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Abstract

We describe a real-time, low-cost system to localize a
mobile robot in outdoor environments. Our system relies
on stereo vision to robustly estimate frame-to-frame motion
in real time (also known as visual odometry). The motion
estimation problem is formulated efficiently in the disparity
space and results in accurate and robust estimates of the
motion even for a small-baseline configuration. Our system
uses inertial measurements to fill in motion estimates when
visual odometry fails. This incremental motion is then fused
with a low-cost GPS sensor using a Kalman Filter to pre-
vent long-term drifts. Experimental results are presented
for outdoor localization in moderately sized environments
(≥ 100 meters)

1 Introduction

The ability of a mobile robot to localize itself is critical
to its autonomous operation and navigation. A robot that
navigates using maps must be able to accurately localize
itself. Consequently, there has been considerable effort on
the problem of mobile robot localization and mapping. This
problem is known as simultaneous localization and map-
ping (SLAM) and there is a vast amount of literature on this
topic (see e.g., [21] for a comprehensive survey). SLAM
has been especially succesful in indoor structured environ-
ments [9, 7, 20].

On the other hand, localization and mapping for outdoor
environments is still an open research problem. For out-
door environments, accurate localization can be obtained
by using differential GPS and/or high-quality, expensive
inertial navigation systems. However, high cost and size
of these systems limit their applicability to smaller robotic
platforms. SLAM can be performed using different types
of sensors such as sonar [20], laser range finders [22] and

vision [18, 4, 19]. Sonar is fast and cheap but usually very
crude. Laser range scanners are accurate but slow and bulky.
Vision systems are light-weight, compact, relatively inex-
pensive and can provide high resolution images for local-
ization as well as mapping at a fairly high frequency.

Our goal for this project was to develop an inexpensive
localization system using stereo vision and complement it
with a low-cost GPS sensor and a suite of inexpensive in-
ertial navigation sensors. The stereo vision system is de-
signed so as to provide obstacle detection capabilities over
a few meters in front of the camera in addition to providing
localization capability.

Figure 1 shows our robot setup. The main perception
sensors are a pair of Bumblebee stereo cameras from Point
Grey Research. These stereo cameras are located on the
sensor mast of the robot looking outward. The field-of-
view of each camera is about 100 degrees, and the base-
line is 12 cm; the height above ground is about 0.5 m, and
the cameras are pointed forward at a slight angle. This ar-
rangement presents a challenging situation: wide FOV and
short baseline make distance errors large, and a small offset
from the ground plane makes it difficult to track points over
longer distances. We have developed a robust visual odom-
etry solution that functions well under these conditions; we
describe it in some detail in section 2.

A pair of wheel encoders and an Xsens IMU are used
to complement the visual pose system. The IMU is located
within the sensor mast and the wheel encoders are located
on each of the front differential drive wheels. A Garmin
GPS sensor is located on top of the sensor mast. This is a
relatively cheap GPS sensor (< 200 $) and typical 2D er-
ror is 3-5 meters when the GPS receiver has 3D position
fix (typically, when there’s a good lock on 4 or more satel-
lites). Errors in height, however, are much more uncertain.
The GPS receiver provides position and velocity readings at
1Hz.



Figure 1. Stereo and GPS Sensors on our
Robot

1.1 System Overview

Our visual odometry system uses feature tracks to esti-
mate the relative motion between two frames. Corner fea-
ture points are detected in the left image of each stereo pair
and tracked across frames. These feature points are then tri-
angulated at each frame based on stereo correspondences.
Three of these points are used to estimate the motion us-
ing absolute orientation. This motion is then scored using
the pixel reprojection errors in both the cameras. We use
the disparity space homography [1] to evaluate the inliers
for the motion. In the end, the hypothesis with the best
score (maximum number of inliers) is used as the starting
point for a nonlinear minimization problem that minimizes
the pixel reprojection errors in both the cameras simultane-
ously.

The relative motion between consecutive frames are
chained together to obtain the absolute pose at each frame.
The initial pose is obtained from the IMU, wheel encoders
and GPS sensors by moving the robot in a straight line at
speeds greater than 1 m/s. The IMU and the wheel encoders
are also used to fill in the relative poses when visual odom-
etry fails. Thus it complements the visual pose system. A
very simple Kalman Filter is used to fuse global location
and heading measurements from the GPS sensor, thereby
avoiding long-term drift.

