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Urban search and rescue �USAR� is a time critical task. One goal in rescue robotics is to
have a team of heterogeneous robots that explore autonomously the disaster area, while
jointly creating a map of the terrain and registering victim locations, which can further
be utilized by human task forces for rescue. Basically, the robots have to solve autono-
mously in real-time the problem of simultaneous localization and mapping �SLAM�, con-
sisting of a continuous state estimation problem and a discrete data association problem.
In this paper we contribute a novel method for efficient loop closure in harsh large-scale
environments that utilizes RFID technology for data association and slippage-sensitive
odometry for 2D pose tracking. Furthermore, we introduce a computational efficient
method for building elevation maps by utilizing an extended Kalman filter for 3D pose
tracking, which can be applied in real-time while navigating on rough terrain. The pro-
posed methods have been extensively evaluated within outdoor environments, as well as
within USAR test arenas designed by the National Institute of Standards and Technology
�NIST�. Our results show that the proposed methods perform robustly and efficiently
within the utilized benchmark scenarios. © 2007 Wiley Periodicals, Inc.

1. INTRODUCTION

Urban search and rescue �USAR� is a time critical

task. Rescue teams have to explore a large terrain

within a short amount of time in order to locate sur-

vivors after a disaster. In this scenario, the number of

survivors decreases drastically by each day due to

hostile environmental conditions and injuries of vic-

tims. Therefore, the survival rate depends signifi-
cantly on the efficiency of rescue teams. One goal in

rescue robotics is to have a team of heterogeneous ro-
bots that explore autonomously, or partially guided
by an incident commander, the disaster area. Their
task is to jointly create a map of the terrain and to reg-
ister victim locations, which can further be utilized by
human task forces for rescue.

Basically, the robots have to solve autonomously
in real-time the problem of simultaneous localization
and mapping �SLAM�, consisting of a continuous
state estimation problem and a discrete data associa-
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tion problem. Within disaster areas, these problems
are extraordinarily challenging. On the one hand,
state estimation is difficult due to the extremely un-
reliable odometry measurements usually found on
robots operating on rough terrain. On the other hand,
data association, i.e., to recognize locations from sen-
sor data, is challenging due to the unstructured en-
vironment. Firemen of 9/11 reported that they had
major difficulties orientating themselves after leaving
collapsed buildings. The arbitrary structure of the en-
vironment, and limited visibility conditions due to
smoke, dust, and fire, prevent an easy distinction of
different places. This problem is also relevant to stan-
dard approaches for SLAM, which recognize places
by associating vision-based and LRF-based features.
These extraordinary circumstances make it very hard
to apply common techniques from robotics. Many of
these techniques have been developed under strong
assumptions, for example, they require polygonal
structures, such as typically found in office-like en-
vironments �Gutmann & Schlegel, 1996; Grisetti, Io-
cchi & Nardi, 2002�, or depend on predictable cova-
riance bounds from pose tracking for solving the data
association problem by validation gating �Dissanay-
ake, Newman, Clark, Durrant-Whyte & Csorba,
2001�.

In this paper we contribute a novel method for
robust and efficient loop closure in large-scale envi-
ronments that utilizes RFID technology for data as-
sociation and slippage-sensitive odometry for 2D
pose tracking. Furthermore, we introduce a compu-
tationally efficient method for building elevation
maps by utilizing an extended Kalman filter for 3D
pose tracking based on scan matching supported by
visual odometry, which can be applied in real-time
while navigating on rough terrain.

RFID tags have a worldwide unique number, and
thus offer an elegant way to label and to recognize
locations within harsh environments. Their size is al-
ready below 0.5 mm, as shown by the �-chip from
Hitachi �Hitachi, 2003�, and their price is lower than
13¢ �Alien Technology, 2003�. Passive RFID tags do
not require being equipped with a battery since they
are powered by the reader if they are within a certain
distance. Their reading and writing distance, which
depends on the employed communication frequency,
can be assumed to be within a range of meters.

Within the proposed approach, RFIDs are ac-
tively deployed by robots at adequate locations, for
example narrow passages that are likely to be passed.
Displacements between these RFIDs are estimated by

pose tracking and utilized for globally optimizing the
locations of the RFIDs by minimizing the Mahalano-
bis distance �Lu & Milios, 1997�. Then, the whole ro-
bot trajectory is interpolated by using the globally
corrected poses as constraint points. Pose tracking is
carried out from wheel odometry and IMU �inertial
measurement unit� data. Since wheel odometry be-
comes arbitrarily inaccurate if robots navigate on
slippery ground or have to overcome smaller ob-
stacles, a method for slippage-sensitive odometry has
been developed. The introduced method, which is
designed for 4WD robot platforms with overcon-
strained odometry, i.e., four shaft-encoders instead of
two, infers slippage of the wheels from differences in
the measured wheel velocities. Inference is carried
out by a decision tree that has been trained from la-
beled odometry data.

Besides the solution of the data association prob-
lem, the RFID-technology-based approach comes
with three further advantages: First, in a multi-robot
�Ziparo, Kleiner, Nebel & Nardi, 2007� or multi-
human �Kleiner & Sun, 2007� exploration scenario,
multiple maps can easily be merged into one consis-
tent map by utilizing found correspondences from
RFID tags registered on those maps. Furthermore,
they can be utilized for a communication-free coor-
dination of these robots �Kleiner, Prediger & Nebel,
2006; Ziparo et al., 2007�. Second, RFID tags that have
been put into the environment can be used in a
straightforward manner by humans to follow routes
towards victim locations, i.e., they do not need to lo-
calize themselves within a metric map. Third, RFID
tags can be used by human task forces to store ad-
ditional user data, such as the number of victims lo-
cated in a room or information about hazardous
areas.

Moreover, we propose an efficient method for
building elevation maps in real-time, i.e., to map the
environment while the robot is in motion. The
method tracks the 3D pose of the robot by integrating
the robot’s orientation, and the 2D pose generated
from visual odometry and scan matching. Further-
more, the 3D pose is updated from height observa-
tions that have been registered on the map. Given the
3D pose, the height value of each map cell is esti-
mated by a Kalman filter that integrates readings
from a downwards tilted LRF. Due to the integration
of the full 3D pose, the method allows one to create
elevation maps while the robot traverses rough ter-
rain, as, for example, while driving over ramps and
stairs.
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The introduced methods have been extensively
evaluated within outdoor environments, as well as
within USAR test arenas designed by the National In-
stitute of Standards and Technology �NIST� �Jacoff,
Messina & Evans, 2001�. Our results show that the
proposed methods perform robustly and efficiently
within the utilized benchmark scenarios. Moreover,
we show that RFID-SLAM is capable of closing large
loops within a few seconds.

The remainder of this paper is structured as fol-
lows. In Section 2 we discuss related work. In Section
3 we introduce the experimental platforms utilized
for the evaluation of the introduced methods. In Sec-
tion 4 we describe the approach for slippage-sensitive
pose tracking on wheeled robots. The RFID-
technology-based SLAM approach is introduced in
Section 5 and the real-time building of elevation maps
is described in Section 6. Finally, we provide results
from real world experiments in Section 7 and con-
clude in Section 8.

2. RELATED WORK

Borenstein et al. introduced a method for improving
the odometry on differential-drive robots �Borenstein
& Liqiang, 1996�. A method for odometry improve-
ment and optimization of motor control algorithms
on 4WD robots has been introduced by Ojeda et al.
�Ojeda & Borenstein, 2004�. They apply “Expert
Rules” in order to infer the occurrence of wheel slip.

