integrated model

�e integrated model derived as a combination of the 

trained external prediction and trained external/internal 

correlation models uses external respiratory motion sig-

nals to predict internal liver motion while compensating 

for system latency. �e efficiency of this combination of 

the two models was assessed by predicting future internal 

liver positions.

Veri�cation of external/internal correlation model update

During free breathing, different parts of the anatomy can 

move with different temporal and spatial relationships 

that will change continuously over time [24, 62]. Unex-

pected behaviors such as talking and coughing can also 

induce obvious changes in these relationships. �ere-

fore, the established external/internal correlation model 

should also change over time. Obtaining the latest sam-

ple and updating the model continuously is a common 

approach to solving this problem [24]. In general, the 

changes in the temporal and spatial relationships will be 

slow, and approximately 30  s will be required to detect 

obvious alterations [48]. Previous studies have shown that 

updating every 10 s is sufficient to ensure the accuracy of 

a model [43]. In the model update process, the weights 

of each computing node within the neural network are 

updated automatically by entering the latest collected 

data as input to the network, which does not change the 

structure of the network or the set parameters.

Although the changing characteristics of a patient’s res-

piratory motion pattern over time will also affect the pre-

diction of external respiratory motion, the influence of 

this is primarily manifested on a time scale that is longer 

than the system latency. �us, the update verification 

of the model primarily focuses on the external/internal 

correlation.

To carry out update verification of the LSTMcorr 

model, the dataset  Dv was divided into six parts—C1, 

C2, C3, C4, C5, and C6—in the proportion 1:2:2:2:2:1. 

Five groups of assessments were carried out using 

C1, C1 + C2, C1 + C2 + C3, C1 + C2 + C3 + C4, and 

C1 + C2 + C3 + C4 + C5 as the training sets and the uni-

fied C6 as the testing set. Each group of assessments was 

carried out five times. �e RMSE/MAE of each assess-

ment was taken as the final result for comparison, with 

the results for each of the five groups normalized to the 

fifth update to enable an intuitive comparison.

Evaluation

�e root-mean-squared errors (RMSEs), mean absolute 

errors (MAEs), and maximum absolute errors (MAX_

AEs) of the external prediction, external/internal cor-

relation, and integrated models were used as evaluation 

indicators to assess the deviations between the predicted 

and true results, ŷi and yi , respectively. �ese indicators 

are defined as follows:

In each case, a smaller indicator value corresponds to a 

predicted result that is closer to the real result and a bet-

ter-performing model.

Results

External respiratory motion prediction

�e LSTMpred model was found to be much more accu-

rate in all directions than the SVRpred model as an exter-

nal prediction model (see Figs. 2, 3). For the LSTMpred 

model with a latency of 450  ms, the maximum predic-

tion errors for all tested cases in the x-, y-, and z-direc-

tions were 0.415, 1.034, and 1.529  mm, respectively, 

while those for the SVRpred model were 1.001, 3.368, 

and 4.749 mm, respectively. �e prediction errors of the 

LSTMpred and SVRpred models were both largest in 

the z-direction, followed by the y- and x-directions. �e 

RMSE, MAE, and MAX_AE values of both models both 

increased with the latency, indicating that increasing the 

latency increased the prediction error. �is occurred 

because the human respiratory pattern changes over time 

(13)RMSE =

√

√

√

√

1

N

N
∑

i=1

(yi − ŷi)2,

(14)MAE =
1

N

N
∑

i=1

∣

∣yi − ŷi
∣

∣,

(15)MAX_AE = max
(∣

∣yi − ŷi
∣

∣
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Fig. 2 Change in difference in three directions between predicted position (mm) obtained from LSTMpred and SVRpred models and real position 

(mm) from external samples as a function of latency

Fig. 3 RMSE, MAE, and MAX_AE of a LSTMpred and b SVRpred models in three directions at different latencies
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and, therefore, increasing the system latency increases 

the difference between the predicted and current exter-

nal respiratory motion signals.

External/internal correlation model

�e LSTMcorr model was found to be much more accu-

rate in all directions than the SVRcorr model as an exter-

nal/internal correlation model (see Figs. 4, 5). �e RMSE, 

MAE, and MAX_AE values of the LSTMcorr model 

were much smaller than those of the SVRcorr model in 

all directions, with maximum prediction errors for all 

tested cases of 1.027, 0.886, and 1.081 mm in the x, y, and 

z directions, respectively.

Integrated model

Because the LSTMpred and LSTMcorr external and 

external/internal correlation models had smaller errors 

than the SVRpred and SVRcorr prediction models, the 

integrated model was constructed using the LSTMpred 

and LSTMcorr models. �e RMSE, MAE, and MAX_AE 

of the integrated model were all found to increase with 

the latency in all directions (see Figs.  6, 7), with RMSE 

and MAX_AE values for all tested cases of approximately 

1 and 2  mm, respectively. In addition, the prediction 

errors of the integrated model were slightly greater than 

those of the external prediction and external/internal 

correlation models but smaller than the sum of their 

errors.

