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With the large-scale wind power integration, power systems have to address not only
the conventional power demand fluctuations but also the wind uncertainty. To
improve the economical effectiveness, resilience, and environmental protection of
power systems in the source-load uncertainty, a real-time low-carbon scheduling
for the wind–thermal–hydro-storage integrated system is proposed. The power
imbalance caused by the uncertainty is neutralized by the synergetic linear decision
of multiple resources. To address the source-load uncertainty, a stochastic robust
optimization is introduced, which establishes the system constraints by robust
optimization for the resilience operation, while optimizing the expected operation
cost in the empirical uncertainty distribution for economic efficiency. Moreover, a
multi-point estimation is applied to formulate the expected operation cost precisely
and quickly. By using the dual theory, the proposed real-time power scheduling is
derived as amixed integer bilinear constrained programming. Amulti-step sequential
convexified solution is developed to solve the complex scheduling problem, which
linearizes the bilinear constraints with alternate optimization and relaxes the state
variables of energy storages with an “estimation–correction” strategy. Finally, case
studies show the superiority of the proposed scheduling method and convexified
solution.
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1 Introduction

Large-scale wind power integration is of great significance to energy conservation and
emission reduction in power systems (Zhu et al., 2021; He et al., 2022). However, due to the
fluctuating nature of wind power, the resilience operation of power systems faces the
uncertainty challenge of both wind power and power demand. Real-time scheduling, as a
part of multiple time-scale power scheduling, plays an important role in restoring the power
balance and improving the system resilience (Surender et al., 2015; Zhou et al., 2018). Therefore,
how to address the source-load uncertainty with the co-regulation of wind farms, thermal units,
hydro units, energy storages, and other regulation resources in real-time scheduling to ensure
the system security should be paid more attention.

At present, methods for the uncertainty problems mainly contain the stochastic
optimization and robust optimization. The stochastic optimization (Liu et al., 2022; Li
et al., 2023) formulates the source-load uncertainty with discrete scenarios. The method
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samples multiple scenarios according to the probability distribution of
the source-load uncertainty and optimizes the expected operation cost
formulated with these sampled scenarios (Li and Xu, 2019). However,
it is difficult for these sampled scenarios to cover the whole uncertainty
distribution, and hence, the system security cannot be guaranteed in
some extreme scenarios. Moreover, the huge sample size and complex
calculation also make it difficult for the stochastic optimization to
meet the timeliness in real-time scheduling. By contrast, robust
optimization methods are widely applied since they can cover the
extreme scenarios of the source-load uncertainty. The widely applied
robust optimization includes conventional robust optimization (CRO)
(Zeng and Zhao, 2013), distributionally robust optimization (DRO)
(Ding et al., 2022), and chance-constrained robust optimization (Qi
et al., 2020; Li et al., 2022). CRO formulates the source-load
uncertainty with the uncertainty set, i.e., the maximum possible
space of uncertain scenarios. A two-stage robust unit commitment
based on it is established (Bertsimas et al., 2013; Zhou et al., 2019), and
the day-ahead scheduling is usually solved with the Benders duality
method (Yang and Su, 2021) or column and constraint generation
(C&CG) methods (Wang et al., 2022). Moreover, the regulation of
energy storages is incorporated in the unit commitment, and a nested
C&CG is developed to address the integer state variables of energy
storages in the intraday regulation (Cobos et al., 2018). CRO only takes
the boundary information of the uncertainty into account, while
ignores the distribution information, and the methods usually lead
to a conservative solution. In view of this, DRO formulates the source-
load uncertainty with the ambiguous set (Wei et al., 2016; Zheng et al.,
2021), i.e., the maximum possible space of uncertainty distribution,
and optimizes the expected operation cost in the worst-case
distributions. However, chance-constrained robust optimization (Qi
et al., 2022) assumes that the constraints hold with a certain
confidence level. The method improves the flexibility of the
scheduling, while the system security is affected.

The aforementioned robust methods can be concluded as the adaptive
optimization decision-based robust optimization. In the second stage of the
scheduling (i.e., the adjustment stage), the adjustment of regulation
resources adapting to the immediate source-load uncertainty is
determined through an optimization procedure. However, the system
power balance in the real-time scheduling is restored through the
automatic generation control (AGC) system (Wu et al., 2017).
According to the frequency deviation and tie-line power deviation of
the regional power system, the AGC system obtains the power fluctuation
from the deviation signals and allocates the adjusted power to regulation
resources proportionally. The AGC systemhas a very high requirement for
the decision time, and hence, the aforementioned adaptive optimization
decision-based robust methods are inapplicable.

In addition to the adaptive optimization decision-based robust
methods, the linear decision-based CRO and DRO (LCRO and LDRO)
are also proposed.When the source-load uncertainty occurs, the regulation
tasks are allocated to regulation resources, according to the affine factors,
i.e., allocation coefficients. Therefore, the linear decision-based robust
methods adapt to the real-time scheduling. The co-regulation of
generation units and energy storages to wind uncertainty is realized
based on LCRO (Jabr 2013). To improve the applicability of LCRO,
the allowed interval of wind power is optimized in (Li X et al., 2015; Wang
et al., 2019). The allowed upper bound is lower than the forecast upper
bound, and hence the strategy makes LCRO applicable for systems with
inadequate regulation capacity. In view of the conservativeness of LCRO,
which optimizes the operation at the expected scenario, the LDRO-based

scheduling model is developed for power systems (Xiong et al., 2017;
Alismail et al., 2018). Considering that the worst-case distributions of the
source-load uncertainty rarely happen, LDRO may lead to a non-optimal
economical effectiveness in common distributions. To enhance the
economic efficiency of robust methods in common distributions, a
linear decision-based stochastic robust optimization (LSRO) is proposed
in (Qu et al., 2020). The method establishes the system constraints using
the robust optimization to guarantee the system resilience, while optimizes
the operation cost in the empirical distribution of uncertainties for the
economical effectiveness. The empirical distribution of uncertainties is the
fitting of the existing historical scenarios, and it is closest to the real
distribution of uncertainties. Therefore, LSRO shows an economical
effectiveness in common distributions of uncertainties.

In view of the robustness and economical effectiveness of LSRO, this
paper establishes the real-time scheduling for the wind–thermal–hydro-
storage power system based on the method. This paper upgrades the
traditional three-point estimation method to multi-point estimation and
takes both wind uncertainty and power demand uncertainty into account.
Moreover, the extreme scenario-based security constraints (Qu et al., 2020)
tend to be conservative, and this study converts the system security
constraints, containing the source-load uncertainty to deterministic
bilinear constraints, according to dual theory. The proposed real-time
power scheduling is derived as a mixed integer bilinear constraint
programming, and a convexified solution is developed for the problem.
The contributions are concluded as three points.