Inspired from the fundamental work by Smith et
al. �Smith, Self & Cheeseman, 1988�, early work on
SLAM was mainly based on the extended Kalman fil-
ter �EKF� �Dissanayake et al., 2001�, which updates
the state vector after each measurement in O�n2�.
Based on the observation that landmark estimates are
conditionally independent given the robot pose,
Montemerlo et al. introduced FastSLAM, which re-
duces the computational complexity of EKF-based
SLAM to O�nk�, whereas k is the number of robot tra-
jectories considered at the same time �Montemerlo,
Thrun, Koller & Wegbreit, 2002�. The framework has
been further extended to using evidence grids �Hae-
hnel, Burgard, Fox & Thrun, 2003; Grisetti, Stachniss
& Burgard, 2005�. Thrun et al. introduced an ap-
proach following the idea of representing uncertainty
with an information matrix instead of a covariance
matrix �Thrun et al., 2004�. By exploiting the sparsity
of the information matrix the algorithm, called sparse
extended information filter �SEIF�, allows updates of

the state vector in constant time. Another variant of
SLAM, the Treemap algorithm, has been introduced
by Frese �Frese, 2006�. This method divides a map
into local regions and subregions, whereas the land-
marks of each region are stored at the according level
of the tree hierarchy. Lu and Milios introduced a
method for globally optimizing robot trajectories by
building a constraint graph from LRF and odometry
observations �Lu & Milios, 1997�. Our method is
closely related to their work, however, it enables ef-
ficient route graph corrections by decomposing the
problem into pose tracking, optimization, and inter-
polation. In contrast to incrementally full state up-
dates performed by EKF-based methods after each
observation, the decomposition reduces the compu-
tational requirements during runtime to a minimum,
thus allowing the efficient optimization of even large-
scale environments. Whereas existing methods typi-
cally rely on a high density of landmarks, the RFID-
based approach is tailored for very sparse landmark
distributions with reliable data association.

In connection with radio transmitters, the SLAM
problem has mainly be addressed as “range-only”
SLAM �Kehagias, Djugash & Singh, 2006; Djugash,
Singh & Corke, 2005; Kurth, Kantor & Singh, 2003;
Kantor & Singh, 2002� since the bearing of the radio
signal cannot accurately be determined. RFIDs have
already been successfully utilized for localizing mo-
bile robots �Hähnel, Burgard, Fox, Fishkin & Phili-
pose, 2004; Bohn & Mattern, 2004� and emergency re-
sponders �Kantor et al., 2003; Miller et al., 2006�.
Hähnel and colleagues �Hähnel et al., 2004� success-
fully utilized Markov localization for localizing a mo-
bile robot in an office environment. Their approach
deals with the problem of localization within a map
previously learned from laser range data and known
RFID positions, whereas the work presented in this
paper describes a solution that performs RFID-based
localization and mapping simultaneously during ex-
ploration. Also sensor-networks-based Markov local-
ization for emergency response has been studied
�Kantor et al., 2003�. In their work, existing sensor
nodes in a building are utilized for both localization
and computation of a temperature gradient from lo-
cal sensor node measurements. Bohn and colleagues
examined localization based on super-distributed
RFID tag infrastructures �Bohn & Mattern, 2004�. In
their scenario, tags are deployed beforehand in a
highly redundant fashion over large areas, e.g.,
densely integrated into a carpet. They outline the ap-
plication of a vacuum-cleaner robot following these
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tags. Miller and colleagues examined the usability of
various RFID systems for the localization of first re-
sponders within different building classes �Miller et
al., 2006�. During their experiments, persons were
tracked with a dead reckoning module �DRM� while
walking through a building. They showed that the
trajectories can be improved by utilizing the positions
of RFID tags detected within the building. While
these map improvements have been carried out with
only local consistency, the approach presented in this
work yields a globally consistent map improvement.

Elevation maps are indispensable, particularly
for robots operating within unstructured environ-
ments. They have been utilized on wheeled robot
platforms �Pfaff, Triebel & Burgard, 2007; Wolf,
Sukhatme, Fox & Burgard, 2005�, on walking ma-
chines �Krotkov & Hoffman, 1994; Gassmann, From-
mberger, Dillmann & Berns, 2003�, and on carlike ve-
hicles �Thurn et al., 2006; Ye & Borenstein, 2003�.
These methods differ in the way range data are ac-
quired. If data are acquired from a 3D scan �Pfaff et
al., 2007; Krotkov & Hoffman, 1994�, it usually suf-
fices to employ standard error models, which reflect
uncertainty from the measured beam length. Data ac-
quired from a 2D LRF, e.g., tilted downwards, require
more sophisticated error models, such as the compen-

sation of pose uncertainty �Thurn et al., 2006� and
handling of missing data by map smoothing �Ye &
Borenstein, 2003�. Furthermore, full 3D data process-
ing is usually not possible in real-time since 3D data
acquisition, as well as 3D data registration, is still
time consuming, thus requiring interruptions of con-
tinuous navigation. In contrast to previous work, our
approach deals with the problem of building eleva-
tion maps in real-time, allowing the robot continuous
planning and navigation. Furthermore, we relax the
assumption that the robot has to be situated on a flat
surface while mapping rough terrain.

3. EXPERIMENTAL PLATFORM

The work proposed in this paper has been extensively
tested on two different robot platforms, a 4WD �four
wheel drive� differentially steered robot for RFID
technology-based exploration and mapping of large-
scale environments �see Section 5�, and a tracked ro-
bot for climbing and mapping of rough terrain �see
Section 6�. Figure 1�a� shows the tracked Lurker robot,
which is based on the Tarantula R/C toy. Although
based on a toy, this robot is capable of climbing dif-
ficult obstacles, such as stairs, ramps, and random

Figure 1. �a�–�c� Robots designed for rescue scenarios: �a� The Lurker robot and �b� the Zerg robot. �c� The team of robots
waiting for the mission start during the RoboCup competition in Osaka 2005. �Pictures �a,c� were taken by Raymond Sheh
and Adam Jacoff, respectively.� �d�–�f� A novel mechanism for the active distribution of RFID tags. �d� The utilized RFID
tags. �e� The mechanism with servo. �f� The mechanism, together with an antenna, mounted on a Zerg robot.
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stepfields, i.e., rough terrain simulated by an arrange-
ment of vertically aligned blocks of wood. This is pos-
sible due to its tracks, which can operate indepen-
dently on each side, and the “Flippers,” i.e., the four
arms of the robot, which can be freely rotated at
360 deg. We modified the base in order to enable au-
tonomous operation. First, we added a 360 deg freely
turnable potentiometer to each of the two axes for
measuring the angular position of the flippers. Sec-
ond, we added touch sensors to each flipper, allowing
us to measure force when touching the ground or an
object. Furthermore, the robot is equipped with a
3-DOF inertial measurement unit �IMU� from Xsens,
allowing drift-free measurements of the three Euler
angles yaw, roll, and pitch, and two Hokuyo URG-X004
laser range finders �LRFs�, one for scan matching and
one for elevation mapping, which can be vertically
tilted within 90 deg. For feature tracking �Dornhege
& Kleiner, 2006� we utilized a Logitech QuickCam Pro
4000 web cam �Logitech, 2006�.

Figure 1�b� shows the Zerg robot, a 4WD differ-
entially steered platform, which has been completely
hand-crafted. The 4WD drive provides more power
to the robot and therefore allows the robot to drive up
ramps and to operate on rough terrain. Each wheel is
driven by a Pitman GM9434K332 motor with a 19.7:1
gear ratio and a shaft encoder. The redundancy given
by four encoders allows detection of heavy slippage
and situations in which the robot gets stuck �see Sec-
tion 4�. In order to reduce the large odometry orien-
tation error that naturally arises from a four-wheeled
platform, the robot is also equipped with an IMU
from XSens. Moreover, the robot is equipped with a
Thermal-Eye infrared thermo camera for victim detec-
tion, and also with a Hokuyo URG-X004 LRF.