1.2 Related Work

Motion estimation from video is a well-studied problem
in computer vision. Approaches for motion estimation are

based on either dense optical flow or sparse feature tracks.
[3] presents a visual odometry system that uses optical flow
and a planar world assumption to obtain relative poses from
a monocular camera. [13] uses optical flow for stereo im-
ages to compute the egomotion. Commonly used features
for feature-based approaches are the Harris corners [8] or
the more stable SIFT features [11]. [4] and [14] uses these
corner tracks for monocular cameras. [19] uses the SIFT
features for stereo egomotion estimation.

When compared to monocular video, motion estimation
from stereo images is relatively easy and tends to be more
stable and well behaved. Another major advantage of us-
ing stereo cameras is that one need not worry about the
scale ambiguity present in monocular camera case. Ap-
proaches for binocular motion estimation [17] typically in-
volve establishing feature correspondences. These feature
points are triangulated and then an absolute orientation step
is used to estimate the 3D motion. The use of 3D point
correspondences to obtain the motion suffers from a ma-
jor drawback – triangulations are much more uncertain in
the depth direction. Therefore, these 3D points have non
isotropic noise, and a 3D alignment between small sets of
such 3D points gives poor motion estimates. To take into
account this anisotropic noise in the 3D coordinates, Matei
and Meer [12] presented an approach based on a technique
from statistics called bootstrap to estimate the covariance
for the 3D points and solve a heteroscedastic, multivariate
errors in variables regression problem.

More recently, Nister et al; [15] described a visual odom-
etry system. Their stereo algorithm proceeds by triangu-
lating the feature points and then tracking them over time.
The 3-point algorithm for single camera pose is then used
to estimate the motion of the left camera. Each triplet of tri-
angulated 3D points is used to generate a hypothesis in the
RANSAC [6] framework. This hypothesis is then scored
using pixel reprojections in both the left and the right cam-
eras. In order to avoid drifting, the feature points are re-
triangulated often. Their system is efficient and can robustly
estimate the motion over a few hundred meters with a stereo
baseline of 28 cm. The key limitation of this approach is the
fact that the hypothesis generation involves only one of the
cameras and therefore is non-symmetrical. Our system, on
the other hand, avoids this problem by using both the cam-
eras to generate the hypothesis.

Similar to inertial odometry, pose obtained from visual
odometry tends to accumulate error over time, thereby re-
sulting in long-term drift without limit. To limit this drift, it
is necessary to augment such local pose systems with global
systems. GPS is an ideal companion for this purpose be-
cause it has a finite drift. It is a common practice to fuse
these two sensing modalities through Extended Kalman Fil-
tering [2, 10, 16].

The rest of the paper is organized as follows. Section 2



presents our visual odometry system. Section 3 describes
our simple Kalman Filter to fuse GPS. Section 4 presents
experimental results for outdoor navigation and finally sec-
tion 5 concludes our presentation.

2 Motion Estimation from Images

2.1 Motion in Disparity Space

The disparity space [5, 1] is a projective space with
isotropic noise that can be used for efficiently estimating
the motion of a calibrated stereo rig. Consider this fixed
stereo rig observing a moving rigid 3D scene. A point
M ≡ (X, Y, Z)T undergoes a rigid motion with rota-
tion R and translation t so that its new location is M ′ ≡
(X ′, Y ′, Z ′)T . The point M projects in the left image to the
point (x, y) and its disparity is d. Let ω ≡ (x, y, d)T and
ω′ ≡ (x′, y′, d′)T correspond to M and M ′ respectively in
the disparity space. Then, it can be shown [5]
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Thus, in the disparity space, a 3D point undergoing a rigid
euclidean transformation transforms according to the ho-
mography H(R, t). Given the euclidean motion and the
camera parameters, it is straightforward to deduce this ho-
mography H and vice-versa.

2.2 Feature Detection and Tracking

Harris corners [8] are detected in the left and the right
image of each frame in the video sequence. The features de-
tected in the left image are matched to features in the right
image of the same row using normalized cross correction
(NCC) over a 11×11 window. Similarly, the features in the
right image are matched to the left image. Only those fea-
tures that are matched to each other and with a NCC value
above a threshold (taken to be 0.5) are retained. This makes
the scheme more robust as only features that achieve the
lowest NCC scores in each other are reliable. These fea-
tures are also matched with the features from the subsequent
frame to give feature tracks. Since we have continuous
video, a feature point can move only a fixed maximum dis-
tance between consecutive frames. For each feature point
in the current frame, its NCC is evaluated for every feature
point in the next frame that lies within a specified distance
of its location in the current frame. This distance is taken to
be 50 for our setup. As in the stereo matching step, those
pixels that achieve mutual minimum NCC are retained and
defined as “matched”.

