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ABSTRACT

A four-dimensional variational Doppler radar analysis system (VDRAS) has been developed and implemented
at a weather forecast office to produce real-time boundary layer wind and temperature analyses using WSR-
88D radar data. This paper describes significant changes made to convert VDRAS from a research tool to a
real-time analysis system and presents results of low-level wind and temperature analysis using operational radar
data. In order to produce continuous analyses with time, VDRAS was implemented with a cycling procedure,
in which the analysis from the previous cycle is used as a first guess and background for the next cycle. Other
enhancements in this real-time system include direct assimilation of data on constant elevation angle levels,
addition of mesonet observations, inclusion of an analysis background term, and continuous updating of lateral
boundary conditions.

An observed case of a line of storms and strong outflow is used to examine the performance of the real-time
analysis system and its sensitivity to various system changes. The quality of the analysis for this case is examined
by comparing the subsequent 90-min forecast with the observed radial velocity. It is shown that the forecast
initialized using the VDRAS analysis outperforms persistence and a forecast using a mesoscale analysis. The
accuracy of the retrieved wind in six convective cases is also verified against automated weather reports from
commercial aircraft data. The verification shows an average difference of 3.3 m s21 over these six cases.

1. Introduction

As the resolution of numerical weather prediction
models steadily increases, it is recognized that radar
observations will play an important role in future con-
vective- and mesoscale data assimilation systems. The
Weather Surveillance Radar-1988 Doppler (WSR-88D)
network provides measurements of radial velocity and
reflectivity with high spatial and temporal resolution.
While the WSR-88D network has had a profound impact
on severe weather detection and warning in National
Weather Service (NWS) Forecast Offices (NWSFOs,
Telesetsky 1995), its role in initializing storm-scale nu-
merical prediction models and quantitative precipitation
forecasting remains to be explored. One of the major
challenges in using radar data in short-term forecasting
is the retrieval of unobserved meteorological fields such
as the crossbeam velocity, temperature, and micro-
physical variables. Due to the distant spacing of the
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radars in the WSR-88D network, it is impossible to
obtain dual-Doppler coverage in most areas. Hence, the
feasibility of storm-scale weather prediction will depend
on whether the detailed meteorological fields can be
successfully retrieved from single-Doppler radar data.

In the last decade, active research has been under-
taken to infer detailed meteorological information from
single-Doppler radar data. Most of the methods devel-
oped so far focus on the determination of three-dimen-
sional boundary layer winds using data from clear air
returns (Rinehart 1979; Tuttle and Foote 1990; Zhang
and Gal-Chen 1996; Xu et al. 1993; Laroche and Za-
wadsky 1994; Shapiro et al. 1995). Although the indi-
vidual approaches are different, these methods all rely
on the assumption that reflectivity (or radial velocity)
acts as a passive tracer and hence can be tracked to
determine the flow field. The retrieved boundary layer
winds can then be used to derive the thermodynamic
fields with the aid of the Navier–Stokes equations (Gal-
Chen 1978; Hane and Scott 1978).

Methods that combine observations and the full set
of fluid dynamics equations have also been examined
in recent years. A forward insertion procedure was de-
veloped by Liou (1990) that consists of radial velocity
insertion, model prediction, and thermodynamic retriev-
al. Another technique that exploits the inclusion of a
numerical model in the retrieval is the four-dimensional
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variational (4DVAR) adjoint technique (Sun et al.
1991). By applying optimal control theory, this method
seeks a solution that satisfies the fluid dynamic equa-
tions, while simultaneously finding a best fit to all the
observations in a specified assimilation window. Unlike
the simple techniques mentioned above, the 4DVAR
technique can retrieve not only the three-dimensional
boundary layer wind but also the thermodynamical
fields.

The 4DVAR adjoint retrieval technique was first ex-
amined by Wolfsberg (1987) and Sun et al. (1991) using
a Boussinesq model and simulated boundary layer tur-
bulence data. The work was one of the first applications
of the adjoint method to atmospheric data assimilation
(Le Dimet and Talagrand 1986; Lewis and Derber 1985;
Courtier and Talagrand 1987; Talagrand and Courtier
1987). The four-dimensional variational Doppler radar
analysis system (VDRAS) was improved and tested on
observations of a gust front produced by a thunderstorm
outflow (Sun and Crook 1994) and gave promising re-
sults. VDRAS was further developed to retrieve the dy-
namical and microphysical structure within convective
storms. Sun and Crook (1997, 1998) showed that
VDRAS was able to retrieve the three-dimensional
wind, thermodynamical, and microphysical fields in a
Florida airmass storm. Wu et al. (2000) applied this
system to a supercell storm observed during the Mi-
croburst and Severe Thunderstorm (MIST) project and
found it was able to retrieve all the prominent features
of the storm although problems existed in the detailed
structure of the retrieval. Obviously, further study is
required before VDRAS with microphysical retrieval
can be used operationally.

With the possibility of retrieving high-resolution
fields from operational Doppler radars, methods are
presently under development for using these data to
forecast thunderstorm initiation and evolution. Attempts
to initialize storm-scale numerical models using re-
trieved fields from single-Doppler radars and to forecast
thunderstorm evolution have been made by a number
of investigators (Weygandt 1998; Gao et al. 1998). We
have recently performed a 2-h, after-the-fact, forecast
of the Buffalo Creek, Colorado, flash flood case using
initial conditions obtained from VDRAS (Warner et al.
2000). Although a number of problems remain to be
investigated, the results show some promise. Besides
the numerical forecasting technique, a number of knowl-
edge-based expert systems are also under development
for very short-term forecasting of thunderstorms (Rob-
erts et al. 1999). The retrieved wind and temperature
information can be one of the important inputs for these
systems.

The simulated data study and the applications of
VDRAS to data from research radars have provided us
a good understanding of the performance and sensitivity
of VDRAS under various conditions. However, our ul-
timate goal is to retrieve the unobserved meterological
variables from operational radar data. With current com-

puting power, it is not yet possible to assimilate oper-
ational radar data observed in the entire troposphere
using a full cloud model. Therefore, as a first step in
the real-time application of VDRAS, we implemented
a dry version of the VDRAS system to assimilate bound-
ary layer data and focused mainly on the clear air returns
in the low level. In the summer of 1998, the dry version
of VDRAS was implemented in a real-time setting at
the NWS Washington, D.C.–Baltimore weather forecast
office at Sterling, Virginia, as one of the major com-
ponents of National Center for Atmospheric Research’s
(NCAR) Thunderstorm Nowcasting System [also re-
ferred to as the Auto-Nowcaster (Roberts et al. 1999)].
In addition to providing a display of the current low-
level wind for the forecasters, the analysis wind and
convergence field can also be input to the Auto-Now-
caster. VDRAS was run on a dedicated PC in the forecast
office to produce boundary layer wind and temperature
analyses by assimilating data from the KLWX WSR-
88D radar at Sterling. Since real-time analysis using
operational radar data has different considerations from
research-oriented studies, significant changes needed to
be made to VDRAS before and during the field pro-
grams. One of the major changes to VDRAS was the
implementation of a continuous 4DVAR cycling pro-
cedure. Other changes include direct assimilation of data
on constant elevation angles, addition of an analysis
background, inclusion of mesonet data, and modifica-
tion of the boundary conditions.