Veri�cation for external/internal correlation model update

As the external/internal correlation model is continu-

ously updated, its RMSE and MAE are gradually reduced 

in all directions (see Fig. 8). As the time interval between 

the training and test samples decreases, the magnitude of 

error reduction becomes progressively smaller because 

reducing the time interval between the two reduces the 

Fig. 4 Predicted positions (mm) obtained from LSTMcorr and SVRcorr models and actual positions (mm) of liver in three directions

Fig. 5 RMSE, MAE, and MAX_AE of LSTMcorr and SVRcorr models in 

three directions
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difference in the respiratory motion pattern between the 

training samples and the test data.

Discussion

�e external respiratory motion prediction and exter-

nal/internal correlation models for predicting internal 

liver motion established by the LSTM neural network 

universally outperformed those established by the SVR 

network in all directions. �e primary reason for this is 

that the LSTM neural network can effectively solve time-

dependency problems [63, 64] as a result of the network’s 

hidden unit, which controls memory and forgetting of 

time-series information to enable the selective remem-

bering and transmission of these data [65]. In addition, 

Fig. 6 Predicted position (mm) in three directions obtained from integrated model and real position (mm) of liver at different latencies

Fig. 7 RMSE, MAE, and MAX_AE of the integrated model at different latencies in three directions
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the nonlinear fitting ability of the SVR network is based 

on the use of similar history samples, and the SVR cannot 

reflect further abnormal fluctuations using rare similar 

history samples [66]. By contrast, LSTM networks have 

stronger feature extraction capabilities than SVR net-

works [67–69] and can use these to learn additional fea-

tures pertaining to abnormal fluctuations. �ese features 

provide LSTM networks with more powerful processing 

capabilities for abnormal fluctuations and gives them 

smaller prediction errors than SVR networks. Studies in 

a number of fields, including stock premium [70], snow-

melt driven stream flow [71], and traffic flow prediction 

[69] have shown the superiority of LSTM networks rela-

tive to SVR networks in processing time-series data.

In this study, we established an integrated model that 

predicts internal liver motion from external respiratory 

signals based on actual clinical tumor real-time motion 

tracking scenarios and took system latency into account 

in developing the model. �e maximum RMSE and 

MAX_AE of the integrated model are approximately 

1 and 2  mm, respectively, in all directions, a degree of 

accuracy that can meet clinical requirements for the real-

time motion tracking of liver tumors [72].

A patient’s respiratory pattern will change over time as 

a result of the complex patterns of simultaneous motion 

of different anatomical structures, which produce phase 

difference variation and time-changing spatiotempo-

ral correlations [73]. Despite this accepted fact, to date, 

there have been few relevant external/internal correlation 

experiments to verify the necessity of model updating in 

radiotherapy-based tumor real-time tracking; further-

more, all such studies have been limited to exploring 

the impact of short-term updates [43, 55]. �e results of 

our model update assessments indicate that the RMSE/

MAE obtained for the fifth model update is smaller than 

that obtained for the first update by an approximate fac-

tor of ten in a long-term state. Because the RMSE/MAE 

decreases as the model is updated, it is necessary to 

continuously update the model. Doing so ensures that 

the respiratory motion correlation established by the 

model matches the situation during the current moment, 

thereby reducing prediction errors, improving predic-

tion accuracy, and reducing the large impact of random 

patient actions. Furthermore, the accuracy of the fifth 

model update is close to that of the fourth update, indi-

cating that when the training/prediction sample length 

ratio reaches 7:3, a high degree of accuracy can be 

achieved in the external/internal correlation model.

�is study had several limitations. First, the networks 

employed in the study were specific in that they were all 

trained based on a respiratory motion dataset obtained 

from a single institution. Before applying the network 

developed in this study to any other dataset, therefore, 

the models’ structure and parameters will have to be 

adjusted and the models will have to be retrained and 

reevaluated. In addition, the models’ performance could 

be improved by using a larger dataset or a dataset con-

taining multicenter data. Second, the model for predict-

ing internal liver motion from external respiratory signals 

developed in this study is only suitable when exposed 

Fig. 8 RMSE and MAE of first to fifth external/internal correlation model updates (the RMSE and MAE are all normalized to the fifth update)
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surface skin immobilization devices such as vacuum bags 

and stereotactic body frames are used. �e model can-

not be applied when thermoplastic frame immobilization 

devices are used because it would not be able to accu-

rately obtain external motion signals and changes in the 

patient’s breathing motion pattern. �ird, we only tracked 

the motion of the liver vessel bifurcation point in our 

model and, therefore, did not consider nonrigid motion 

such as deformation of the liver. Finally, a patient’s res-

piratory motion can be severely affected by many factors, 

including initial nervousness or activity during setup and 

commencement of treatment followed by eventual relax-

ation on the table, which alter their breathing pattern. As 

a result, the application of motion compensation might 

not always be appropriate, and the question of whether 

certain patients are suitable for motion compensation 

treatment alone will have to be explored [74]. In future 

studies, we will further explore and evaluate the benefits 

of motion compensation for specific patients.

Conclusion

In this study, it was shown that LSTM networks outper-

form SVR networks in the prediction of external res-

piratory signals and internal liver motion because of the 

strong ability of the former to capture time dependencies. 

An LSTM-based integrated model was found to perform 

well in predicting liver motion from external respira-

tory signals with a system latency of up to 450 ms. It was 

also confirmed that continuously updating the model is 

necessary to improve its prediction accuracy. Our study, 

could be a meaningful contribution to the real-time 

motion tracking of liver tumors in clinical practice.
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