The active distribution of RFID tags is carried out
by a custom-built actuator based on a metal slider
that can be moved by a conventional servo �Figure
1�e��. The slider is connected with a magazine that
maximally holds around 50 tags. Each time the
mechanism is triggered, the slider moves back and
forth while dropping a single tag from the magazine.
The device is constructed in a way that for each trig-
ger signal only one tag is released. A software module
triggers the device at adequate locations, which are
determined according to the existing density of
RFIDs, i.e., maintaining a maximal defined density of
RFIDs, and, also, if operating in indoor scenarios,
with respect to the structure of the environment. For
example, narrow passages, such as doorways and
corridors, are likely to be passed by the robot. Hence,

RFIDs are deployed with higher probability within
these kind of environmental structures. The width of
the free space surrounding the robot is computed
from the distance between the obstacles located most
left and most right to the robot, found on a line which
goes through the center of the robot, and which is or-
thogonal to the robot’s orientation.

The antenna of the reader is mounted in parallel
to the ground, allowing detection of RFIDs lying be-
neath the robot. In order to enable the robot to per-
ceive the deployment of a RFID, the deploy device
has been directly mounted above the RFID antenna,
forcing deployed RFIDs to pass through the antenna
directly. We utilized Ario RFID chips from Tagsys
�Figure 1�d�� with a size of 1.4�1.4 cm, 2048 bit
RAM, and a response frequency of 13.56 MHz. For
the reading and writing of these tags, we employed a
Medio S002 reader, likewise from Tagsys, which op-
erates within a range of approximately 30 cm while
consuming less than 200 mA. Figure 1�f� shows the
complete construction consisting of deploy device
and antenna mounted on the Zerg robot.

4. SLIPPAGE-SENSITIVE WHEEL ODOMETRY

In this section, we introduce a method for slippage-
sensitive odometry that has been developed for in-
creasing the reliability of pose tracking on wheeled
robots. The two-dimensional pose of the robot can be
represented by the vector l= �x ,y ,��T. In order to rep-
resent uncertainties, the pose is modeled by a Gauss-
ian distribution N��l ,�l�, where �l is the mean and �l

is a 3�3 covariance matrix �Maybeck, 1979�. Robot
motion is measured by the odometry and given by
the traveled distance d and angle �, likewise modeled
by a Gaussian distribution N�u ,�u�, where u= �d ,��
and �u is a 2�2 covariance matrix expressing odom-
etry errors. The pose at time t can be updated from
input ut as follows:

lt = F�lt−1,ut� = �
xt−1 + cos��t−1�dt

yt−1 + sin��t−1�dt

�t−1 + �t
� , �1�

�lt
= �Fl�lt−1

� Fl
T + �Fu�u � Fu

T, �2�

where
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�u = �d�d
2 0

0 ���
2 � �3�

and �Fl and �Fu are partial matrices of the Jacobian
matrix �Flu.

If the robot operates on varying ground, for ex-
ample, concrete or steel sporadically covered with
newspapers and cardboard, or if it is very likely that
the robot gets stuck on obstacles, odometry errors are
not linearly growing anymore, but are dependent on
the particular situation. Therefore, we designed the
Zerg robot with an overconstrained odometry for the
detection of slippage of the wheels by utilizing four
shaft-encoders, one for each wheel. From these four
encoders, we recorded data while the robot was driv-
ing on varying ground, and labeled the data sets with
the classes C= �slippage ,normal�. These data were
taken to learn a decision tree �Quinlan, 2003� with the
inputs I= ��vLeft ,�vRight ,�vFront ,�vRear�, representing
the velocity differences of the four wheels, respec-
tively. Figure 2 depicts the slippage detection from
velocity differences by the classifier.

Given the detection of slippage, the traveled dis-
tance d is computed from the minimum wheel veloc-
ity, e.g., vt=min�vLeftFront ,vRightFront ,vLeftRear ,vRightRear�,
and the robot’s pose is updated according to Eq. �3�,

however, with �dslip

2 , within covariance matrix �u, in
order to increase uncertainty in translation. Note that
the rotation update does not need to be modified
since the traveled angle � is measured by the IMU,
which is not affected by wheel slippage. The values
for �d

2 and �dslip

2 have been determined experimentally.
During extensive runs with slippage events, we re-
corded the true traveled distance, determined with
scan matching, and the distance estimated by the
odometry. The data set was labeled by the slippage
detection and then utilized for computing the root
mean square �rms� error for determining the vari-
ances �d

2 and �dslip

2 . We finally determined �d

=0.816 cm/m and �dslip
=24.72 cm/m. As we will

show in Section 7, the improved odometry reduces
the error significantly, while maintaining appropriate
covariance bounds.

5. RFID TECHNOLOGY-BASED SLAM

In this section we introduce a method for globally op-
timizing robot trajectories based on RFID observa-
tions �Kleiner et al., 2006�. This method requires as in-
put the noisy odometry trajectory, and the set of
RFIDs that have been observed on this trajectory. The

Figure 2. Slip detection on a 4WD robot: each line in the upper graph corresponds to the velocity measurement of one
of the four wheels by shaft encoders. The black arrows indicate the true situation, e.g., driving forward, slippage, etc., and
the lower graph depicts the automatic slip detection by the decision tree classifier, given the velocities as input.

728 • Journal of Field Robotics—2007

Journal of Field Robotics DOI 10.1002/rob



uncorrected trajectory can be generated, for example,
from slippage-sensitive pose tracking, as described in
Section 4.

RFID tags have a world-wide unique encoded
number, which significantly simplifies the data asso-
ciation problem in SLAM. When utilizing RFID tags,
data association can reliably be achieved even if land-
marks are only sparsely distributed in the environ-
ment. Therefore, it is possible to track the noisy robot
pose over comparably large distances without land-
mark observation. RFIDs can be placed manually into
the environment or actively distributed by the robots,
e.g., by the deploy device described in Section 3.

The basic idea of the proposed approach is to
compute local displacements between RFIDs by
Kalman-based dead reckoning �see Section 4�. From
the correspondences of observed RFID tags and the
estimated displacements, a globally consistent map is
calculated by minimizing the Mahalanobis distance
�Lu & Milios, 1997�. The optimization method can be
illustrated by considering the analogy to a spring-
mass system. Consider the locations of RFIDs as
masses and the measured distances between them as
springs, whereas the uncertainty of a measurement
corresponds to the hardness of the spring. Then, find-
ing a globally consistent map is equivalent to finding
an arrangement of these masses that requires mini-
mal energy. The introduced method has the following
advantages: On the one hand, optimized RFID loca-
tions are globally consistent given the estimated dis-
placements between them. On the other hand, utiliz-
ing RFIDs as constraint points rather than odometry
poses enables efficient and robust route graph opti-
mization since the number of elements in the joint
state vector is drastically reduced.