In this paper, we describe the recent improvements
in the real-time system and show some results using
WSR-88D radar observations. In section 2, we give a
brief description of the VDRAS technique with a focus
on changes that have been made in the real-time system.
In section 3, the performance of the retrieval system is
examined using a case of a line of storms and a thun-
derstorm outflow. In section 4, verification of the re-
trieved fields using automated weather reports from
commercial aircraft (ACARS) is discussed. Conclusions
are drawn in section 5.

2. Description of the 4DVAR analysis technique

VDRAS was designed to assimilate a time series of
radar observations (radial velocity and reflectivity) from
single- or multiple-Doppler radars. A cloud-scale nu-
merical model is used to represent the evolution of the
motion in the atmosphere. In the dry version of VDRAS
that was used in our real-time application, the numerical
model includes four prognostic equations: one each for
the three velocity components (u, y , and w), and the
potential temperature (u). The pressure (p) is diagnosed
through a Poisson equation. In order to assimilate re-
flectivity data, an additional equation, the conservation
equation for reflectivity (dBZ), is included in the nu-
merical model (Sun and Crook 1994). The lateral bound-
ary conditions of the numerical model are open, such
that the inflow is prescribed (see section 2e for the spec-
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ification of the inflow boundary conditions) and the out-
flow is extrapolated using the closest inner two grid
points. The top and bottom boundary conditions are set
to zero for vertical velocity, and all other variables are
defined such that their derivatives vanish.

By fitting the model to observations over a specified
time period, a set of optimal initial conditions of the
constraining numerical model can be obtained. A cost
function, which measures the misfit between the model
variables and both the observations and a prior estimate,
is defined by

J 5 Jo 1 Jb 1 Jp. (2.1)

The first term Jo in Eq. (2.1) represents the discrep-
ancy from the radar observations. It can be written in
a general vector form as

o T 21 oJ 5 (Hx 2 y ) R (Hx 2 y ), (2.2)Oo k k k k
0#k#N

where k is the time index, xk is the state vector, and
is the observation vector. In addition, H is the ob-oyk

servation operator, and R is the error covariance matrix,
which includes two sources of error: observation error
and error in the observation operator. In our current
system, the matrix R is assumed diagonal (discussion
concerning this matrix will be given in section 5). Since
xk and can be different variables and on differentoyk

grids, the observation operator H represents both an an-
alytical function that relates the model variables (i.e.,
u, y , and w) to the observation variables (i.e., radial
velocity y r) and a transformation between the different
grid meshes. Under the assumption that the errors in the
observations are not correlated, Eq. (2.2) can be written
in the following form:

o 2 o 2J 5 {h [F(y ) 2 y ] 1 h [F(Z ) 2 Z ] }, (2.3)Oo y r r z
s,t

where and Zo represent the input radial velocity andoy r

reflectivity; y r and Z are their model counterparts, re-
spectively; F stands for the function that transforms a
variable from its model grid to the input data grid and
will be described later in this section; and hy and hZ

are weighting coefficients for radial velocity and re-
flectivity, respectively, and they are specified based on
the typical scales of these fields. They were, respec-
tively, set to 1 and 0.5 in the Sterling field testing and
in all of the experiments presented here unless they are
otherwise specified. Here, s and t stand for the spatial
and temporal extents of the assimilation window. Re-
flectivity is one of the model prognostic variables while
the model radial velocity has to be computed from the
model Cartesian velocity components using the follow-
ing relation:

x 2 x y 2 y z 2 zrad rad rady 5 u 1 y 1 (w 2 V ). (2.4)r Tr r r

In (2.4), r represents the distance between a model grid
point (x, y, z) and the radar location (xrad, yrad, zrad) and

VT is the terminal velocity for rain. The terminal velocity
is estimated using the reflectivity data through the fol-
lowing relation (Sun and Crook 1997):

VT 5 5.4 3 100.007 14(dBZ243.1). (2.5)

The second term, Jb, in Eq. (2.1) is the background
term. It measures the discrepancy from the previous
analysis or forecast and is defined by

b T 21 bJ 5 (x 2 x ) B (x 2 x ),b 0 0 0 0 (2.6)

where is the background state vector and B is thebx0

background error covariance matrix. A common prac-
tice in data assimilation is to use the numerical forecast
from the previous analysis–forecast cycle as the back-
ground of the current cycle. However, in our system,
we use the analysis from the previous 4DVAR cycle as
the background since our cycle consists of analysis only.
Although the use of the previous analysis generates a
correlation between the background and the observa-
tions, this correlation is neglected in the cost function.
In the next section, we will show that using an analysis
background can produce better results than using a back-
ground from a previous forecast.

The third term, Jp, is the spatial and temporal smooth-
ness penalty term, which takes the following form:

2 2 22]A ] A ]Aj j j
J 5 a 1 a 1 aOp 1i 2i 3i21 2 1 2 1 2]x ]x ]ts,t,i, j i i

22] Aj
1 a , (2.7)4i 21 2]t

where Aj represents any of the model-dependent vari-
ables and xi represents the spatial dimension (x, y, z).
Similar smoothness penalty functions have been pre-
viously used by other investigators (e.g., Wahba and
Wendelberger 1980; Long and Thacker 1989). The
weighting coefficients in the penalty terms are deter-
mined in a trial-and-error fashion. More discussion on
the determination of these coefficients will be given in
the next section. Since the background error term is used
in the system, the addition of the spatial smoothness
penalty term may seem redundant. In the next section,
we will compare the effects of these terms and give
some discussion.

a. Data preprocessing and quality control

The WSR-88D level II data have a range gate spacing
of 250 m for radial velocity and 1 km for reflectivity
and an azimuth spacing of 18 for both variables. In storm
mode, each radar volume contains nine elevation scans:
0.58, 1.58, 2.48, 3.48, 4.38, 6.08, 9.98, 14.68, and 19.58.
The resolution in the vertical direction is range depen-
dent, becoming rather poor at large distances from the
radar. At a range distance of 75 km, there are only three
vertical data points in the lowest 2.6 km, which is the
depth of the analysis domain. However, the horizontal
resolution of the data is much better than that of the
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model grid. Therefore, the original radar data are in-
terpolated to a 1-km Cartesian grid in the horizontal
before they are read by VDRAS. Most of the quality
control procedures are performed on the 1-km data. Af-
ter quality control, the data are further interpolated to
the model 3-km grid in the horizontal while remaining
on the constant elevation angle levels in the vertical.