1) A real-time low-carbon scheduling for the wind–thermal–hydro-
storage power system with the source-load uncertainty is
established. The power imbalance of the system caused by the
uncertainty is neutralized by the co-regulation of multiple resources.
The source-load uncertainty is split into two uncertainty subsets to
improve the flexibility of the linear decision. However, the carbon
trading cost is introduced to realize a low-carbon system.

2) An improved LCRO is introduced to address the source-load
uncertainty, which establishes the system constraints using the
robust optimization for the resilience operation, while optimizes
the expected operation cost in the empirical uncertainty
distribution for the economical effectiveness. In addition to, a
multi-point estimation is upgraded and applied to calculate the
expected operation cost.

3) A multi-step sequential convexified solution is developed to solve
the mixed integer bilinear constrained scheduling problem. The
sign variables in the objective function are approximated with an
initial convex model. The bilinear constraints in the problem are
linearized with alternate optimization (AO). Also, the state
variables of energy storages are addressed by an
“estimation–correction” strategy such that the problem is
derived as a convex quadratic programming.

2 Real-time power scheduling model
with linear stochastic robust
optimization

2.1 Source-load uncertainty set

The available wind power of wind farms and the real power
demand equal the sum of forecast expectations and forecast errors
as follows:
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P̂
W

m,t � PW,E
m,t + ûm,t, P

D
n,t � PD,E

n,t + vn,t, (1)
where PW,E

m,t is the forecast available wind power of the wind farm m,
ûm,t is the forecast error of the wind power, PD,E

n,t is the forecast power
demand of the node n and, vn,t is the forecast error of the power
demand.

Considering that the regulation resources may be insufficient, a
certain amount of wind curtailment is allowed to ensure the system
security. Therefore, the system will determine an allowed upper bound
of total wind fluctuations ( ~Ut). ~Ut is smaller than the forecast upper
bound ( �Ut). The superfluous wind power exceeding the allowed
threshold will be curtailed as follows:

~P
W

m,t �
PW
m,t + ûm,t, Ût ≤ ~Ut

PW
m,t + u−m, t +

~Ut − U− t

Ût − U− t
ûm,t − u−m, t( ), Ût > ~Ut

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
, (2)

where PWm,t is the baseline power output of the wind farmm, ~P
W
m,t is

the real wind power output, Ût is the total available wind fluctuations,
and Ut is the lower bound of wind fluctuations.

When considering the wind curtailment, the real wind fluctuation
is smaller than the available wind fluctuation, and thus the system
security constraints are only associated with the allowed wind
fluctuation (i.e., real wind fluctuation). The uncertainty set of the
allowed wind fluctuation is established as

ΞU
t � ut

um,t ≤ um,t ≤ �um,t

Ut � ∑mum,t

Ut ≤Ut ≤ ~Ut

∣∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭, (3)

where Ut is the total allowed wind fluctuation and ~Ut is the allowed
upper bound of the total wind fluctuation.

As for the power demand, load shedding is not allowed, and thus
the uncertainty set for the forecast error of the power demand is
formulated as

ΞV
t � vt

vn,t ≤ vn,t ≤ �vn,t
Vt � ∑nvn,t
Vt ≤Vt ≤ �Vt

∣∣∣∣∣∣∣∣∣∣∣
⎧⎪⎨⎪⎩

⎫⎪⎬⎪⎭, (4)

where Vt is the total power demand fluctuation.
Therefore, the source-load uncertainty set is a union set of the

wind uncertainty set and power demand uncertainty set, which is
given as: Ξt = ΞU t∪ΞV t.

2.2 Overall architecture of real-time
scheduling

Real-time power scheduling optimizes the baseline power
output of wind farms, thermal units, hydro units, and baseline
charging power of energy storages, as well as the affine factors of
non-wind regulation resources for the source-load uncertainty.
The real-time power scheduling is usually performed in a rolling
optimization way to determine the scheduling plan for the
following 1 h period with 5 min resolution. When the wind
power and power demand deviate from the baseline value, non-
wind regulation resources including thermal units, hydro units,

and energy storages co-regulate to restore the system power
balance with the affine factors.

~P
T

i,t �
PT
i,t − α−i,t Ut − Vt( ), Ut − Vt ≤ 0

PT
i,t − α+i,t Ut − Vt( ), Ut − Vt > 0

{ , (5)

~P
H

j,t �
PH
j,t − α−j,t Ut − Vt( ), Ut − Vt ≤ 0

PH
j,t − α+j,t Ut − Vt( ), Ut − Vt > 0

⎧⎨⎩ , (6)

~P
S

k,t �
PS
k,t + α−k,t Ut − Vt( ), Ut − Vt ≤ 0

PS
k,t + α+k,t Ut − Vt( ), Ut − Vt > 0

{ , (7)

∑iα
−
i,t +∑

j
α−j,t +∑

k
α−k,t � 1, α−

t ≥ 0

∑iα
+
i,t +∑

j
α+j,t +∑

k
α+k,t � 1, α+

t ≥ 0

⎧⎪⎨⎪⎩ , (8)

where PT
i,t, P

H
j,t and P

S
k,t are the baseline power output of the thermal unit

i, hydro unit j, and baseline charging power of the energy storage k; ~P
T
i,t,

~P
H
j,t, and ~P

S
k,t are their real power outputs or charging power under the

source-load uncertainty and; α−t /α
+
t are downward/upward affine factors

of non-wind regulation resources for the source-load uncertainty.
To sum up, the strategy for balancing the source-load uncertainty

is presented as follows:
Power demand: Load shedding is not allowed, and power

demands always trace the actual demands.
Wind farms: If the total available wind fluctuation is below the

allowed upper bound ~Ut, each wind farm operate at the available value,
otherwise, the superfluous wind power beyond ~Ut is curtailed, as
shown in Eq. 2.

Non-wind resources: Thermal units, hydro units, and energy
storages co-regulate as Eqs 5–7 to balance the source-load uncertainty.