5.1. RFID Graph Optimization

The proposed method successively builds a graph
G= �V ,E� consisting of vertices V and edges E,
where each vertex represents an RFID tag, and each

edge �Vi ,Vj��E represents a measurement d̂ij of the
relative displacement ��x ,�y ,���T with covariance
matrix ���x,�y,��� between the two RFID tags associ-
ated with the two vertices Vi and Vj, respectively.
The relative displacement between two tags is esti-
mated by a Kalman filter, integrating data from
slippage-sensitive wheel odometry and the IMU
�Section 4�. If the robot passes a tag, the Kalman fil-

ter is reset in order to estimate the relative distance d̂ij

to the subsequent tag on the robot’s trajectory.
We denote the true pose vectors of n+1 RFID

nodes, with x0 ,x1 , . . . ,xn, and the function calculat-
ing the true distance between a pair of nodes �xi ,xj�
as measurement function dij. The noisy measure-
ment of the distance between two nodes �xi ,xj� is

denoted by d̂ij=dij+�dij. We assume that the error
�dij is normally distributed and thus can be modeled
by a Gaussian distribution with zero mean and co-
variance matrix �ij. Loops on the trajectory are de-
tected if the same RFID has been observed twice. A
detected loop is modeled by a pseudo edge between
the same RFID node, which will be described further
in Section 5.3.

Our goal is to find the true locations of the xij

given the set of measurements d̂ij and covariance
matrices �ij. This can be achieved with the maxi-
mum likelihood concept by minimizing the follow-
ing Mahalanobis distance:

x = arg min
x

	
i,j

�dij − d̂ij�
T�ij

−1�dij − d̂ij� , �4�

where x denotes the concatenation of poses
x0 ,x1 , . . . ,xn. Moreover, we consider the graph as
fully connected, and if there does not exist a mea-
surement between two nodes, the inverse covariance
matrix �ij

−1 is set to zero. If the robot’s pose is mod-
eled without orientation �, e.g., because measure-
ments from the IMU are sufficiently accurate, the op-
timization problem can be solved linearly by
inserting dij=xi−xj in Eq. �4�:

x = arg min
x

	
i,j

�xi − xj − d̂ij�
T�ij

−1�xi − xj − d̂ij� . �5�

Since measurements are taken relatively, we assume
without loss of generality that x0=0 and x1 , . . . ,xn are
relative to x0. In order to solve the minimization
problem analytically, Eq. �5� can be rewritten in ma-
trix form:

x = arg min
x

�d̂ − hx�T�−1�d̂ − hx� , �6�

where hx denotes the measurement function in ma-
trix form with h as an index function whose ele-
ments are 
1,−1,0� and x as the concatenation of

pose vectors. Furthermore, d̂ denotes the concatena-
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tion of observations d̂ij, and �−1 denotes the inverse

covariance matrix of d̂ij, consisting of the inverse
submatrices �ij. Finally, the minimization problem
can be solved by

x = �hT�−1
h�−1

h
T�−1

d̂ �7�

and covariance of x can be calculated by

cx = �hT�−1
h�−1. �8�

Equation �7� can be solved in O�n3� if the covariances
�ij are invertible. In practice, we assume that mea-
surements are independent from each other, conse-
quently the �ij are given as diagonal matrices. More-
over, since many nodes in the graph are
unconnected, most �ij

−1 are set to zero. Therefore, �

is a sparse matrix and can in general be inverted
efficiently. In order to utilize Eq. �7� for the correc-
tion of the orientation angle �, measurement equa-
tion dij has to be linearized by a Taylor expansion
�Lu & Milios, 1997�. Since the linearization leads to
errors, the procedure has to be applied iteratively.
We noticed during our practical experiments that
five to six iterations are sufficient.

5.2. Trajectory Interpolation

The corrected RFID network can be used as a basis
for correcting the odometry trajectory. This is carried
out by utilizing the corrected RFID locations as con-
straint points for the correction of the trajectory.
Since these constraint points are already globally
consistent according to the input data, it is not nec-
essary to optimize the trajectory, augmented with
these constraints, globally again. It turns out to be
much more efficient to perform a local interpolation
of the trajectory poses between the corrected RFIDs.

Given a sequence of corrected RFID locations,
denoted by r1:t, and an uncorrected trajectory, de-
noted by x1:t, the corrected trajectory, denoted by y1:t,
is computed by interpolating each pose xk�x1:t be-
tween its next preceding and succeeding RFID loca-
tion, respectively. In order to correct each pose xk of
the trajectory, we first determine the corrected loca-
tions ri and rj of the two closest RFIDs before and
after the pose, whereas j�k� i, and the uncorrected
poses xi and xj at corresponding time, respectively.
Finally, the corrected pose is computed by

yk = xk −
�w1�xi − ri� + w2�xj − rj��

w1 + w2

, �9�

whereas weights w1 and w2 are computed by w1

= �rj−xk� and w2= �ri−xk�. Experimental results in Sec-
tion 7 will show that this method together with the
RFID graph optimization allows us to efficiently and
robustly correct large trajectories.

5.3. RFID Observation Model

Each time a loop has been detected on the trajectory,
i.e., a RFID has been observed twice, a pseudo edge is
added to the corresponding RFID node. We model
this edge by accounting for the spatial expansion of
the utilized RFID antenna. During our experiments,
we utilized an antenna with a rectangular expansion
mounted parallel to the ground, allowing the suc-
cessful detection of RFID tags lying within this ex-
pansion beneath the robot. Unfortunately, it is not
possible to tell the exact position of the detected
RFID within this expansion. Hence, it is assumed
that, in the average case, RFIDs are detected within
the antenna’s center, and that RFID detections can
occur at arbitrary orientations of the robot. There-
fore, we model the distance between identical tags

by d̂ii= �0,0 ,��� and covariance matrix �ii, whereas
�� denotes the angle difference between the two
pose estimates at the same RFID. The covariance ma-
trix �ii is modeled in the following way:

�ii = �
�ant

2 0 0

0 �ant
2 0

0 0 ���
2 � , �10�

whereas �ant
2 reflects the size of the antenna, and ���

2

the uncertainty of the angular difference, which has
to be linearized. In our implementation, we have
chosen, according to the size of the antenna, �ant

=15 cm.

6. BUILDING ELEVATION MAPS IN REAL-TIME

In this section we describe a Kalman-filter-based ap-
proach for building elevation maps by integrating
range measurements from a downwards tilted LRF,
whereas the map is incrementally build in real-time
while the mobile robot explores an uneven surface.
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The motivation of the presented approach is to pro-
vide a basis for enabling the robot to continuously
plan and execute skills on rough terrain. Therefore,
the method has to be computational efficient and ca-
pable of building elevation maps that are sufficiently
accurate for structure classification and behavior
planning, as we have already demonstrated within
another work �Dornhege & Kleiner, 2007�. We argue
that building globally consistent elevation maps, e.g.,
by loop closure, is computationally hard within large-
scale environments since it requires us to maintain
the whole map in memory. Therefore, the goal of the
proposed method is to build maps that are locally
consistent within the vicinity of the robot for continu-
ous planning and navigation. In a further processing
step, e.g., offline, a globally consistent map can be
generated by merging locally consistent map patches
according to a globally consistent route graph, as, for
example, computed by the RFID-SLAM method in-
troduced in Section 5. Nevertheless, in the following
we will denote poses as global in order to distinguish
between the local and global coordinate frames of the
robot.

An elevation map is represented by a two-
dimensional array storing for each global location
�xg ,yg� a height value h with variance �h

2. In order to
determine the height for each location, endpoints
from the LRF readings are transformed from robot-
relative distance measurements to global locations,
with respect to the robot’s global pose, and the pitch
�tilt� angle of the LRF �see Figure 3�. This section is
structured as follows. In Section 6.1 we describe the
update of single cell values relative to the location of
the robot; in Section 6.2 we show the filtering of the
map with a convolution kernel; and in Section 6.3 we
describe an algorithm for the estimation of the robot’s
3D pose from dead reckoning and map observations.