Velocity unfolding is performed on the data ingest
stream using the algorithm developed by Jing and Wie-
ner (1993). In order to remove data contaminated by
nearby ground clutter as well as clutter resulting from
anomalous propagation, any velocity data with values
less than 0.25 m s21 and the corresponding reflectivity
data were removed, since one of the distinct features of
ground clutter and anomalous propagation is a velocity
near zero. A final quality check is to remove any re-
maining spurious data by computing the deviation of
each data point from its local mean. Within a specified
local region, a mean of all the data points is calculated.
The data value at the central point is compared to this
mean, and if the difference exceeds a specified value,
this central value is removed.

Since the reflectivity return from hydrometeors is not
conserved, these data need to be removed or a source
term added to the reflectivity equation. For simplicity,
we only account for the effect of precipitation fallout.
We use a threshold value of 12 dBZ to distinguish re-
flectivity return from clear air and from hydrometeors;
that is, any reflectivity data greater than 12 dBZ are
regarded as returns from hydrometeors. Tests have
shown that either removing the data from hydrometeor
return or using the parameterized source term does not
make a significant difference due to the fact that the
reflectivity data plays a relatively unimportant role in
the retrieval, as will be shown in the next section.

b. Direct assimilation of PPI data

An important improvement to VDRAS was to enable
it to read and assimilate radar data on constant elevation
levels in the vertical. Due to the poor vertical resolution
of the WSR-88D data, a vertical interpolation of the
data from the constant elevation levels to the model
Cartesian levels can result in large errors. The direct
assimilation of the plan position indicator (PPI) data
with no vertical interpolation allows an optimal inter-
polation within the context of the 4DVAR formulation.
For consideration of computational efficiency, however,
we did not choose to assimilate the radar data in the
original spherical polar coordinate sampling grid. In-
stead, on each constant elevation angle surface, data
were interpolated from the 2D polar sampling grid to a
2D Cartesian grid. The justification for this processing
procedure is that the poorest polar sampling resolution
of the radar data (approximately 2 km at 120 km from
the radar, which is the farthest range distance in the
analysis domain) is still better than the resolution of the

model grid (3 km). From now on, we will refer to the
interpolated PPI data as observations.

Since the input PPI data are on constant elevation
levels, an observation operator H must be formulated
to map the model variables from the model grid to the
data grid such that the differences between the obser-
vations and the model solution can be computed in the
cost function. Based on radar principles, the following
relation is used to transform the data from the model
vertical levels to the elevation angle levels:

Gy DzO r
y 5 F(y ) 5 , (2.8)r,e r

GDzO
where y r,e stands for the radial velocity on an elevation
angle level and Dz is the model vertical grid spacing.
The function G represents the power gain of the radar
beam and is given by

G 5 ,2 22z /(2b )e (2.9)

where z is the distance from the center of the radar beam
and b2 is the beam half-width. The summation is over
the model grid points that lie in a radar beam.

In previous versions of VDRAS, radar data were in-
terpolated from the original spherical polar grid to the
3D Cartesian model grid. When comparing the analysis
results obtained from the assimilation of the PPI data
with the Cartesian data, it was shown that a closer fit
to the observations (as defined in each case) was
achieved and a smoother analysis produced.

c. Modeling the background error statistics

According to its definition, the background error co-
variance matrix B in Eq. (2.6) can be found by taking
the expectation value of differences between the true
state of the atmosphere and the corresponding back-
ground analysis of the field:

Bij 5 ^( 2 )( 2 )&.t b t bx x x xi i j j (2.10)

However, it is impossible to define B directly from
its definition unless the true state of the atmosphere is
known. Also, it is very difficult to work with a full
matrix B since the matrix is of the order of n2 where n
is the number of 3D grid points in the analysis. For
these reasons, simplifications and estimates must be
sought to represent the background error statistics. The
elements of B can be normalized by the product of stan-
dard deviations of the errors at the points i and j to yield
the error correlation matrix. In 4DVAR radar data as-
similation, the observations are typically sampled at a
better resolution than the model resolution and the use
of the dynamical model causes the analysis fields to
become correlated; hence, the background error co-
variance plays a less important role than in 3DVAR.
Therefore, we have chosen to use a relatively simple
correlation model that mainly acts as a filter to smooth
out random noise. This correlation model uses a ho-
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FIG. 1. Distribution of background error correlation after two passes
of the filter (solid line) compared with that of a Gaussian function
(dashed line).

mogenous horizontal structure function and neglects the
vertical correlation. In the following, we first describe
how the error correlation is modeled and then how the
error variance is specified.

Let D denote the standard deviation diagonal matrix
and C denote the error correlation matrix. The back-
ground error covariance matrix can be written as

B 5 DCD. (2.11)

Now we employ an exponential function to define the
elements of the correlation matrix:

|x 2 x | |y 2 y |i j i j
C 5 exp 2 exp 2ij 1 2 1 2l lx y

5 C C . (2.12)xij yij

The matrix C defined by Eq. (2.12) can be easily in-
verted because of the separability in x and y. Using the
Kronecker product, we have

C21 5 J .21 21C Cx y (2.13)

The square roots of or can then be found by a21 21C Cx y

singular vector decomposition (the existence of the
square root of the matrix ensures its positive definite-
ness) and can be truncated to make a banded matrix Fx

or Fy. The background term can now be expressed as
b T 21T T T 21 bJ 5 (x 2 x ) D F F F F D (x 2 x ).b 0 0 x y x y 0 0 (2.14)

The inverted and truncated matrix functions as a re-
cursive filter. If the filter is applied more than once, the
resultant error correlation structure (the inversion of

FxFy) is pseudo-Gaussian. The error correlation dis-T TF Fx y

tribution is shown in Fig. 1 for the case of a filter with
length scale (lx, ly) equal to 2 applied twice in both x
and y directions (solid line). Also shown in this plot is
the distribution of a Gaussian function centered at x0 5
25 with 2s 2 5 20 where s represents the standard de-
viation.

The main reason for using this error covariance model
is its simplicity. However, it should be noted that one
needs to be careful when using the method of direct
inversion of the structure function. The scaling length
has to be substantially smaller than the total number of
grid points in the x or y direction. We have found that
the scaling length cannot be greater than 4 in order to
avoid ill-conditioning of the cost function. Courtier
(1997) proposed an incremental 4DVAR algorithm in
which the direct inversion of the background error co-
variance matrix can be avoided by change of control
variables. However, the drawback of this algorithm is
that the tangent linear model rather than the nonlinear
model must be used for the forward integration.