2.3 System security constraints

1) Power balance:

∑
i
PT
i,t +∑

j
PH
j,t +∑

m
PW
m,t � ∑

k
PS
k,t +∑

n
PD,E
n,t . (9)

2) Constraints of wind farms:

−um,t ≤PW
m,t ≤PW,E

m,t . (10)

3) Constraints of thermal units:

R−
i,t ≤ − α+i,t ~Ut − Vt( ), R+

i,t ≥ − α−i,t Ut − �Vt( ), (11)
P−

T
i
≤PT

i,t + R−
i,t, P

T
i,t + R+

i,t ≤ �P
T
i , (12)

PT
i,t + R−

i,t − PT
i,t−1 + R+

i,t−1( )≥ r−i , (13)
PT
i,t + R+

i,t − PT
i,t−1 + R−

i,t−1( )≤ r+i , (14)

where R−
i,t/R

+
i,t are the downward/upward reserves produced by the

thermal unit i for the source-load uncertainty, Eq. 12 is the lower and
upper power output limits of thermal units, Eqs 13–14 are ramping
limits of thermal units, and r−i /r+j are downward/upward ramping
rates of thermal units.

4) Constraints of hydro units:

R−
j,t ≤ − α+j,t ~Ut − Vt( ), R+

j,t ≥ − α−j,t Ut − �Vt( ), (15)
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P−
H
j
≤PH

j,t + R−
j,t, P

H
j,t + R+

j,t ≤ �P
H
j , (16)

PH
j,t + R−

j,t − PH
j,t−1 + R+

j,t−1( )≥ r−j , (17)
PH
j,t + R+

j,t − PH
j,t−1 + R−

j,t−1( )≤ r+j , (18)
PH
j,t + R−

j,t � gηjHj,t
~Q− j, t, (19)

PH
j,t + R+

j,t � gηjHj,t
~Qj,t, (20)

Q− j≤∑
t
~Q− j, t,∑t

~Qj,t ≤ �Qj, (21)

where R−
j,t/R

+
j,t are the downward/upward reserves produced by the

hydro unit j for the source-load uncertainty, Eq. 16 is the lower and
upper power output limits of hydro units, Eqs 17–18 are ramping
limits of hydro units, r−i /r+j are downward/upward ramping rates of
hydro units, Eqs 19–21 are water consumption limits of hydro units
(Liu et al., 2019), g is the hydro-to-power conversion coefficient, ηj is
the conversion efficiency of hydro units,Hj,t is the height of the water
head, and ~Q− j, t/ ~Qj,t are the extreme water consumptions of hydro
units in the adjustment process.

5) Constraints of energy storages:

R−
k,t ≤ α

−
k,t U− t − �Vt( ), R+

k,t ≥ α
+
k,t

~Ut − V− t( ), (22)

P−
S
k
≤ ~P−

S

k,t
≤PS

k,t + R−
k,t, �P

S
k ≥ ~P

S

k,t ≥PS
k,t + R+

k,t, (23)
C−

S
k
≤ ~C−

S

k,t
≤ ~C−

S

k,t−1 + η+k ~π−
S
k,t
+ 1/η−k 1 − ~π−

S
k,t

( )[ ]~P− S

k,t
Δt, (24)

�C
S
k ≥ ~C

S

k,t ≥ ~C
S

k,t−1 + η+k ~π
S

k,t + 1/η−k 1 − ~π
S

k,t)]~Pk,t
S Δt,([ (25)

CS
k,0 +∑

t
η+kπ

S
k,t + 1/η−k 1 − πS

k,t( )[ ]PS
k,tΔt � CS,R

k , (26)

where R−
k,t/R

+
k,t are the downward/upward reserves produced by

energy storage k for the source-load uncertainty, ~P−
S

k,t
and ~P

S

k,t are
the extreme charging power of the energy storage k in the adjustment
process, ~C

S
k,t and ~C

S

k,t are the extreme stored power in the energy
storage, CS

k,0 and CS,R
k are the initial stored power and required stored

power after the scheduling, respectively, η+k and η−k are the charging
and discharging efficiency of the energy storage, ~π S

k,t, ~π
S
k,t, and πSk,t are

the binary state variables in the extreme scenario and baseline
scenario. If ~π S

k,t, ~π
S
k,t, and πS

k,t equal to 1, the energy storage
charges power, otherwise, the energy storage discharges power.

6) Transmission limits of lines:

The maximum/minimum operation of wind farms, thermal units,
hydro units, and energy storages occur at the extreme total source-load
fluctuation, and hence their constraints are established using the
extreme scenario method. As for transmission lines, their
transmitted power is related to the power output of each wind farm
and power demand of each node, which cannot be described with the
total source-load fluctuation. Therefore, we formulate the transmission
limits of lines as that concerning the source-load uncertainty as follows:

Tl ≤ Ll,t +∑mhl,mum,t −∑nhl,nvn,t
−∑ihl,iα

−
i,t Ut − Vt( ) −∑

j
hl,jα

−
j,t Ut − Vt( )

−∑khl,kα
−
k,t Ut − Vt( )≤ �Tl,∀ ut, vt( ) ∈ Ξt,1

Tl ≤ Ll,t +∑mhl,mum,t −∑nhl,nvn,t
−∑ihl,iα

+
i,t Ut − Vt( ) −∑

j
hl,jα

+
j,t Ut − Vt( )

−∑khl,kα
+
k,t Ut − Vt( )≤ ,∀ ut, vt( ) ∈ Ξt,2

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (27)

Ll,t � ∑ihl,iP
T
i,t +∑

j
hl,jP

H
j,t +∑

m
hl,mP

W
m,t

−∑khl,kP
S
k,t −∑

n
hl,nP

D,E
n,t ,

(28)

whereLl,t is thebaseline transmittedpowerof line l,hl,i,hl,j,hl,k,hl,m, andhl,n
are transferdistribution factors fromthe thermalunit i, hydrounit j, energy
storage k, wind farmm, and power demand n to the line l, and Tl/�Tl are
transmittedpower limits of line l.Ξt,1 andΞt,2 are two subsets of the source-
loaduncertaintyset.InΞt,1,Ut-Vt≤0,thesystemadoptsthedownwardaffine
factors to balance the uncertainty, while inΞt,2,Ut-Vt≥0, the system adopts
the upward affine factors to balance the uncertainty.