6.1. Single Cell Update from Sensor Readings

Our goal is to determine the height estimate for a
single cell of the elevation map with a Kalman filter

�Maybeck, 1979�, given all height observations of
this cell in the past. We model height observations zt

by a Gaussian distribution N�zt ,�zt

2 � as well as the

current estimate N�ĥ�t� ,�
ĥ�t�
2 � of each height value.

Note that the height of cells cannot be observed di-
rectly, and thus has to be computed from the mea-
sured distance d and LRF pitch angle �. Measure-
ments from the LRF are mainly noisy due to two
error sources. First, the returned distance depends
on the reflection property of the material, ranging
from very good reflections, e.g., white sheet of pa-
per, to nearly no reflections, e.g., black sheet of pa-
per. Second, in our specific setting, the robot ac-
quires scans while navigating on rough terrain. This
will lead to strong vibrations on the LRF, causing an
oscillation of the laser around the servo-controlled
pitch angle. Consequently, we represent measure-
ments from the LRF by two normal distributions,
one for the measured distance N��d ,�d� and one for
the pitch angle N��� ,���.

The measurements from the LRF are trans-
formed to robot-relative locations �xr ,yr�. First, we
compute the relative distance dx and the height z of
each measurement according to the following equa-
tion �see Figure 3�:

�dx

z
� = Fd��d

�
� = � d cos �

hR − d sin �
� , �11�

where hR denotes the height of the LRF mounted on
the robot. Second, from distance dx and the horizon-
tal angle 	 of the laser beam, the relative cell location
�xr ,yr� of each cell can be calculated by

xr = dx cos 	 , �12�

yr = dx sin 	 �13�

Equation �11� can be utilized for computing the nor-
mal distributed distance N��dx

,�dx
� and height

N��z ,�z�. However, since this transformation is non-
linear, Fd� has to be linearized by a Taylor expansion
at �dx

, �z:

��dx

�z

� = Fd��d

�
� , �14�

Figure 3. Transforming range measurements to height
values.
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�dxz = �Fd��d� � Fd�
T , �15�

with

�Fd� = � cos � − d sin �

− sin � − d cos �
� �16�

and

�d� = ��d
2 0

0 ��
2 � . �17�

Then, the height estimate ĥ can be updated from ob-
servation zt, taken at time t, with the following Kal-
man filter:

ĥ�t� =
1

�zt

2 + �
ĥ�t−1�
2 ��zt

2 ĥ�t − 1� + �
ĥ�t−1�
2

zt� , �18�

�
ĥ�t�
2

=
1

1

�
ĥ�t−1�
2 +

1

�zt

2

. �19�

Equation �18� cannot be applied if the tilted LRF
scans vertical structures since they lead to different
height measurements for the same map location. For
example, close to a wall the robot measures the up-
per part, far away from the wall the robot measures
the lower part. We restrict the application of the Kal-
man filter by the Mahalanobis distance. If the Mahal-
anobis distance between the estimate and the new
observation is below a threshold c, the observation is
considered to be within the same height. We use c
=1, which has the effect that all observations with a
distance to the estimate that is below the standard
deviation, �ĥ, are merged. Furthermore, we are
mainly interested in the maximum height of a cell,
since this is exactly what elevation maps represent.
These constraints lead to the following update rules
for cell height values:

ĥ�t� =
zt if zt 
 ĥ�t� ∧ dM�zt, ĥ�t�� 
 c ,

ĥ�t − 1� if zt � ĥ�t� ∧ dM�zt, ĥ�t�� 
 c ,

1

�zt

2 + �
ĥ�t−1�
2 ��zt

2 ĥ�t − 1� + �
ĥ�t−1�
2

zt� else,

�20�

and variance �
ĥ�t�
2

with

�
ĥ�t�
2

=
�zt

2
if zt 
 ĥ�t� ∧ dM�zt, ĥ�t�� 
 c ,

�
ĥ�t−1�
2

if zt � ĥ�t� ∧ dM�zt, ĥ�t�� 
 c ,

1

1

�
ĥ�t−1�
2 +

1

�zt

2
else,

�21�

where dM denotes the Mahalanobis distance, defined
by

dM�zt, ĥ�t�� =��zt − ĥ�t��

�
ĥ�t�
2

2. �22�

The cell update introduced so far assumes perfect
information on the global pose of the robot. How-
ever, since we integrate measurements from the ro-
bot while moving in the environment in real-time
without loop-closure,1 we have to account for posi-
tioning errors from pose tracking that do accumulate

1Note that global localization errors can be reduced by loop-
closure, i.e., by recomputing the elevation map based on the cor-
rected trajectory, which, however, can usually not be applied in
real-time.
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over time. Continuous Kalman updates without re-
garding pose uncertainty due to robot motion in be-
tween update steps will successively reduce the
cell’s variance, leading to variance estimates that
highly underestimate the actual uncertainty about a
cell’s height. Thus we increase the variance in the
Kalman propagation step based on the robot’s mo-
tion to reflect the true uncertainty in the variance
estimate. The height itself is not changed as the old
estimate still gives the best possible estimation for a
cell’s height. We assume that the positioning error
grows linearly with the accumulated distance and
angle traveled. Hence, observations taken in the past
lose significance with the distance the robot traveled
after they were made:

ĥ�t� = ĥ�k� , �23�

�
ĥ�t�
2

= �
k̂�t�
2

+ �d
2d�t − k� + ��

2��t − k� , �24�

where t denotes the current time, k denotes the time
of the last height measurement at the same location,
d�t−k� and ��t−k� denote the traveled distance and
angle within the time interval t−k, and �d

2 ,��
2 are

variances that have to be determined experimentally
according to the utilized pose tracker. Since it would
be computationally expensive to update the vari-
ances of all grid cells each time the robot moves,
updates according to Eq. �24� are only carried out on
variances before they are utilized for a Kalman up-
date with a new observation. The traveled distances
can efficiently be generated by maintaining the inte-
gral functions Id�t� and I��t� that provided the accu-
mulated distance and angle for each discrete time
step t, respectively. Then, for example, d�k− t� can be
calculated by Id�k�− Id�t�. The integrals are repre-
sented by a table, indexed by time t with a fixed
discretization, e.g., �t=1s.

6.2. Map Filtering with a Convolution Kernel

The limited resolution of the LRF occasionally leads
to missing data in the elevation map, e.g., conspicu-
ous by surface holes. Furthermore, the effect of
“mixed pixels,” which frequently happen if the laser
beam hits the edges of objects, whereas the returned
distance measure is a mixture of the distance to the
object and the distance to the background, might

lead to phantom peaks within the elevation map
�Ye & Borenstein, 2003�. Therefore, the successively
integrated elevation map has to be filtered.

In computer vision, filtering with a convolution
kernel is implemented by the convolution of an in-
put image with a convolution kernel in the spatial
domain, i.e., each pixel in the filtered image is re-
placed by the weighted sum of the pixels in the filter
window. The effect is that noise is suppressed and
the edges in the image are blurred at the same time.
We apply the same technique on the elevation map
in order to reduce the errors described above. Hence,
we define a convolution kernel of the size of 3�3
cells, whereas each value is weighted by its certainty
and distance to the center of the kernel. Let h�x
+ i ,y+ j� denote a height value relative to the kernel
center at map location �x ,y�, with i , j� 
−1,0 ,1�.
Then, the weight for each value is calculated as fol-
lows:

wi,j =
1

�h�x+i,y+j�
2 if �i� + �j� = 0,

1

2�h�x+i,y+j�
2 if �i� + �j� = 1,

1

4�h�x+i,y+j�
2 if �i� + �j� = 2.