The standard deviation matrix D is estimated using
the radial velocity observations. The radial velocity ob-
servations are interpolated to the 3D Cartesian model
grid, and then the error variance of the analysis is com-
puted using the observations in the current cycle. This
error variance field is used for all the model variables,
but a constant scaling factor is applied to the vertical
velocity and the potential temperature fields due to the
fact that these variables have smaller typical values.

d. Mesoscale analysis

Since radar observations are concentrated within a
certain distance of the radar, data voids are often present
in the model domain. A background estimate can be
used to fill these data voids and to provide a first guess
for the minimization procedure. In addition, the back-
ground estimate is necessary for specification of the
lateral boundary conditions. In our analysis system, the
background estimate is provided by combining a ve-
locity azimuthal display (VAD; Lhermitte and Atlas
1961) analysis with a surface mesonet analysis using a
least squares fitting technique. The details of the VAD
analysis and the mesonet analysis will be given later in
this section. This background estimate is used to provide
a first guess for the cold start cycle and boundary con-
ditions for the subsequent cycles. The radius of influence
in the least squares fitting is set to the distance of one
vertical grid point (375 m) on the first level and three
grid points on the levels above. We used a smaller length
scale in the lowest level in order to maintain the surface
wind information as much as possible.

The mesonet analysis is performed using the Barnes
interpolation technique (Barnes 1964). Since the Barnes
analysis is sensitive to the length of the radius of influ-
ence (e.g., Lu and Browning 1998), we have fine-tuned
this parameter to make it fit to the data well while giving
a smooth analysis. It was found that a value that is 1.5
times of the average spacing (about 16 km) of the ob-
servations produced the desired results.

The VAD analysis uses data from the first radar vol-
ume in the assimilation window to provide an estimate
of the areal-average wind profile, which was first de-
scribed by Lhermitte and Atlas (1961). They showed
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FIG. 2. Sketch of the locations (black dots) where the VAD wind
is computed using the PPI VAD method. The solid lines represent
the model vertical levels and the dashed line stands for an elevation.

FIG. 3. Illustration of 4DVAR cycles. The radar volumetric input data are shown by the arrows
above the time axis. Below the time axis, the first guess and the analyses performed at the beginning
of each cycle are described.

how to determine the mean horizontal wind at any range
from the radar as the radar beam sweeps through a full
circle. Two schemes of VAD analysis are used in
VDRAS. The first scheme is referred to as constant
elevation VAD in which the VAD velocity VVAD is cal-
culated using data from a constant elevation angle. As
illustrated in Fig. 2, data at different ranges from one
elevation angle are used to compute the velocity at dif-
ferent heights. The second scheme is referred to as con-
stant range VAD. In this scheme, the PPI 1-km input
data are interpolated to the Cartesian grid in the vertical.
The VAD velocity at different heights is then calculated
at a specified constant range. In section 3, we will com-
pare the performance of these two schemes.

It should be noted that the procedure described above
for assimilating mesonet observations is not optimal. A
superior technique would be to combine both the radar
data and the mesonet observations through the opti-
mization process. Since these two types of observations
have significantly different resolutions, a background
covariance model that has variable correlation length
should be developed. Active research in this area is
being conducted (J. Purser 1999, personal communi-
cation). We plan to develop a better algorithm for as-
similation of mesonet observations in the near future.

e. Lateral boundary conditions

Although it is theoretically possible to retrieve the
boundary conditions by including them as control var-
iables, it is practically difficult mainly because of data

inadequacy. The boundary conditions of the numerical
model are therefore prespecified. The model requires
the specification of the horizontal wind at inflow. The
outflow boundary conditions are extrapolated using the
closest two inner grid points. The lateral boundary con-
ditions of vertical velocity and potential temperature are
defined such that their derivatives vanish. In the current
version of VDRAS, the inflow boundary conditions are
determined by a combination of the along-beam com-
ponent of the radial velocity observation and the cross-
beam component of the background field. On the bound-
ary points where no observations are available, the wind
from the mesoscale analysis is used to specify these
boundary conditions. We have found that the update of
the inflow boundary conditions using the radial velocity
observations has a significant impact on the accuracy
of the retrieval.

f. Analysis procedure

The 4DVAR analysis is performed using a continuous
cycling procedure. The length of the assimilation win-
dow in each analysis cycle is 12 min, consisting of three
radar volumes in storm mode or two radar volumes in
clear air mode. An optimal trajectory is obtained from
each cycle using data within the assimilation window.
Only the analysis fields at the final time of the assim-
ilation window are written to disk and displayed. These
analysis fields are also used as first-guess fields and
background in the next analysis cycle. Figure 3 illus-
trates how the analysis proceeds in time assuming the
radar is operating in storm mode. If the analysis system
does not find any previous analysis within a specified
window (24 min, as in the case of the 4DVAR cycle 1
in Fig. 3), the mesoscale analysis is used as the first
guess. In each analysis cycle, an optimal analysis is
obtained by minimizing the cost function using a lim-
ited-memory quasi-Newton iterative procedure (Liu and
Nocedal 1988). In each iteration, the numerical model
is integrated forward and the cost function computed.
The adjoint model is then integrated backward and the
gradient of the cost function is obtained. A practical
convergence criterion is to check if Jm 2 Jm21 is smaller
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FIG. 4. The VDRAS analysis domain (thick black square) within
the nowcasting domain. The position of the KLWX radar, the state
borders, and the mesonet stations are also shown.

than a specified number where m represents the iteration
number. We have found that as far as real data are con-
cerned, the cost function generally levels out between
30 and 50 iterations. Therefore, in the real-time analysis
system, we set the number of iterations to 40.

Radar data are collected through sequential scanning.
Although in most traditional radar analysis methods, it
is a common practice to assume that the radar volume
is a snapshot at a given time, we have shown that the
4DVAR technique is able to assimilate the data at its
actual observation time (Sun and Crook 1998; Wu et
al. 2000). However, a longer assimilation window is
required if the data in each radar volume are assimilated
sequentially rather than assuming a single observational
time. Let n denote the number of radar volumes to be
assimilated in each analysis cycle and Dt the time span
of each radar volume, then the assimilation window is
nDt for sequential assimilation but (n 2 1)Dt for single
time assimilation. Therefore, in order to save compu-
tational time, each radar volume is assimilated by as-
suming a single observational time.

3. Results

In the 1998 field test, the VDRAS analysis domain
covered an area of 150 3 150 km2 centered at a location
southeast of the KLWX radar at Sterling. Since our main
focus was to produce boundary layer wind and tem-
perature analyses, a shallow analysis domain with a
depth of 2.6 km was used. The second reason for using
a shallow domain is computational efficiency. However,
when convection is predominant in the analysis domain,
the assumption of an impermeable upper boundary is
violated. This can lead to spurious results close to the
upper boundary if the data covers the entire depth of
the domain. If the data cover only the lower portion of
the domain, the upper portion of the domain will act as
a sponge layer. In both cases, we can still achieve a
good fit in the lower levels, which are our main focus
in the real-time application. The grid resolution of the
analysis domain was 3 km in the horizontal and 375 m
in the vertical with a grid mesh of 50 3 50 3 7. Figure
4 shows the analysis domain (thick black square box),
the location of the KLWX radar, and the mesonet sta-
tions.