The transmission limits of lines can be described as the following
compact form:

C⊤x + max
ut ,vt( )∈Ξt,j

A‒αjut + B⊤αjvt{ }≤d

Ξt,j �

um,t ∈ um,t, �um,t[ ]: πu
m,t, �π

u
m,t ≥ 0

vn,t ∈ vn,t, �vn,t[ ]: π−
u
n,t
, �πu

n,t ≥ 0

Ut ∈ ut, ~Ut[ ]: λ−
u
t
, �λ

u
t ≥ 0

Vt ∈ Vt, �Vt[ ]: λ−
v
t
, �λ

v
t ≥ 0

Ut � ∑mum,t, Vt � ∑nvn,t: τut , τ
v
t

gj Ut − Vt( )≤ 0: ϑj ≥ 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
,

(29)

where A, B, C are constant vectors, d is a constant scalar, x is the
decision variable vector, αj is the affine factor matrix, concerning the
jth uncertainty subset, and π, λ, τ, and ϑ are dual variables,
corresponding to constraints in the uncertainty subset Ξt,j.

By adopting the dual theory (Li et al., 2018), the constraint (29)
with the source-load uncertainty is converted to a deterministic
constraint as follows:

C⊤x + �u⊤
t �π

u
t − u−

⊤
t
π−

u
t
+ ~Ut

�λ
u
t − U− tλ−

u
t

+�v⊤t �πv
t − v−

⊤
t
π−

v
t
+ �Vt

�λ
v
t − V− tλ

v
t ≤ d

−A⊤αj + �πu
t − π−

u
t
− τut e � 0

−B⊤αj + �πv
t − π−

v
t
− τvt e � 0

�λ
u
t − λ−

u
t
+ τut + gjϑj � 0

�λ
v
t − λ−

v
t
+ τvt − gjϑj � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (30)

where e is a vector whose elements are all equal 1.

2.4 Optimized objective

The scheduling optimizes the baseline operation cost (i.e., the first
stage) and the incremental cost expectation in the adjustment state
(i.e., the second stage) as follows:

minF � Fbase + EP ΔF û, v( )[ ], (31)
where Fbase is the baseline operation cost, P is the empirical
distribution of the source-load uncertainty, ΔF is the incremental
adjustment cost under the source-load uncertainty (û, v).

This paper introduces carbon trading (Wang et al., 2020a) to
improve the environmental benefits of the resilient power system. The
operation cost in the baseline state includes fuel costs of thermal units,
system carbon trading costs, and penalty costs on the wind
curtailment.

Fbase � ∑
t
∑

i
Ci P

T
i,t( ) + fc +∑

t
∑

m
W PW,E

m,t − PW
m,t( ), (32)

where Ci() is the quadratic fuel cost function of the thermal unit i, fc is
the carbon trading costs of the system, and W() is the quadratic
penalty cost function of the wind curtailment.
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This study adopts the baseline method (Wang et al., 2020b; Guo
et al., 2020) to calculate the carbon quota of the system, and the carbon
trading cost of the system is formulated as follows:

fc � pc ER − EQ( ), (33)
ER � ∑

t
∑

i
βi,tP

T
i,t, EQ � ∑

t
∑

n
ηcP

D
n,t, (34)

where pc is the carbon trading price, ER and EQ are the baseline carbon
emission and carbon quota of the system, respectively, βi,t is the carbon
emission coefficient of the thermal unit i, anf ηc is the carbon quota for
per unit of power generation.

The incremental cost expectation in the adjustment state includes
the adjustment cost of thermal units and energy storages, incremental
penalty costs on the wind curtailment, and incremental carbon trading
costs. The traditional random sampling methods to formulate the
output expectation usually requires a huge sampling scale to achieve
an accurate estimation. In this paper, the multi-point estimation (Li Z
et al., 2015) can uniformly cover the source-load uncertainty with a
small scale of estimation points.

The multi-point estimation actually first determines the estimate
vectors in the standard Gaussian distribution, then converts these
estimate vectors to that of the source-load uncertainty, and finally
calculates the output expectation (Li et al., 2008). The optimal estimate
point number will be determined through sensitivity analysis in
numerical simulations. The source-load uncertainty is assumed to
be irrelevant in the time dimension, and thus only two uncertain
variables are considered in the formulation of the incremental cost
expectation, i.e. the available wind fluctuation and forecast error of the
power demand. The incremental cost expectation in the adjustment
state is formulated as

EP ΔF û, v( )[ ] � ∑
t
∑

r
∑

s
ωsΔFt Ût,r,s, Vt,r,s( ), (35)

Ût,r,s, Vt,r,s( ) � F−1
t Ψ zr,s( )[ ], (36)

where r∈N is the index of uncertain variables, s∈M is the index of
estimate points, ωs is the weight of the sth estimate point, (r, s)
corresponds to the estimate vector concerning the rth uncertain
variable and the sth estimate point, and zr,s is the estimate vector
in the standard Gaussian distribution. In the estimate vector, the
uncertain variable r equals the sth estimate point and other uncertain
variables equal 0. Ψ is the cumulative distribution function of the
standard Gaussian distribution. Ft

−1 is the inverse of the cumulative
distribution function of the source-load uncertainty.

Assume that the sign variable concerning the adopted affine
factors in each estimate vector is σt,r,s. If σt,r,s = 1, the source-load
power fluctuation is larger than 0, the system adopts the upward affine
factors for the adjustment; else if σt,r,s = 0, the system adopts the
downward affine factors for the adjustment. In each estimate vector,
the incremental cost produced by thermal units and energy storages
are calculated as

Ut,r,s ≤ Ût,r,s, Ut,r,s ≤ ~Ut, (37)
Dt,r,s � Ut,r,s − Vt,r,s, 2σt,r,s − 1( )Dt,r,s ≥ 0, (38)

ΔfT
i,t,r,s ≥ − 1 − σt,r,s( )ρi,tα−i,tDt,r,s − σt,r,sρi,tα

+
i,tDt,r,s

ΔfS
k,t,r,s ≥ 1 − σt,r,s( )ρ−k,tα−k,tDt,n,s + σt,r,sρ

+
k,tα

+
k,tDt,r,s

{ , (39)

ρi,t � pi,t + pcβi,t, (40)
where Ut,r,s is the allowed wind fluctuation in the estimate vector (r, s),
ρi,t, and pi,t are the incremental cost coefficient and regulation cost

coefficient of the thermal unit i, respectively, and ρ− k, t ,and ρ+ k,t are
the downward and upward incremental cost coefficient of the energy
storage k. Since hydro units do not produce fuel costs and carbon
emissions in the operation, their incremental cost coefficients equal 0.
As for energy storages, since they also play a role of peak-load shifting
and standby power generation during intraday operation, the stored
power in storages after the scheduling shall not deviate too far from the
required value. Therefore, the incremental cost coefficients are set as
follows to reduce the adjustment of energy storages: ρ− k,t = -1.1 ×
maxi (ρi,t), ρ+ k,t = -0.9 × maxi (ρi,t).