2.3 Motion Estimation

Starting with these potential matches, our RANSAC-
based motion estimation involves

Hypothesis generation Three points are required to gen-
erate a motion hypothesis. To get reliable motion, we must
ensure that these three points are spaced out well in the im-
age. Points that are too close in the image are unlikely to
give good estimates of the motion. Therefore, for any selec-
tion of three points, we check to see if they are sufficiently
spread out in the image. This is accomplished by dividing
the feature xy locations in the image into equally spaced
bins and selecting each feature point from a different bin.
The bin size in our case is taken to be 32.

Next, we triangulate these three points to obtain their 3D
locations Mi and M ′

i . We then seek the rotation matrix R
and the translation t such that M ′

i = RMi + t. This is
a standard absolute orientation problem and can be solved
efficiently using singular value decomposition [23]. Most of
the computations above involve operations on 3×3 matrices
and require few flops. The most time-consuming operation
here is the computation of SVD of a 3 matrix. We obtain a
closed form expression for the SVD of this matrix to save
computational time, resulting in a very fast implementation.

Hypothesis scoring Corresponding to each rotation and
translation pair hypothesis (R, t), the disparity space ho-
mography H(R, t) can be calculated using equation 1. For
a hypothesized correspondence in the disparity space ωi ↔
ω′

i, the homography is applied to ωi, resulting in the point
ω′′

i . The reprojection error is then given by εi = |ω′
i − ω′′

i |.
A correspondence is taken as an inlier to this homogra-

phy if the inifinity norm of the error vector |εi|∞ is less than
a predefined maximum threshold value. In our implemen-
tation, we have taken this threshold value to be 1.25 pixels.
The number of inlier matches to a motion is taken as its
score. Since each of the hypotheses generated during the
RANSAC needs to be scored with all the feature correspon-
dences, it is extremely important to code this efficiently. We
have coded these routines using SIMD instructions.

Nonlinear minimization The RANSAC is applied for
a fixed number of samples (in our case a maximum of
500 samples are taken). The hypothesis with the best
score (maximum number of inliers) is used as the starting
point for a nonlinear minimization algorithm. We use the
Levenberg-Marquardt algorithm for nonlinear least squares
minimization. The Jacobian required for this minimization
is approximated by forward differencing. Since the 3 × 3
rotation matrix has only three degrees of freedom, we work
with the euler angles instead. The variables for this mini-
mization are the three euler angles and the three translation
parameters.

For N matches, ωi ↔ ω′
i, i = 1, . . . , N , the error func-

tion to be minimized is given by min
∑N

i=1 ‖ω′′
i − ω′

i‖2



The starting point for this nonlinear minimization routine
is very good and hence the procedure converges to a local
minima within only 5 to 10 iterations. We have observed
that this nonlinear minimization step makes a significant
difference to the computed motion. This minimization step
gives us the full six-degrees-of-freedom pose constraint be-
tween the two frames. The covariance estimate of the pose
is approximated from the Jacobian J of the error function
as C = (J tJ)−1.

We have found that the approach outlined above is very
efficient (> 15Hz) and works remarkably well, even for
stereo rigs with a small baseline. The fact that we are trian-
gulating the feature points for each frame, builds a firewall
for error propagation. However, this also means that there
will be a drift when the rig is stationary. In order to avoid
this drift, we update the reference frame (the frame with ref-
erence to which the motion of the next frame is computed)
only when the robot has moved some minimum distance
(taken to be 5 cm in our implementation). Since, we are
re-triangulating for every frame, it is important to calibrate
the stereo cameras well. A standard plane based calibration
step works well for all our experiments.

The fundamental reason that our approach gives reliable
motion estimates, even in small-baseline situations is due
to the fact that we stick to image-based quantities and use
both the left and right images symmetrically. The absolute
orientation step used to generate the hypothesis uses the left
and the right cameras symmetrically to generate the motion
hypothesis. The hypothesis is evaluated and scored based
on reprojection errors in both views, resulting in an accu-
rate estimate of the motion. This estimate is then refined
in the nonlinear minimization step which also uses the two
cameras uniformly.

3 Local and Global Consistency

The errors in visual odometry(VO) and the errors in GPS
are in some respects complementary – VO provides accu-
rate locally-consistent information about pose, which is un-
bounded over long term. GPS, when available, has bounded
error in the X,Y direction of about 3 meters standard devi-
ation under good conditions, but is subject to small jumps
and drifts over the short term. It is difficult to filter these
errors correctly using only IMU and wheel data, since the
robot could be moving contrary to the wheel odometry, and
the IMU position estimates drift rapidly.