�25�

Consequently, the filtered elevation map hf can be
calculated by

hf�x,y� =
1

C
	
i,j

h�x + i,y + j�wi,j, �26�

whereas C=	wi,j.

6.3. 3D Pose Estimation

So far we have shown an incremental procedure for
updating elevation map cells relative to the coordi-
nate frame of the robot. In order to update map cells
globally, the full 3D pose of the robot has to be
considered, which is described by the vector l
= �x ,y ,h ,� ,� ,�T, where � denotes the yaw angle, �
denotes the pitch angle, and  denotes the roll angle.
We assume that IMU measurements of the three ori-
entation angles are given with known variance. The
position �x ,y ,h� is estimated by dead reckoning,
which is based on the pitch angle and traveled dis-
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tance measured by visual odometry and scan match-
ing. The scan matching algorithm, which originates
from previous work �Kleiner et al., 2005�, can reli-
ably be applied on robots operating in the plane.
However, when traversing three-dimensional ter-
rain, it is very likely that the two-dimensional refer-
ence frame changes and thus scan matching leads to
inaccurate distance estimates. To obtain correct
poses on rough terrain, we employ visual odometry
for estimating the distances traversed by the robot.
The method detects robot motion based on a voting
procedure applied on tracked features generated
from camera images and estimates the traveled dis-
tance � from the detected motion and the robot’s
velocity. A detailed description of the visual odom-
etry is available in �Dornhege & Kleiner, 2006�.

Since scan matching and visual odometry are es-
timating the relative displacement � with respect to
the 3D surface, � has to be projected onto the plane,
as depicted by Figure 4. Given the input u

= �� ,� ,��T, represented by the Gaussian distribution

N��u ,�u�, the projected position l= �xp ,yp ,hp�T, repre-

sented by the Gaussian distribution N��l ,�l�, can be

calculated as follows:

�
xt

p

yt
p

ht
p� = Flu�

xt−1
p

yt−1
p

ht−1

�

�

�

� = �
xt−1

p + � cos � cos �

yt−1
p + � sin � cos �

ht−1
p + � sin �

� ,

�27�

�lu = �Flu�lu � Flu
T , �28�

�lu = �Fl�l � Fl
T + �Fu�u � Fu

T, �29�

where

�Fl = �
1 0 0

0 1 0

0 0 1
� , �30�

�Fu = �
− � cos � sin � − � sin � cos � cos � cos �

− � sin � sin � � cos � cos � sin � cos �

� cos � 0 sin �
� , �31�

�u = �
��

2 0 0

0 ��
2 0

0 0 ��
2� , �32� �l = �

�xp
2

�xpyp
2

�xphp
2

�xpyp
2

�yp
2

�yphp
2

�xphp
2

�yphp
2

�hp
2 � . �33�

Figure 4. Dead reckoning of the projected Cartesian po-
sition �xp ,yp ,hp� from yaw angle �, pitch angle �, and trav-
eled distance �.
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Equation �27� allows us to predict the current height
of the robot. However, due to the accumulation of
errors, the accuracy of the height estimate will de-
crease continuously. Therefore, it is necessary to up-
date this estimate from direct observation. For this

purpose, we utilize the height estimate �ĥ�t� ,�
ĥ�t�
2 � at

the robot’s position from Eq. �20� and �21�, respec-
tively. Then, the new estimate can be calculated by

Kalman fusing �ĥ�t� ,�
ĥ�t�
2 � with the predicted height

estimate �hp ,�hp
2 � analogous to Eq. �18�.

The global location �xg ,yg� of a measurement,
i.e., the elevation map cell for which the height esti-

mate ĥ�t� will be updated, can be calculated straight-
forward by

xg = xr + xp, �34�

yg = yr + yp. �35�

7. EXPERIMENTAL RESULTS

In this section we provide results from both simu-
lated and real-robot experiments. All real-robot ex-
periments have been carried out on the robot plat-
forms described in Section 3 within outdoor
scenarios, and testing arenas that are equal or similar
to those proposed by NIST. In Section 7.1 results from
wheel odometry-based pose tracking are presented.
In Section 7.2 we provide results from indoor and
outdoor RFID-SLAM experiments, and in Section 7.3
results from elevation mapping during the Rescue
Robotics Camp 2006 in Rome are presented.

7.1. Results from Wheel Odometry-Based Pose

Tracking

The slippage detection method has been extensively
evaluated on the Zerg robot. During this experiment,
the robot performed different maneuvers, such as
moving straight, turning, and accelerating while
driving first on normal and then on slippery ground.
Afterwards, each situation has been manually la-
beled with one of the six classes slip-straight, slip-
turn, slip-accelerate, noslip-straight, noslip-turn, and
noslip-accelerate. Table I summarizes the results of the
classification, whereas bold numbers indicate the

correct classification, i.e. true-positives. As can be
seen, the method is able to reliably detect slippage
even while the robot is accelerating or performing
turns.

In order to evaluate the slippage detection-based
odometry improvement, we conducted experiments
for the comparison of both improved and conven-
tional odometry and their covariance bounds. Figure
5 shows the performance of slippage sensitive
odometry compared to conventional odometry. As
can be seen from Figure 5�a�, the error of the conven-
tional odometry increases drastically during slip-
page �taking place between 10 and 20 m�. Moreover,
the covariance bound significantly underestimates
the error. However, within the same situation, slip-
page sensitive odometry is capable of reducing the
error �Figure 5�b��, while providing valid covariance
bounds.

The approach of slipping detection has been uti-
lized during the RoboCup Rescue competition. Fig-
ure 6 depicts the Zerg robot during the final of the
“Best in Class Autonomy” competition, held in the
NIST arena for urban search and rescue �USAR� �Ja-
coff, Messina & Evans, 2001� during RoboCup 2005.
In this scenario robots had to explore an unknown
area within 20 min autonomously, to detect all vic-
tims, and finally to deliver a map sufficient for hu-
man teams to locate and rescue the victims. Condi-
tions for exploration and SLAM were intentionally
made difficult. For example, the occurrence of wheel
slip was likely due to newspapers and cardboards
covering the ground, which was partially made of
steel and concrete. Stone bricks outside the robot’s
FOV caused the robot to get stuck, and walls made

Table I. Classification error of the slippage detection un-
der different maneuvers of the robot. Bold numbers indi-
cate the correct classifications, i.e., true-positives.

True
situation Classification Slip No Slip

Straight No slip 10 �0.5%� 2051 „99.5% …

Slip 2363 „90.1% … 236 �8.9%�

Turn No slip 28 �0.9%� 3226 „99.1% …

Slip 2684 „96.4% … 102 �3.6%�

�De-�
Acceleration

No slip 75 �14.9%� 426 „85.1% …

Slip 126 „98.5% … 2 �1.5%�
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of glass caused the laser range finder to frequently

return far readings. We applied computer vision

techniques on images generated by a thermo �IR�
camera in order to estimate the relative locations of

victims, if they were detected within the camera’s

FOV. As shown in Figure 6, the system was able to

cope with these difficulties and also to build a map

reliably, augmented with victim locations detected

by the robot. Finally, the system won the autonomy

competition in 2005.