To sum up, the incremental cost in each estimate vector is
calculated as

ΔFt Ût,r,s, Vt,r,s( ) � ∑iΔf
T
i,t,r,s +∑

k
ΔfS

k,t,r,s + ρw Ût,r,s − Ut,r,s( ) − pcηcVt,r,s ,

(41)

where ρw is the penalty coefficient on the wind curtailment.

3 Solution methodology

The proposed scheduling model is a mixed integer bilinear
constraint programming. The integer variables include the sign
variables σt,r,s in each estimate vector concerning the incremental
cost expectation and the charging/discharging state variables of energy
storages. The bilinear constraints include Eq. 11 (15) (23) (30). Due to
the timeliness required in the real-time scheduling, the integer
variables and bilinear constraints shall be addressed, and such that
the scheduling model can be converted to a convex quadratic
programming.

3.1 Approximation for the sign variables

To determine the sign variables σt,r,s in each estimate vector
concerning the incremental cost expectation, an approximated

value for the allowed upper bound of wind fluctuation ( ~U
0

t ) should
be first obtained. This paper adopts the extreme scenario method-

based initial model to obtain ~U
0

t .

1) Objective of the initial model: The objective should be convex and
can be close to the original objective (31). The objective of the
initial model is

min~F � ∑t∑iCi P
T
i,t( ) + fc

+∑t∑mW PW,E
m,t − PW

m,t( ) + ∑tW �Ut − ~Ut( ). (42)

2) Constraints of the initial model: Reformulate the original
bilinear constraints concerning the reserve constraints of
non-wind regulation resources and transmission limits of
lines with the extreme scenario method, while other security
constraints remain unchanged. Therefore, the original bilinear
constraints are converted to slightly conservative but convex
linear constraints.

∑
i
R+
i,t +∑

j
R+
j,t −∑

k
R−
k,t � − U− t − �Vt( ), (43)
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∑
i
R−
i,t +∑

j
R−
j,t −∑

k
R+
k,t � − ~Ut − V− t( ), (44)

σl,m,t ≤ 0≤ �σ l,m,t, σ l,n,t ≤ 0≤ �σ l,n,t
σ l,t ≤ 0≤ �δl,t
σ l,m,t ≤ hl,mum,t ≤ �σ l,m,t, σ l,m,t ≤ hl,m�um,t ≤ �σ l,m,t

σ l,n,t ≤ hl,nvn,t ≤ �σ l,n,t, σ l,n,t ≤ hl,n�vn,t ≤ �σ l,n,t
δl,t ≤∑ihl,iR

+
i,t +∑

j
hl,jR

+
j,t −∑

k
hl,kR

−
k,t ≤ �δl,t

δl,t ≤∑ihl,iR
−
i,t +∑

j
hl,jR

−
j,t −∑

k
hl,kR

+
k,t ≤ �δl,t

Ll,t +∑mσ l,m,t + ∑nσ l,n,t + δl,t ≥Tl

Ll,t +∑m�σ l,m,t +∑n�σ l,n,t + �δl,t ≤ �Tl

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (45)

Therefore, the initial model does not contain the sign variables σt,r,s
and bilinear constraints. Compare the available wind power in each
estimate vector (Ût,r,s) with the approximated value for the allowed
upper bound of wind fluctuation ( ~U

0

t ) and obtain the sign variables
σt,r,s in each estimate vector.

U0
t,r,s � min(Ût,r,s, ~U

0

t ), σt,r,s � 1, U0
t,r,s − Vt,r,s ≥ 0

0, U0
t,r,s − Vt,r,s < 0{ . (46)

3.2 Linearization for bilinear constraints

This paper adopts the AO (Li et al., 2021) to address the bilinear
constraints in the real-time scheduling, which fixes partial decision
variables to optimize the rest of the decision variables in the bilinear
constraints. The real-time scheduling with bilinear constraints can be
described as the following compact form:

min F x, y( )
s.t. x⊤Aiy + gi x, y( )≤ 0,∀i . (47)

where Ai is a constant matrix, gi is a convex function concerning
decision variables, y corresponds to the allowed upper bound of wind
fluctuation ( ~Ut), and x corresponds to the remaining decision
variables. Detailed steps for AO to solve the real-time scheduling
model are presented in Algorithm 1.

1) Initialization: Solve the initial model as shown in

Eqs 42–45 and obtain the initial value of the allowed

upper bound of wind fluctuation ( ~U
0

t), i.e., y0. Set the

iteration step n = 0.

2) Solve the sub-problem A: Fix y = yn and solve the below

problem. The obtained x is marked as xn.

min F x, yn( )
s.t. x⊤Aiyn + gi x, yn( )≤ 0,∀i . (48)

3) Solve the sub-problem B: Fix x = xn and solve the below

problem. The obtained y is marked as yn+1, and the

obtained objective is marked as Fn+1.

min F xn, y( )
s.t. x⊤nAiy + gi xn, y( )≤ 0,∀i . (49)

4) Convergence check: If the below condition is

satisfied, stop the calculation, otherwise,

update n = n+1 and return to step 2.

Fn − Fn+1 ≤ εFn+1, (50)
where the convergence gap ε is set to 10−6.

Algorithm 1 AO to solve the bilinear problem.

Note that AO is a sub-optimal method, whose optimization
performance is associated with the initialization. To improve its
optimization performance, the initial value of the allowed upper
bound of wind fluctuation ( ~U

0

t ) can be evenly initialized with
multiple values, and the most optimal solution is finally selected.
The initial model as shown in Eqs 42–45 will determine ~U

0

t , and then
update ~U

0

t as

~U
0

t � min( ~U0

t , �Ut,�β), (51)

where �β is the confidence level corresponding to the upper bound of
the total available wind fluctuation, i.e. the cumulative distribution
function of �Ut,�β. Evenly set the confidence level and then determine
multiple initial values of the allowed upper bound of wind
fluctuation.

3.3 Approximation for state variables of
energy storages

This paper adopts an “estimation–correction” strategy (Shi and
Guo, 2022) to approximate the state variables of energy storages. The
estimation stage relaxes the state variables of energy storages, and the
correction stage directly determines the state variables according to the
results obtained in the estimation stage.