During the summer of 1998, the WSR-88D radar at
Sterling observed several severe storm events. Most of
these were associated with strong boundary layer con-
vergence zones that VDRAS successfully retrieved. Af-
ter the field test, a number of new developments (de-
scribed in section 2) were incorporated into the analysis
system. The archived Sterling 1998 data were reex-
amined and several periods in which severe weather
occurred were rerun. The results from these cases were
verified using ACARS data from flights taking off and
landing at Dulles International Airport. Verification re-
sults will be presented in the next section. In this section,

we present results from one case that occurred in the
afternoon of 15 June 1998.

On the afternoon of 15 June 1998, a line of storms
moved into the analysis domain around 1900 UTC. As
the storm system propagated toward the southeast, a new
initiation of storms took place along the thunderstorm
outflow and strong northwesterly winds developed.
There were a number of reports of wind damage in
Charles County, about 30 km south of Washington D.C.
In Fig. 5, the observed reflectivity field at an interval
of around 30 min is presented. It is evident that the
storm went through a rapid development from 2026
(Fig. 5a) to 2057 UTC (Fig. 5b) and then propagated
southeastward at a speed of around 13 m s21.

We ran VDRAS starting from 1934 UTC, which is
shortly after the storm system moved into the analysis
domain. An analysis was produced approximately every
11 min (the time between radar volume scans was about
5.5 min during this period) for a period of about 3 h
consisting of 16 4DVAR analysis cycles. In each anal-
ysis cycle, the minimization was halted at 50 iterations.
In the rest of this section, we will first show results from
a control experiment and then present a number of ex-
periments that were conducted to examine the sensitivity
of the analysis system to the background term, the ex-
clusion of mesonet and reflectivity data, VAD analysis
schemes, and the penalty term. Table 1 lists all the ex-
periments presented in this paper. To compare the qual-
ity of these retrieval experiments, a 90-min forecast was
performed starting with the analysis at 2108 UTC. Fore-
cast velocity fields were then verified against the ob-
served radial velocity.

Both radial velocity and reflectivity data are used in
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FIG. 5. Reflectivity at the 0.58 elevation angle. The contour interval is 10 dBZ. The location of the KLWX radar is
also shown.

TABLE 1. Experiment summary.

Expt
no. Description

1
2
3
4
5
6
7
8

Control experiment
A forecast cycle follows each analysis cycle
PPI VAD analysis is used for mesoscale background
No mesonet data
No reflectivity data
Observation term only
No penalty term
No background term

the control experiment. Continuous assimilation cycles
are performed in which the analysis from the previous
cycle is used as the background. The inflow boundary
conditions are given by a combination of the back-
ground wind and the radial velocity observations as de-
scribed in section 2e. The coefficients a3 and a4 are set
to 0.005 for the horizontal velocity components and 0.01
for the vertical velocity and temperature. The coeffi-
cients a1 and a2 are set to the same value on the bound-
aries and zero otherwise. The choice of these penalty
coefficients was determined empirically. Fortunately,
the retrieval is not especially sensitive to these values
as long as they are within certain ranges because the
penalty term plays a secondary role compared to the
observation term (Sun 1992). As a principle, the penalty
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FIG. 6. Reduction of the cost function (solid line) and the gradient
(dashed line) with respect to the number of iterations.

coefficients should be as large as possible to suppress
random noise but not so large that it dominates the cost
function. The values of the penalty coefficients were
used for all of the experiments presented here and in
the real-time operation during the summer of 1998. Fig-
ure 6 shows the reduction of the cost function (solid
curve) and the gradient (dashed curve) with respect to
the number of iterations in the control experiment. The
plotted data are from one of the 16 analysis cycles, but
they are representative of the behavior of the minimi-
zation process in all of the cycles. The cost function is
reduced by more than 70% of its first-guess value and
the gradient is reduced by two orders of magnitude of
its first-guess value. Although the reduction of the cost
function and the gradient varies in different experi-
ments, we have found that the convergence behavior is
rather similar and no problems in convergence were
experienced in any of the experiments conducted.

The evolution of the low-level horizontal divergence
field calculated from the retrieved wind is shown in Fig.
7 and the retrieved temperature perturbation (from the
horizontal mean) field plotted in Fig. 8. The retrieved
horizontal wind vector field is overlaid on these plots.
As can be seen from Fig. 8, a cold pool with a maximum
cooling of 1.88C is retrieved at 2057 UTC. The cold
pool produced northwesterly winds and strong conver-
gence along the leading edge of the gust front. It is seen
that the temperature perturbation field is highly corre-
lated with the horizontal divergence field. This is typical
for nonhydrostatic flows as implied by the equations of
motion. One of the distinct features of VDRAS is the
temporal continuity of the retrieved fields as exhibited
in Fig. 7, which is primarily due to the use of the dy-
namical model. This temporal continuity is important
for forecasting of the low-level flow.

While the VDRAS analysis shows strong conver-
gence along the leading edge of the gust front, the me-
soscale analysis at 2129 UTC (Fig. 9a) does not show
any of the gust front features (although the wind vector

in the northern half of the analysis domain does turn
from southwesterly to westerly). A slightly more de-
tailed mesoscale analysis field can be obtained by re-
ducing the radius of influence, but noise tends to appear
in the regions where the mesonet stations are sparse.
Although a more advanced technique such as the three-
dimensional variational analysis might be able to gen-
erate a better mesoscale analysis than that shown in Fig.
9a, the degree of detail in the analysis is limited by the
resolution of the mesonet observations. The high res-
olution of the radar observations combined with the
four-dimensional variational analysis technique enables
us to capture more detail in the gust front structure. The
difference vector between the retrieved wind and the
mesoscale analysis wind (Fig. 9a) is presented in Fig.
9b. It shows that the modification of the wind occurs
largely in the region behind the leading edge of the gust
front.

The difference vector as shown by Fig. 9b can be
decomposed into radial and tangential components rel-
ative to the radar. Although the radial component is a
close fit to the radial velocity observation, any tangential
component must be derived through the retrieval pro-
cess. To examine the contribution of the retrieved tan-
gential component to the difference vector, the root-
mean square (rms) of the radial and tangential winds at
each vertical level at 2129 UTC is plotted in Fig. 10a.
This shows that the correction resulting from the tan-
gential component is substantial. To further examine the
tangential wind contribution in the storm outflow region
(defined as the region where the perturbation temper-
ature is less than 08C), in Fig. 9c, the difference vectors
in this subarea are plotted with the observed radial ve-
locity subtracted. The rms of the radial and tangential
winds in the storm outflow subarea are plotted in Fig.
10b and the rms of the radial and tangential components
of the 2D polar divergence are plotted in Fig. 10c. The
greater difference between the radial and tangential
winds in this subarea is most likely the result of the
particular flow pattern associated with the curved lead-
ing edge of the cold air that developed right at the radar
(Fig. 8b).