7.2. Results from RFID-Technology-Based SLAM

The proposed method for RFID-technology-based
SLAM has been tested extensively with data gener-
ated by a simulator �Kleiner & Buccheim, 2003� as
well as on the Zerg robot platform. The simulated
robot explored three different building maps, a small
map, normal map, and large map of the sizes 263, 589,
and 1240 m2, respectively, while automatically dis-
tributing RFID tags in the environment. Figures
7�a�–7�c� show the averaged results from 100 execu-
tions of RFID-SLAM on the three maps at five differ-
ent levels of odometry noise. We measured a com-
putation time of 0.42 s on the small map, 2.19 s for
the normal map, and 13.87 s for the large map, with
a Pentium4 2.4 GHz. The small map after and before
the correction is shown in Figures 8�b� and 8�d�. For
this result, the robot distributed approximately 50
RFID tags.

In order to evaluate the performance of RFID-
SLAM in a real environment, we collected data from
a robot autonomously exploring a cellar for 20 min
while detecting RFID tags on the ground. The robot
continuously tracked its pose as described in Section
4. As depicted by Figures 8�a� and 8�c�, the nonlinear
method successfully corrected the angular error
based on RFID data association. The correction was
based on approximately 20 RFID tags. Additionally,
we conducted an outdoor experiment with a Zerg
robot driving with an average speed of 1 m/s on a
parking lot. The odometry has been generated from
the wheel encoders �translation� and IMU �rotation�.
Furthermore, the robot detected RFIDs with the an-

Figure 5. Conventional odometry �a� compared to slip-
page sensitive odometry �b� during the event of slippage
�between 10 and 20 m�: In contrast to conventional odom-
etry, improved odometry reduces the position error �aster-
isks� and provides valid covariance bounds �crosses� dur-
ing slippage.

Figure 6. Zerg robot during the final of the “Best in Class
Autonomy” competition at RoboCupRescue 2005 in
Osaka: �a� slipping on newspapers and �b� the autono-
mously generated map. Crosses mark locations of victims
that have been found by the robot.
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tenna described in Section 5. We obtained position
ground truth from both differential GPS �DGPS� and
manual measurements, whereas faulty GPS posi-
tions, e.g., due to multi-path propagations close to
buildings, have been corrected from the manual
measurements. Figure 9 shows the RFID locations
estimated by the odometry �red�, the ground truth
�blue�, and corrected by RFID-SLAM �green�. The

corrected trajectory has a mean Cartesian error of
1.8±3.1 m, compared to the uncorrected trajectory,
which has a mean Cartesian error of 8.3±8.5 m.

Furthermore, we evaluated the influence of the
number of detected RFIDs with respect to the stabil-
ity of the SLAM approach. Figures 10�a�–10�c� show
the Cartesian error, the cross-track error �XTE�, and
the along-track error �ATE� at decreasing number of
RFIDs, respectively. As can be seen, the route graph
optimization consistently improves the accuracy of
the trajectory, even with a comparably small number
of RFIDs, e.g. one RFID each 500 m. The correction
of 18 RFIDs took 2.1 s on a PentiumM 1.7 MHz, and
the interpolation of the odometry trajectory took
0.2 s. Figure 10�a� also indicates that the accuracy
only slightly improves with increasing number of
RFIDs, e.g., the average Cartesian positioning error
with 18 RFIDs is 1.2 m, whereas the error with 2
RFIDs is 2.4 m. This is due to the fact that during
this experiment the rectangular loop has been suc-
cessfully closed with any number of RFIDs, leading
to a near-optimal improvement of the track with re-
spect to the sensor model of the utilized RFID an-
tenna. Note that within arbitrary environments, e.g.,
nonrectangular shaped, there can be indeed a larger
variance of the accuracy given a different number of
RFIDs.

In order to evaluate the scalability of the ap-
proach within large-scale environments, we con-
ducted a second outdoor experiment. During this
experiment, the robot was driving a total distance of
more than 2.5 km with an average speed of
1.58 m/s. Note that this velocity requires human be-
ings to walk comparably fast in order to follow the
robot. Furthermore, the robot was heavily shaking
from fast navigation over uneven ground, such as
road holes, small debris, and grass. Also during this
experiment, pose tracking has been performed from
data of the wheel encoders �translation� and IMU
�rotation�, and position ground truth has been ob-
tained from DGPS. The optimization yielded an av-
erage Cartesian error of 9.3±4.9 m, compared to the
uncorrected trajectory, which has an average Carte-
sian error of 147.1±18.42 m. The correction of 10
RFIDs took 0.3 s on a PentiumM 1.7 MHz, and the
interpolation of the odometry trajectory took 2.4 s.
Figure 11 shows the covariance bounds during EKF-
based dead reckoning of the improved odometry �a�,
and after the global optimization �b�, and Figure 12
shows the trajectory of the odometry �red�, the
ground truth �blue�, and the corrected RFID graph

Figure 7. �a�–�c� Result from applying RFID-SLAM at dif-
ferent levels of odometry noise within a simulated office
environment: �a� The small map �263 m2�, �b� the normal
map �589 m2�, and �c� the large map �1240 m2�.
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�green�. As can be seen, the optimization reduces
successfully the uncertainties of the poses. Note that
for the sake of readability, Figure 11 only shows the
first loop of the performed trajectory.

7.3. Results from Elevation Mapping

Elevation mapping has been evaluated on a Lurker
robot, which is capable of overcoming autono-

mously rough terrain containing ramps and rolls.

The system has been successfully demonstrated dur-

ing the RoboCup Rescue autonomy competition in

2006, where the robot won the first prize. The testing

arena, which was utilized for the experiments pre-

sented in this section, has been installed by NIST

during the Rescue Robotics Camp 2006 with the

same degree of difficulty as presented at Rob-

oCup‘06, i.e., also containing rolls and ramps. Dur-

Figure 8. �a,c,e� Result from RFID-SLAM on a robot driving in a cellar: �a� the noisy map, �c� the corrected map, and �e�
the ground truth created by iterative scan matching. �b,d,f� Result from applying the RFID-SLAM to data generated in the
simulation. �b� The small map with odometry noise, �d� the corrected map, and �f� the ground truth taken directly from
the simulator’s map editor. Note that the cellar’s ground truth map displays unoccupied rooms. The rectangular struc-
tures that can be seen in the upper left room in the constructed maps �a� and �c� originate from crates stored in those
rooms.
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ing all experiments, the robot was equipped with an
IMU sensor, a side camera for visual odometry, and
two LRFs, one for scan matching and one for eleva-
tion mapping. The latter sensor has been tilted
downwards by 35 deg.

Figure 13 depicts the Kalman filter-based pose
estimation of the robot as described in Section 6.3.
For this experiment, conditions have intentionally
been made harder. Map smoothing has been turned
off, which had the effect that missing data, due to a
limited resolution of 2D scans, lead to significant
holes on the surface of the map. Furthermore, we
added a constant error of −2 deg to pitch angle mea-
surements of the IMU. As shown in Figure 13, the
Kalman filter was able to cope with these errors and
finally produced a trajectory close to ground truth
�indicated by the gray surface�.

In order to quantitatively evaluate elevation
mapping performed with visual odometry, we re-
corded the height estimates of the robot while au-
tonomously exploring an area and finally
climbing-up an open ramp. Figure 14 shows the re-
sults of the Kalman-filter-based height estimation
�blue line with crosses� in comparison to the manu-
ally measured ground truth �black line with tri-
angles�. As shown by Figure 14, the Kalman filter
computes continuously an estimate close to ground
truth, which stays consistently within the expected
covariance bounds.