Therefore, the scheduling problems in these two stages do not
contain the state variables of energy storages. The relaxed model of
energy storages in the estimation stage is formulated as

PS
k,t � P+

k,t − P−
k,t, ~P−

S

k,t
� ~P−

+
k,t
− ~P−

−
k,t
, ~P

S

k,t � ~P
+
k,t − ~P

−
k,t, (52)

P+
k,t, P

−
k,t, ~P−

+
k,t
, ~P−

−
k,t
, ~P

+
k,t, ~P

−
k,t ≥ 0, (53)

C−
S
k
≤ ~C−

S

k,t
≤ ~C−

S

k,t−1 + η+k ~P−
+
k,t
− 1/η−k ~P−

−
k,t

{ }Δt, (54)
�C
S
k ≥ ~C S

k,t ≥ ~C S
k,t−1 + η+k ~P

+
k,t − 1/η−k ~P

−
k,t}Δt,{ (55)

CS
k,0 +∑

t
η+kP

+
k,t − 1/η−r P−

k,t{ }Δt � CS,R
k , (56)

where P+
k,t, P

−
k,t, ~P−

+
k,t
, ~P−

−
k,t
, ~P

+
k,t, ~P

−
k,t are the charging power and

discharging power of energy storages in the baseline scenario and
two extreme scenarios.

The state variables of energy storage are directly fixed in the
correction stage. For the sake of convenience, the following takes the
baseline scenario as an example, while the other two extreme scenarios
can be disposed in a similar way.

πS
k,t �

1, P+
k,t.0 − P−

k,t,0 ≥ 0
0, P+

k,t,0 − P−
k,t,0 < 0

{ , (57)

where P+
k,t.0, P

−
k,t,0 are the charging power and discharging power of

energy storages obtained in the estimation stage.
In fact, there is generally little difference between the optimal state

variables of energy storages in the estimation stage and the correction
stage. On the one hand, the charging and discharging efficiency of
energy storages are generally higher. In the real-time scheduling, only
the energy storages with the rapid adjustment ability could be involved
in the AGC system, such as the lithium storages, and the efficiency of
lithium storages can reach about 90% at present (Shi and Guo, 2022).
On the other hand, the current capacity of energy storages is generally
small compared with the total power demand, and thus the relaxed
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model of energy storages in the estimation stage has slight influence on
the optimized result.

The overall flowchart for the convexified solution is presented in
Figure 1.

4 Numerical simulation

To illustrate the effectiveness of the proposed real-time low-
carbon scheduling and solving method, numerical simulations are
carried out on the IEEE 39-node power system (Zimmerman et al.,
2011). The system has seven thermal units, one hydro unit, and two
energy storages with 50MW capacity. Moreover, four wind farms are
deployed. The scheduling cycle is from 6:00 pm to 7:00 pm with 5 min
time resolution. The forecast expectation and forecast interval of wind
power and power demand are presented in Figure 2 and Figure 3.
Finally, 5,000 scenarios of the source-load uncertainty are sampled by
Monte Carlo simulation (MCS) to verify the scheduling performance.
The optimizations are solved with the CPLEX solver on a computer
with Intel(R) Xeon(R) Silver 4216 CPU, 2.1GHz clock speed, and
16GB RAM.

4.1 Effects of the allowed upper bound of
wind fluctuation

In the proposed scheduling model, the allowed upper bound of
wind fluctuation actually has two functions: 1) it reasonably
determines the wind power accommodation and hence enhances
the system flexibility, 2) when the system regulation capacity is
insufficient, discard the excess wind power to ensure the system

FIGURE 1
Overall flowchart for the convexified solution.

FIGURE 2
Forecast expectation and forecast interval of wind power.

FIGURE 3
Forecast expectation and forecast interval of the power demand.

FIGURE 4
Allowed upper bound (UB) of wind fluctuation in the system with
sufficient regulation capacity.

FIGURE 5
Allowed upper bound (UB) of wind fluctuation in the system with
insufficient regulation capacity.
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security. Figure 4 and Figure 5 present the allowed upper bounds (UB
in the figures) of wind fluctuation in the system with sufficient and
insufficient regulation capacity, where the maximum capacity of wind
power accommodation is the obtained allowed upper bound of wind
fluctuation when adding the wind penalty objective, i.e., the second
line in Eq. 42, to the original objective. Moreover, in the system with
insufficient regulation capacity, change the ramp rates of thermal units
and hydro units as well as the maximum charging and discharging
power of energy storages to 75% of the original.

As shown in Figure 4, although the system with sufficient
regulation capacity can completely accommodate wind power,
partial wind power is still discarded. This is mainly because the
wind fluctuation exceeding the allowed upper bound rarely
appears, and hence these wind powers are discarded to improve
the system flexibility. In addition to, as shown in Figure 5, the
system with insufficient regulation capacity cannot completely
accommodate wind power, and hence the allowed upper bound is
below the forecast upper bound to ensure the system security. To

further validate the effects of the allowed upper bound in improving
the system flexibility, Table 1 compares the optimization results and
MCS results with two wind power accommodation strategies. The
maximum accommodation strategy is to absorb wind power as far as
possible, while the flexible accommodation strategy is that in the
proposed scheduling model. As shown in Table 1, although the
allowed upper bound of wind fluctuation in the flexible strategy is
obviously smaller than the maximum strategy, the discarded wind
power is very slight. This is because the wind fluctuation exceeding the
allowed upper bound rarely appears. Through the flexible
accommodation strategy, the system operation cost is reduced,
which validates the effects of allowed upper bound in improving
the system flexibility.

4.2 Baseline state and affine factors of
regulation resources

Figure 6 presents the baseline outputs of thermal units and
hydro units, and the baseline charging power of energy storages.
Hydro units always operate at the maximum output since they do
not produce fuel costs and carbon trading costs. Thermal units
produce fuel costs and carbon trading costs, and hence, they arrange
the outputs according to the cost-optimal principle. In the
scheduling cycle of the testing case, the load peak is in the front
period, while the load trough is in the latter period. Therefore, the
energy storage is discharged according to the required state in the
front period to realize the peak load shifting and reduce the
operation cost.

Figure 7 and Figure 8 present the affine factors of thermal units,
hydro units, and energy storages for the downward and upward

TABLE 1 Optimization and MCS results with different wind power accommodation strategies.