A forecast starting from the retrieved fields at 2108
UTC was conducted. The radial velocity from the fore-
cast is then interpolated to the grid of the radial velocity
observations and the rms error calculated. The boundary
conditions at the initial time were applied throughout
the entire forecast period. The radial velocity rms error
from the forecast is shown by the solid curve in Fig.
11. The long dashed curve labeled persistence in this
figure displays the rms error between the observed radial
velocity and the radial velocity at the initial time (2108
UTC). The short dashed curve labeled mesoscale ini-
tialization shows the rms error of the forecast starting
from the mesoscale analysis. As can be seen the forecast
from the radar data initialization outperforms the fore-
cast from the mesoscale initialization and persistence
(except for the first ;10 min).
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FIG. 7. Horizontal divergence calculated from the retrieved wind overlaid by the retrieved velocity vectors at z 5
0.187 km. Solid line indicates convergence and dashed line divergence. A scaling of 105 s21 is applied to the contour
values.

The use of the analysis background produces a cor-
relation between the background term and the obser-
vation term and this correlation is neglected in the
4DVAR computation. To circumvent this problem, each
analysis cycle can be followed by a short forecast that
can be used as the background in the next analysis cycle,
as in experiment 2. Compared with the control exper-
iment, the analysis rms error in radial velocity in ex-
periment 2 is greater (2.40 vs 2.10 m s21). In Fig. 12,
the forecast rms error from this experiment is shown
and compared with that from the control experiment.

In section 2, we discussed the two VAD analysis
schemes, constant range VAD (used in the control ex-
periment) and constant elevation VAD. In experiment

3, we use the constant elevation VAD profile to test the
sensitivity of the analysis to the VAD calculation. Figure
13 shows the velocity profiles obtained from the two
VAD techniques. The profile calculated using the con-
stant range VAD is smoother than that using the constant
elevation VAD. The forecast using the initial fields ob-
tained from experiment 3 is shown in Fig. 14 (long and
short dashed line) and compared with that from the con-
trol experiment. The forecast shows a significant deg-
radation when the constant elevation VAD is used in
spite of the fact that the analysis at the initial time of
the forecast period has slightly smaller error than that
in the control experiment.

High-resolution mesonet observations are not avail-
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FIG. 8. Retrieved temperature field overlaid with the retrieved velocity vectors at z 5 0.187 km. The contour
interval is 0.28C. Negative values are dashed lines and positive values are solid lines.

able everywhere throughout the United States. When
there are no mesonet observations, the mesoscale anal-
ysis depends solely on the VAD analysis. To examine
how sensitive VDRAS is to the mesonet data, we ex-
cluded the mesonet data in experiment 4. The forecast
starting from this analysis shows a degradation through-
out the entire forecast period although the degradation
is not very significant (see the short dashed line in Fig.
14).

A similar experiment, experiment 5, was performed
to test the sensitivity of the analysis with respect to the
exclusion of the reflectivity observations. As shown by
the long dashed curve in Fig. 14, the retrieval is not
very sensitive to the exclusion of reflectivity data. To

further determine the effect of the reflectivity data, an
experiment that uses only reflectivity and no radial ve-
locity data was conducted. It was found that the re-
trieved velocity amplitude was much smaller and the
gust front structure was not well captured in this ex-
periment.

One of the major challenges in radar data analysis is
to produce an analysis with a smooth transition between
regions with and without radar data. Although some
other types of observations may be available in the radar
data-void region, these data usually have much poorer
resolution than the model resolution. A good analysis
should be able to fit to the observations while main-
taining a smooth field especially in the area where ob-
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FIG. 9. Horizontal wind vector at z 5 0.187 km at 2129 UTC. (a)
Mesoscale analysis, (b) difference vector between VDRAS analysis
and mesoscale analysis, and (c) similar to (b) but the observed radial
velocity is subtracted and only the storm outflow region is plotted.

FIG. 10. (a) Rms of radial velocity and tangential velocity of the
difference vector as shown in Fig. 9b, (b) same as (a) but only for
the storm outflow region, and (c) rms of radial and tangential diver-
gence in the storm outflow region.

servations are sparse. Both the background term and the
penalty term in the cost function can help to smooth the
analysis. In the next experiments, we test the impact of
these terms on the analysis and forecast. In experiment
6, both these terms are excluded. This experiment has
the smallest analysis error (1.38 m s21) among all of
the experiments presented here. However, the subse-
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FIG. 11. Forecast rms error for the control experiment.

FIG. 13. Velocity profiles obtained from the two VAD analysis
methods: (a) U and (b) V.

FIG. 14. Forecast rms error for experiments 1, 3, 4, and 5.FIG. 12. Forecast rms error for experiments 1 and 2.

quent forecast shows much larger errors (short dashed
curve in Fig. 15) than the control experiment. An ex-
amination of the analysis fields from this experiment
(not shown) indicated the development of noise in the
region without radar data.

To compare the effect of the background term with
the penalty term, experiments 7 and 8 were conducted.
In experiment 7, only the background term is used while
experiment 8 uses only the penalty term. The forecast
errors from these two experiments are shown by the
long-and-short-dashed curve (experiment 7) and long
dashed curve (experiment 8) in Fig. 15. Although the
two terms perform quite well separately, the best fore-
cast is obtained when both terms are included in the
control experiment.

The penalty term works quite effectively to suppress
random noise in the optimization process. Its advantage
compared to the background term is that it does not
depend on the quality of the background field. However,
its disadvantage is that the weighting coefficients have
to be determined from experience. Nevertheless, we
have found that the analysis and the subsequent forecast
are not very sensitive to the magnitude of the weighting
coefficients within a range of a few orders of magnitude.

Another disadvantage of the penalty term is that it only
smooths the analysis within a distance of a few grid
points because it uses second-order derivatives. In com-
parison with the penalty term, a background term with
a good model of error statistics holds more promise
since the filtering performed through the use of an ap-
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FIG. 15. Forecast rms error for experiments 1, 6, 7, and 8.

TABLE 2. Verification using ACARS data.

Date

MVD
(mesoscale analysis,

in m s21)
MVD

(VDRAS analysis, in m s21)
RMS radial velocity differ-

ence (m s21)
Average ACARS wind

(m s21)

15 Jun 1998
16 Jun 1998
24 Jun 1998
30 Jun 1998
21 Jul 1998
31 Jul 1998
All days

8.8
5.2
4.1
3.8
3.7
3.7
4.8

4.9
3.8
3.3
2.6
3.0
2.4
3.3

1.6
2.3
2.7
3.4
2.2
1.3
2.3

10.4
6.4
4.6

16.2
8.6
8.4
9.1

propriate error correlation, for example with a variable
length scale, can provide more flexibility.