In order to maintain global consistency, the VO pose can
be modified using GPS data in a Kalman filter. Since GPS is
unreliable in height measurements, the Kalman Filter state
is taken to be the North and East position, together with the
heading. The GPS provides the necessary measurements
for the Kalman Filter to correct the pose estimates. Po-
sition information is applied to correct the position states

and the velocity information is independently used to cor-
rect the heading. Position information is used when the GPS
receiver has at least a 3D position fix and the velocity infor-
mation is only used when the vehicle is travelling 0.5 m/s
or faster, to limit the effect of velocity noise from GPS on
the heading estimate. In addition, GPS measurements are
used only if the robot has travelled a certain distance from
the last GPS measurement. This will ensure that the robot’s
pose does not change due to GPS jumps when the vehicle
is stationary. The filter essentially nudges the VO pose to-
wards global consistency, while maintaining accurate local
consistency. Over larger loops, of course, the 3 m deviation
of the GPS unit means that the map may not be consistent.
In this case, other techniques such as wide-baseline image
matching [11] would have to be employed.

4 Experimental Results

We have implemented and tested our integrated pose sys-
tem on several outdoor terrains. Figure 3 shows a typical
outdoor image captured by the left camera of the stereo
pair. Since GPS is accurate to only about 3-4 meters, in or-
der to validate our results, the robot was moved in a closed
loop over 50 - 100 meters. Since the starting and the ending
point are the same, the difference in pose between these two
points gives a good indication of the error in localization.
We measure this error in percentage over the total distance.

Figure 3. Typical outdoor terrain as seen from
the left camera

Table 1 compares this error for the raw IMU/wheels
pose, visual odometry and the GPS integrated visual odom-
etry for four loops. Except for the first loop, the visual
odometry outperforms the raw vehicle odometry signifi-
cantly. The integration of the visual odometry with GPS
also substantially reduces the loop closure error. Loop 2 is



(a) Raw odometry compared to raw visual odometry and GPS (b) Visual odometry integrated with GPS

Figure 2. Comparison of Odometry, Visual Odometry and GPS for loop 1

the longest and covers 141 meters with the average speed of
the robot being 0.7 m/s and involves many turns. For this
case, the visual odometry outperforms vehicle odometry by
a factor of two. Furthermore, long term drifts are compen-
sated for by the integration of GPS and visual odometry re-
sulting in a loop closure error of less than 0.5 m. For loop 1,
the vehicle odometry performs marginally better than visual
odometry. This can be explained by the fact that the robot
was moved at a slow speed (average speed about 0.5 m/s)
and this loop did not involve any sharp turns. Thus allowing
the raw vehicle odometry to do a good job. However, as the
robot speed increases or the turns become sharper or more
frequent, the wheel slippage increases and the performance
of vehicle odometry degrades as is evident in the other three
loops. Figure 2 compares the robot pose as computed from
raw vehicle odometry, visual odometry, raw GPS and the
GPS integrated visual odometry for loop 1.

The wheel slippage is especially prominent in loop 4,
where the robot was slipping in mud for a substantial
amount of time. Figure 4 plot the poses for this case. The
wheel slippage is marked in figure 4(a). Since the wheels
are turning, the vehicle odometry fails to detect that the
robot is stationary, resulting in a substantial drift. How-
ever, it is easy to detect no motion for visual odometry since
the image features do not move much. Thereby, the visual
odometry pose remains correct and localizes the robot well.

5 Conclusion

We have presented a real-time system for robot local-
ization in outdoor navigation tasks using stereo vision. Our
visual odometry system is robust, reliable and accurate with

Table 1. Loop Closure Error in Percentage
Run Number 1 2 3 4
Distance(meters) 82.4 141.6 55.3 51.0
Method Percentage Error

Vehicle Odometry 1.3 11.4 11.0 31.0
Raw Visual Odometry 2.2 4.8 5.0 3.9
Visual Odometry & GPS 2.0 0.3 1.7 0.9

errors on the order of a few meters over hundred meters or
more. This when integrated with an inexpensive GPS pre-
vents long-term drifts allowing the robot to stay localized
over long distances.

Although, motion estimation from video has been a
widely researched topic in computer vision, real-time sys-
tems utilizing vision for localization of robots have been
very few. We hope to have demonstrated stereo vision as a
powerful sensor for localization of mobile robots in outdoor
environments. As cameras become less expensive, vision-
based localization will provide a cost-effective odometry
system that can be used to complement traditional inertial
odometry systems to provide accurate localization in out-
door navigation tasks.
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