Regulation capacity Wind accommodation strategy Optimization result MCS result/104$

Cost obj./104$ ∑t
~Ut/100MW Wind curtailment cost Total cost

Sufficient Maximum 11.2604 18.9790 0 11.2470

Flexible 11.2496 13.6560 3.99E-4 11.2388

Insufficient Maximum 11.4066 14.3793 0.0052 11.3824

Flexible 11.3283 12.7087 0.0100 11.3044

FIGURE 6
Baseline states of thermal units, hydro units, and energy storages.

FIGURE 7
Affine factors for the downward source-load uncertainty.
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source-load uncertainty, respectively. Affine factors of regulation
resources are closely related to their incremental cost coefficients.
When the source-load uncertainty fluctuates downward, the system
operation cost is increased. The incremental cost coefficients of
regulation resources satisfy ρ−k,t > ρ−i,t > ρ−j,t, and hence the regulation
priority for the downward source-load uncertainty satisfies: hydro
units > thermal units > energy storages. Since hydro units operate at
the maximum output and have no room for the upward adjustment,
they do not undertake the regulation task for the downward source-
load uncertainty, as shown in Figure 7. During periods t = 1–6, the
source-load uncertainty is relatively small, thermal units have
sufficient regulation capacity, and hence the regulation tasks for the
downward source-load uncertainty are fully undertaken by the
thermal units. While during periods t = 7–12, the regulation
capacity of the thermal units is insufficient, and hence energy
storages participate in the regulation for the downward source-load
uncertainty. When the source-load uncertainty fluctuates upward, the
system operation cost is decreased. The incremental cost coefficients
of regulation resources satisfy ρ+i,t > ρ+k,t > ρ+j,t, and hence the regulation
priority for the upward source-load uncertainty satisfies thermal
units > energy storages > hydro units. As shown in Figure 8,
during periods t = 1–7, thermal units completely undertake the
regulation task for the upward source-load uncertainty, while
energy storages and hydro units participate in the regulation for

the upward source-load uncertainty during next periods t = 8–12.
As indicated in the simulation results, the LSRO reasonably arranges
the affine factors, according to the incremental cost coefficients of
regulation resources, and thus it can reduce the system incremental
cost in the adjustment state.

Moreover, the existing AGC system usually utilizes units for the
regulation. Due to the rapid adjustment speed, energy storages can
participate in the AGC system to regulate the source-load uncertainty.
To validate the effects of energy storages in the regulation, Table 2
compares the optimization results and MCS results without and with
the regulation of energy storages.

4.3 Comparison of different robust methods

In order to further verify the economic efficiency of the LSRO, we
compare it with LCRO and LDRO. The robust methods all optimize
the allowed upper bound of wind fluctuation. The difference of these
three robust methods is that, LSRO optimizes the expected cost
under the empirical distribution of the source-load uncertainty,
LCRO minimizes the baseline cost and maximizes the allowed
upper bound of wind fluctuation, and LDRO minimizes the
expected cost under the worst-case distributions of the source-
load uncertainty. As shown in Table 3, LCRO minimizing the
baseline cost ignores the impact of the adjustment process on the
operation cost, and hence its adjustment is uneconomical. LDRO
minimizes the expected cost under the worst-case distributions,
however, the worst-case distributions rarely appear, and hence
LDRO actually sacrifices the economic efficiency in general
distributions for robustness in worst cases. The empirical
distribution is the fitting of the historical scenarios, which is
closest to the real distribution of the source-load uncertainty, and
hence LSRO shows the best economic efficiency.

4.4 Impacts of estimate point numbers

This paper upgrades the traditional three-point estimation to
multi-point estimation. The estimate point numbers are set at 3,

FIGURE 8
Affine factors for the upward source-load uncertainty.

TABLE 2 Optimization and MCS results without and with the regulation of energy storages.

Storage regulation Optimization result MCS result/104$

Cost obj./104$ ∑t
~Ut/100MW Wind curtailment cost (E) Total cost

Without 11.2653 12.8578 6.76–4 11.2519

With 11.2496 13.6560 3.99–4 11.2388

TABLE 3 Comparison of robust methods in the IEEE 39-node system.

Robust method Optimization result MCS result/104$

Base cost./104$ Total cost./104$ Time/s Incremental cost Total cost

LCRO 11.1815 11.1815 12 0.1210 11.3025

LDRO 11.1856 11.5731 16 0.0648 11.2503

LSRO 11.1815 11.2496 24 0.0572 11.2388
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5 and 7, respectively and results with different numbers are compared.
Figure 9 shows the allowed upper bound of wind fluctuation obtained
by multi-point estimation with different point numbers. The
maximum cumulative distribution function covered by estimate
points in three-point estimation, five-point estimation, and seven-
point estimation are 0.9584, 0.9979, and 0.9999, respectively. The
distribution of uncertain variables covered by three-point estimation is
limited, while the uncertainty distribution covered by five-point
estimation and seven-point estimation is large enough. Therefore,
the allowed upper bound of wind fluctuation obtained by three-point
estimation is much smaller compared to that obtained by five-point
estimation and seven-point estimation. In addition, Table 4 compares

the results of optimization andMCSwith different point numbers, and
it can be seen that there is little difference between the results.
Considering that the seven-point estimation can cover the
maximum distribution of uncertain variables, and the approximate
degree of the expected value evaluation generally enhances with the
increase in the point number (Li X et al., 2015), the estimate point
number is set at 7 in this paper to ensure the robustness of the multi-
point estimation method.

4.5 Validation of solving methods

As indicated in subsection 3.2, AO is a sub-optimal method, whose
optimization is related to initialization. This paper evenly sets the
confidence level corresponding to initialization and updates the initial
value of the allowed upper bound of wind fluctuation as Eq. 51. The
results of optimization and MCS associated with the confidence level
are presented in Table 5. Generally, the obtained allowed upper bound
of wind fluctuation decreases with decrease in the confidence level.
When the confidence level is high, the obtained allowed upper bound
is large, and hence the wind curtailment is small. However, the system
flexibility is affected due to excessive wind power accommodation, and
thus the system operation cost increases. As the confidence level
decreases, the obtained allowed upper bound decreases, the system
flexibility improves, and the system operation cost is reduced.
However, when the confidence level reaches 97.5%, the obtained
allowed upper bound is too small, and hence the wind power
accommodation is inadequate and the system operation cost
gradually increases. Considering that the wind power prediction

FIGURE 9
Allowed upper bound (UB) of wind fluctuation obtained with
different point estimations.

TABLE 4 Optimization and MCS results with different point numbers.