4. Verification using ACARS data

ACARS data from flights taking off and landing at
Dulles International Airport (;5 km southeast of
KLWX) are used to verify the wind analyses. The tem-
perature is not used for verification because VDRAS
produces temperature perturbation rather than the ab-
solute temperature as in the ACARS observation. The
mean temperature used in VDRAS is from the radio-
sonde observations at a nearby station that are available
every 12 h. If this mean temperature is used to compute
the absolute temperature, the error can be easily 18C,
which is the magnitude of the perturbation temperature
in the boundary layer. The ACARS observations are
located at heights of approximately 600, 1200, and 1800
m. To compare an analysis with an ACARS observation,
the gridded wind from the analysis is interpolated to the
ACARS observation location and then the mean vector
difference (MVD) is calculated:

1
2 2MVD 5 Ï(u 2 u ) 1 (y 2 y ) , (4.1)O ac acN

where uac and y ac represent ACARS velocities and N is
the total number of ACARS observations. Table 2 lists
the verification results for six days when severe weather
occurred within the analysis domain. For most of the

cases, we ran the analysis system for 3 h. In Table 2,
the MVD of the VDRAS analysis is listed in the third
column. To show the improvement of the VDRAS anal-
ysis over the mesoscale analysis, the MVD of the me-
soscale analysis is listed in the second column. Also
shown in Table 2 is the rms radial velocity difference
between the ACARS observation and the radar obser-
vation, which gives a measure of both instrumentation
error and error of representativeness. This difference is
calculated by comparing the ACARS radial velocity
computed from the observed horizontal velocity com-
ponents uac and y ac and the radial velocity interpolated
to the ACARS measurement point. The last column dis-
plays the value of the average wind from the ACARS
measurement in order to provide a relative estimate of
the analyses.

The parameter settings of the six cases follow that in
the control simulation described in the last section. It
should be noted that the smallest MVD of the VDRAS
analysis can be found from experiment 6 in which both
the penalty and background terms are turned off. How-
ever, as discussed in the last section, this experiment
gives a worse forecast. Therefore, caution must be ex-
ercised in verifying the analysis using limited obser-
vations. Since our ultimate goal is to produce an analysis
that gives the best forecast, we used the control simu-
lation for the verification. From the statistics shown in
Table 2, we can see that the averaged MVD in the
VDRAS analysis is 3.3 m s21, while the MVD of the
mesoscale analysis is 4.8 m s21 and the rms radial ve-
locity difference is 2.3 m s21. The VDRAS outperforms
the mesoscale analysis for all of the six cases. It is
interesting to note that the two cases that have the largest
relative difference in the VDRAS analysis (comparing
column 3 with column 5) also reveal the largest relative
difference in the observed radial velocity (comparing
column 4 with column 5). We have also found that a
large portion of the VDRAS analysis error is in the
tangential component, which is not surprising because
the radial component is observed and a best fit to these
observations is achieved in the analysis.

The difference between the ACARS wind and the
VDRAS wind can be attributed to a number of reasons
such as the inaccurate boundary conditions, error in both
observations, representativeness of the VDRAS analysis
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versus the ACARS observation, and model error. A ma-
jor source of the model error is the neglect of the mi-
crophysical processes. At low levels, the process that
has the most impact is the evaporation of rain. As an
interim step before computational resources allow us to
run a complete cloud model, we plan to add an evap-
oration scheme to the model in the near future.

5. Summary and conclusions

A 4DVAR radar data analysis system for low-level
wind and temperature retrieval was implemented at a
weather forecast office to produce real-time low-level
wind and temperature analyses using WSR-88D radar
observations. The system ran continuously through the
summers of 1998 and 1999 with little human interven-
tion. A 4DVAR cycling analysis procedure was imple-
mented in which the analysis from the previous cycle
was used as a background and first guess for the sub-
sequent cycle. Several other new features were added
to the system before, during, and after these field tests
to make the system work robustly with real data. Among
these new features are the direct assimilation of PPI
data, the mesoscale analysis, and continuous updating
of the lateral boundary conditions.

A case of a line of storms was used to demonstrate
the performance of the analysis system. The analysis
shows a low-level gust front characterized by strong
wind, convergence, and a cold pool. A 90-min forecast
initialized by the VDRAS analysis outperforms persis-
tence and a forecast initialized by the mesoscale anal-
ysis. Several sensitivity experiments are conducted and
the performance compared using the subsequent fore-
cast. The main conclusions from the sensitivity study
are summarized in the following:

1) Using the analysis from the previous cycle for a
background field yields better results than using a
short forecast. The neglect of the correlation between
the previous analysis and the observations does not
appear to significantly impact the current analysis.

2) The VAD computed at constant range yields a
smoother velocity profile than the VAD computed
at a constant elevation angle. As a result, a better
forecast is obtained using the constant range VAD.

3) Exclusion of mesonet data or reflectivity data de-
grades the analysis and the forecast only slightly.
This suggests that the radial velocity data plays the
major role in the retrieval.

4) Both the background term and the penalty term serve
to produce an analysis that has a smooth transition
between the data-dense and data-sparse regions. We
have found that the best result is obtained by using
both terms.

ACARS data from flights taking off and landing at
Dulles International Airport are used to verify the six
cases with severe weather. Verification shows that
VDRAS outperforms the mesoscale analysis for all six

cases. The average MVD in the VDRAS analysis is 3.3
m s21 compared to 4.8 m s21 for the mesoscale analysis.

VDRAS has been implemented in the weather fore-
cast office in Sydney, Australia, along with the Auto-
Nowcaster for field testing aimed at providing real-time
nowcasting for the summer Olympics in September
2000. Along with the field testing, we have commenced
a number of projects aimed at improving the analysis
system. A collaborative study to develop a set of ob-
servation error statistics is being conducted. The error
statistics will be generated based on signal-to-noise ratio
and spectrum width. A more sophisticated background
error covariance model that combines several Gaussian
distribution functions (J. Purser 1999, personal com-
munication) will also be implemented and tested in the
near future.

Acknowledgments. The authors would like to thank
Jay Miller and Rita Roberts for their review of the man-
uscript. We are very grateful to Doug Nychka for his
help in developing the background error statistics mod-
el. Thanks are due to Jim Wilson and Rita Roberts for
their support in the real-time testing of the system. We
are also very grateful to Terri Betancourt and Jaimi Yee
for their engineering support. This work is funded by
the FAA and the National Science Foundation.

REFERENCES

Barnes, S., 1964: A technique for maximizing details in numerical
map analysis. J. Appl. Meteor., 3, 395–409.