Another experiment has been performed for
evaluating the influence of visual odometry on el-
evation mapping. Figure 15 depicts two elevation
maps generated on the same ramp, one with support
of visual odometry and the other without. The cor-
responding error graphs show that scan matching
cannot correctly reflect the robot’s motion, when the

Figure 9. Result from applying RFID-SLAM outdoors
while driving at 1 m/s on a parking lot. Trajectories are
visualized with GoogleEarth, showing RFID locations es-
timated by the odometry �red�, the ground truth �blue�,
and corrected by RFID-SLAM �green�. Whereas the odom-
etry diverges from the driven rectangle, the corrected tra-
jectory is close to the ground truth.

Figure 10. Result from applying RFID-SLAM outdoors
while driving at 1 m/s for approximately 1 km on a park-
ing lot with a Zerg robot. �a� The Cartesian error, �b� the
cross-track error �XTE�, and �c� the along-track error �ATE�
with respect to the number of utilized RFIDs.
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robot drives on the ramp between 2.75 and 4.75 m.
Usually estimating the robot’s pose based on two-
dimensional scan alignment can be done reliably, but
this is no longer possible when the 2D reference sys-
tem changes. The result is a rapid error growth �Fig-
ure 15�c�� that leads to distortions in the map due to
the incorrect pose assumption. Fusing distance esti-
mates from the visual odometry, which are not influ-
enced by this effect, into the scan matching’s pose
clearly reduces the error. Mapping based on scan
matching only yields a compressed map since in this
environment 2D laser scans do not provide sufficient
information on the motion of the robot, whereas

generating a map based on visual odometry reveals
the true size of the ramp, which has been verified by
measuring the ramp’s dimensions manually.

Figures 16 and 17 show the final result from ap-
plying the proposed elevation mapper during the
Rescue Robotics camp. Figure 16�a� depicts an over-
view on the arena, and Figure 16�b� shows the cal-
culated height values, whereas the height of each

Figure 11. Result from applying RFID-SLAM outdoors
while driving at 1.58 m/s for more than 2.5 km with a
Zerg robot. Covariance bounds before �a� and after the cor-
rection �b� of the outdoor experiment.

Figure 12. Result from applying RFID-SLAM outdoors
while driving at 1.58 m/s for more than 2.5 km with a
Zerg robot. Trajectories are visualized by GoogleEarth,
showing the odometry trajectory �red�, the ground truth
trajectory �blue�, and the corrected RFID trajectory �green�.
Whereas the odometry strongly diverges from the driven
path, the corrected trajectory is close to the ground truth.

Figure 13. Evaluation of the efficiency of the Kalman fil-
ter for estimating the robot’s height. �a� Height values pre-
dicted from the IMU �lower line in red� are merged with
height values taken from the generated map �noncontinu-
ous line in blue�. Errors from inaccuracies in the map, as
well as a simulated continuous drift error of the IMU sen-
sor are successfully reduced �middle line in green�. �b�
Merged trajectory compared to ground truth �gray ramp�.
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cell is indicated by a gray value: the darker the cell,
the bigger the elevation. Figure 16�c� depicts the
variance of each height cell, going from pink �high
variance� to yellow �low variance�, whereas the cur-
rent position of the robot is indicated by a blue circle
in the lower left corner. The further away cell up-
dates are on the robot’s trajectory, the lower their
variance �see Section 6.1�. Figure 17 shows a 3D vi-
sualization of the generated elevation map. Struc-
tures, such as the long ramp at the end of the robot’s
trajectory, and the stairs can clearly be identified. We
measured on an AMD64X2 3800+ a total integration
time �without map smoothing� of 1.88±0.47 ms for a
scan measurement with 683 beams, including
0.09±0.01 ms for the 3D pose estimation. Map
smoothing has generally the time complexity of
O�N2M�, where N is the number of rows and col-
umns of the map and M is the size of the kernel. We
measured on the same architecture 34.79±14.84 ms
for smoothing a map with N=300 and M=3. How-
ever, this can be improved significantly during run-
time by only smoothing recently modified map cells
and their immediate neighbors within distance M.

8. CONCLUSION

We proposed solutions to the problems of slippage
sensitive pose tracking on wheeled platforms, the

building of globally consistent maps based on a net-
work of RFID tags, and the building of elevation
maps from readings of a tilted LRF. While these meth-
ods have been particularly designed for two specific
application scenarios, e.g., the rapid mapping of a
large-scale environment by wheeled robots, and the
mapping of rough terrain by tracked robots, they ba-
sically serve as building blocks for tailoring systems
according to specific needs.

The quantitative evaluation of indoor and out-
door experiments, partially conducted within testing
arenas proposed by NIST for Urban Search and Res-
cue �USAR�, showed that the proposed methods are
deployable in real-time, while leading to a robust
mapping of the environment. We believe that eleva-
tion maps provide the right trade-off between com-
putational complexity and expressiveness. We dem-
onstrated that they can be build reliably in real-time
while the robot is in continuous motion, even on
rough terrain under consideration of the full 3D pose
of the robot. This has partially been achieved by ap-
plying the visual odometry method, which signifi-
cantly improved the accuracy of scan matching. As
we showed within another work, resulting elevation
maps can be utilized for structure classification and
the planning of skill execution �Dornhege & Kleiner,
2007�.

We showed that RFID-based SLAM allows the ef-
ficient generation of globally consistent maps, even if
the density of landmarks is comparably low. For ex-
ample, the method corrected an outdoor large-scale
map within a few seconds from odometry data and
RFID perceptions only. This has been partially
achieved due to reliable pose tracking based on slip-
page sensitive odometry, but also due to the data as-
sociation solved by RFIDs. Solving data association
by RFIDs allows us to speed-up the route graph cor-
rections by decomposing the problem into optimiza-
tion and interpolation. Besides, RFID-SLAM offers
many advantages, particularly within the disaster re-
sponse scenario. One practical advantage is that hu-
mans can be integrated easily into the search,
whereas the exchange of maps can be carried out via
the memory of RFIDs, hence without need for direct
communication �Kleiner & Sun, 2007�. Furthermore,
they can communicate with RFIDs by a PDA and
leave behind information related to the search or to
victims. The idea of labeling locations with informa-
tion that is important to the rescue task has already

Figure 14. Quantitative evaluation of the Kalman-filtered
height estimation. During this experiment the robot
started exploration on the floor and then climbed a ramp
at around 220 s. The graph shows the ground truth �black
line with triangles� in comparison to the height estimation
by the Kalman filter �blue line with crosses�.
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been applied in practice. During the disaster relief in
New Orleans in 2005, rescue task forces marked
buildings with information concerning, for example,
hazardous materials or victims inside the buildings
�FEMA, 2003�. The RFID-based marking of locations
is a straightforward extension of this concept.

Within former work, we have already shown the
applicability of our method for localizing pedestrians
equipped with Personal Dead Reckoning Modules
�PDRMs� �Kleiner & Sun, 2007�. In future work, we
will consider the joint mapping of places by humans
and robots, exchanging map data via the memory of

RFIDs. Furthermore, we will evaluate RFID technol-

ogy operating in the UHF domain, allowing reading

and writing within distances of meters, and extend

our approach accordingly. As we have already dem-

onstrated in previous work �Ziparo et al., 2007�, the

combination of a RFID route graph representation

with local mapping opens the door to efficient large

scale exploration and mapping. In future work, we

will deal with the problem of building globally con-

sistent elevation maps by utilizing RFID technology-

based route graph optimization for loop-closure.

Figure 15. Comparing elevation mapping based on scan matching only �a� and scan matching combined with visual
odometry �b�. The scan matching’s small error �c� grows rapidly out of its usual error bound, when the robot drives on the
ramp, while the visual odometry �d� is not influenced by this effect. Scan matching without visual odometry support does
not correctly reflect the true length of the ramp, because insufficient motion evidence causes the map to be partially
compressed.
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