Point number Optimization result MCS result/104$

Base cost/104$ Total cost/104$ Time/s Incremental cost Total cost

3 11.1816 11.2276 20 0.0564 11.2380

5 11.1815 11.2467 16 0.0574 11.2389

7 11.1815 11.2496 24 0.0572 11.2388

TABLE 5 Optimization and MCS results with different confidence levels.

Confidence level Optimization result MCS result/104$

Obj./104$ ∑t
~Ut/100MW Wind curtailment cost Total cost

100% 11.2581 17.8611 3.83E-6 11.2452

99.9% 11.2524 14.8582 2.47E-4 11.2408

99.7% 11.2496 13.6560 3.99 E-4 11.2388

99.5% 11.2479 12.9788 5.65 E-4 11.2377

99.0% 11.2460 11.8862 0.0011 11.2364

98.5% 11.2466 11.1199 0.0017 11.2359

98.0% 11.2473 10.4775 0.0024 11.2359

97.5% 11.2477 9.9939 0.0031 11.2362

97.0% 11.2481 9.5977 0.0039 11.2366
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accuracy has a certain degree of error, the confidence level can be set at
99.7% to absorb wind power as far as possible without compromising
the system’s flexibility.

In addition, the integer variables of charging/discharging state
of energy storages are addressed with the estimation–correction
strategy. Table 6 compares the optimization results with different
strategies for the integer variables. The precise strategy takes the
state variable of energy storage as variables in the optimization,
and hence the scheduling problem is formulated as an iterative
mixed integer quadratic constraint programming, which takes a
long time to solve. The estimation stage relaxes the state variables,
and the correction stage directly fixes the state variables as
parameters, according to the results obtained in the estimation
stage. Therefore, the scheduling problem is formulated as an
iterative quadratic constraint programming with the
estimation–correction strategy, and the computation time is
short. On the other hand, the theoretically optimal objectives of
these three strategies satisfy the following relations: Festimation <
Fprecise < Fcorrection. Since the deviation between the optimization
results of the estimation stage and the correction stage is small, it
can be deduced that the estimation–correction strategy can find a
good enough solution.

4.6 Impacts of carbon trading price

Carbon trading cost is an important part of the proposed real-
time low-carbon scheduling. To explore the influence of the carbon
trading price on the scheduling, this subsection changes the carbon
trading price from 0 to 60$/t and obtains the variation trend of the
operation cost and carbon emission of the system relative to the
carbon trading price. As indicated in Figure 10, carbon trading has
little impact on the system operation when the carbon trading price
is low, and thus the operation cost and carbon emissions change
slightly. With the increase in the carbon trading price, the proportion
of the carbon trading cost in the operation cost increases, the system
gradually utilizes the low-carbon resources for power generation,
and the carbon emission show a significant downward trend. When
the carbon trading price rises to 26$/t, the system can make profits by
the carbon trading mechanism, and the operation cost gradually
decreases. When the carbon trading price rises to 40$/t, the carbon
reduction space of the system becomes smaller, and the downward
trend of carbon emissions slows down.

5 Simulation in large-scale systems

5.1 Simulation results

To further verify the effectiveness of LSRO, supplementary
simulations are performed in a large-scale IEEE 118-node power
system. The system has seventeen thermal units, two hydro units,
and four energy storages with 40MW capacity. Furthermore, six
wind farms are deployed. As shown in Table 7, the results in the IEEE
118-node system are similar to those in the IEEE 39-node system.
LCRO focuses on the baseline cost while ignores the influence of the
adjustment on the operation cost, and the adjustment of the method
is uneconomical. LDRO minimizes the expected cost under the
worst-case distribution, in view of the extremely low probability
of the worst-case distribution, and the method is not effective
enough in common distributions. Compared to LCRO and
LDRO, LSRO minimizes the expected cost under the empirical
distribution of the source-load uncertainty. In view of that, the
empirical distribution is closest to the real distribution of the
source-load uncertainty, and LSRO shows the best economic
efficiency.

5.2 Further discussion on the robust method

In fact, the performance of LSRO is related to the accuracy of
the empirical distribution of the source-load uncertainty. If the

TABLE 6 Optimization results with different strategies for the state variables of
energy storages.

Disposal for storage Obj./104$ Time/s

Precise >300s

Estimation 11.2490 14

Correction 11.2496 24

FIGURE 10
Variation trend in operation cost and carbon emissions relative to
the carbon trading price.

TABLE 7 Comparison of robust methods in the IEEE 118-node system.

Robust method Optimization result MCS result/104$

Base cost./104$ Total cost./104$ Time/s Incremental cost Total cost

LCRO 18.0691 18.0691 42 0.2103 18.2794

LDRO 18.0727 18.8081 72 0.1240 18.1967

LSRO 18.0692 18.2037 83 0.1090 18.1782

Frontiers in Energy Research frontiersin.org11

Qiu et al. 10.3389/fenrg.2023.1137305

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2023.1137305


scale of historical scenarios is not huge enough or the adopted
fitting method to determine the empirical distribution has a poor
performance, the empirical distribution may deviate far from the
real distribution. Therefore, the performance of the robust method
in other distributions is affected in these cases. To improve the
robustness of LSRO, our future work will combine the empirical
distribution and worst-case distribution together in the robust
method.

6 Conclusion

This paper proposes a real-time low-carbon scheduling for the
wind–thermal–hydro-storage resilient power system based on the
linear decision rule-based stochastic robust optimization. A multi-
step alternate optimization-based convexified solution is
formulated to solve the complex scheduling problem. The
allowed upper bound of wind fluctuation provides the system
with more flexibility. Monte Carlo simulation shows that very
slight redundant wind power is sacrificed to significantly reduce
the system operation cost. By the stochastic robust optimization,
the regulation task to regulation sources is reasonably arranged
according to the incremental cost coefficients of resources, and
thus an economically effective adjustment is realized. The
comparison of the adopted stochastic robust optimization with
conventional robust optimization and distributionally robust
optimization in two case studies validates the economic
efficiency of the method. Numerical simulations indicate that
the performance of alternate optimization is related to
initialization, and the confidence level concerning the
initialization can be reasonably set to absorb wind power as far
as possible without compromising the system flexibility.

The empirical distribution of the source-load uncertainty may not
be an accurate estimation of the real distribution, when the number of
historical scenarios is inadequate or the fitting method is inaccurate.
Our future work will combine the empirical distribution and worst-
case distribution to improve the applicability of the linear decision-
based robust method.
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