Courtier, P., 1997: Dual formulation of four dimensional variational
assimilation. Quart. J. Roy. Meteor. Soc., 123, 2449–2461.
, and O. Talagrand, 1987: Variational assimilation of meteoro-
logical observations with the adjoint vorticity equation. Part II:
Numerical results. Quart. J. Roy. Meteor. Soc., 113, 1329–1347.

Gal-Chen, T., 1978: A method for the initialization of the anelastic
equations: Implications for matching models with observations.
Mon. Wea. Rev., 106, 587–606.

Gao, J., M. Xue, Z. Wang, and K. K. Droegemeier, 1998: The initial
condition and explicit prediction of convection using ARPS ad-
joint and other retrieval methods with WSR-88D data. Preprints,
12th Conf. on Numerical Weather Prediction, Phoenix, AZ,
Amer. Meteor. Soc., 176–178.

Hane, C. E., and B. C. Scott, 1978: Temperature and pressure per-
turbations within convective clouds derived from detailed air
motion information: Preliminary testing. Mon. Wea. Rev., 106,
654–661.

Jing, Z., and G. Wiener, 1993: Two-dimensional dealiasing of Doppler
velocities. J. Atmos. Oceanic Technol., 10, 798–808.

Laroche, S., and I. Zawadsky, 1994: A variational analysis method
for the retrieval of three-dimentional wind field from single-
Doppler data. J. Atmos. Sci., 51, 2664–2682.

Le Dimet, F. X., and O. Talagrand, 1986: Variational algorithms for
analysis and assimilation of meteorological observations: The-
oretical aspects. Tellus, 38A, 97–110.

Lewis, J. M., and J. C. Derber, 1985: The use of adjoint equation to
solve a variational adjustment problem with advective con-
straints. Tellus, 37A, 309–322.

Lhermitte, R. M., and D. Atlas, 1961: Precipitation motion by pulse
Doppler radar. Proc. Ninth Weather Radar Conf., Kansas City,
MO, Amer. Meteor. Soc., 218–223.

Liou, Y.-C., 1990: Retrieval of three-dimensional wind and temper-
ature fields from one component wind data by using the four-



132 VOLUME 16W E A T H E R A N D F O R E C A S T I N G

dimensional data assimilation technique. M. S. thesis, Depart-
ment of Meteorology, University of Oklahoma, 112 pp. [Avail-
able from Department of Meteorology, University of Oklahoma,
100 E. Boyd, Rm 1310, Norman, OK 73019.]

Liu, D. C., and J. Nocedal, 1988: On the limited memory BFGS
method for large scale optimization. Tech. Rep. NAM 03, De-
partment of Electrical Engineering and Computer Science,
Northwestern University, Evanston, IL, 26 pp. [Available from
Department of Electrical and Computer Engineering, North-
western University, 2145 Sheridan Road, Evanston, IL 60208.]

Long, R. B., and W. C. Thacker, 1989: Data assimilation into a nu-
merical equatorial ocean model: Part 2: Assimilation experi-
ments. Dyn. Atmos. Oceans, 13, 413–439.

Lu, C., and G. L. Browning, 1998: The impact of observational errors
on objective analyses. J. Atmos. Sci., 55, 1791–1807.

Rinehart, R. E., 1979: Internal storm motions from a single non-
Doppler weather radar. NCAR TN-146 1 STR, NCAR, Boulder,
CO, 262 pp.

Roberts, R., T. Saxon, C. Mueller, J. Wilson, A. Crook, J. Sun, and
S. Henry, 1999: Operational application and use of NCAR’s
thunderstorm nowcasting system. Preprints, 15th Int. Conf. on
Interactive Information and Processing Systems for Meteorol-
ogy, Oceanography, and Hydrology, Dallas, TX, Amer. Meteor.
Soc., 158–161.

Shapiro, S., S. Ellis, and J. Shaw, 1995: Single-Doppler velocity
retrievals with Phoenix II data: Clear air and microburst wind
retrievals in the planetary boundary layer. J. Atmos. Sci., 52,
1265–1287.

Sun, J., 1992: Convective scale 4-D data assimilation using simulated
single-doppler radar observations. Ph.D. dissertation, University
of Oklahoma, 174 pp. [Available from Department of Meteo-
rology, University of Oklahoma, 100 E. Boyd, Rm 1310, Nor-
man, OK 73019.]
, and N. A. Crook, 1994: Wind and thermodynamic retrieval
from single-Doppler measurements of a gust front observed dur-
ing Phoenix II. Mon. Wea. Rev., 122, 1075–1091.
, and , 1997: Dynamical and microphysical retrieval from
Doppler radar observations using a cloud model and its adjoint.
Part I: Model development and simulated data experiments. J.
Atmos. Sci., 54, 1642–1661.
, and , 1998: Dynamical and microphysical retrieval from

Doppler radar observations using a cloud model and its adjoint.
Part II: Retrieval experiments of an observed Florida convective
storm. J. Atmos. Sci., 55, 835–852.
, D. W. Flicker, and D. K. Lilly, 1991: Recovery of three-di-
mensional wind and temperature fields from single-Doppler ra-
dar data. J. Atmos. Sci., 48, 876–890.

Talagrand, O., and P. Courtier, 1987: Variational assimilation of me-
teorological observations with the adjoint vorticity equation—
Part I. Theory. Quart. J. Roy. Meteor. Soc., 113, 1311–1328.

Telesetsky, W., 1995: Current status and issues of the Weather Sur-
veillance Radar-1988 Doppler program. Preprints, 26th Int. Conf.
on Radar Meteorology, Vail, CO, Amer. Meteor. Soc., XXXVIII.

Tuttle, J. D., and G. B. Foote, 1990: Determination of the boundary-
layer airflow from a single Doppler radar. J. Atmos. Oceanic
Technol., 7, 218–232.

Wahba, G., and J. Wendelberger, 1980: Some new mathematical meth-
ods for variational objective analysis using spline and cross-
validation. Mon. Wea. Rev., 108, 1122–1143.

Warner, T. T., E. E. Brandes, C. K. Mueller, J. Sun, and D. N. Yates,
2000: Prediction of a flash flood in complex terrain. Part I: A
comparison of rainfall estimates from radar, and very short range
rainfall simulations from a dynamic model and an automated
algorithmic system. J. Appl. Meteor., 39, 797–814.

Weygandt, S., 1998: The retrieval of initial forecast fields from single-
Doppler observations of a supercell thunderstorm. Ph.D. dis-
sertation, University of Oklahoma, 257 pp. [Available from De-
partment of Meteorology, University of Oklahoma, 100 E. Boyd,
Rm 1310, Norman, OK 73019.]

Wolfsberg, D., 1987: Retrieval of three-dimensional wind and tem-
perature fields from single-Doppler radar data. CIMMS Rep. 84,
91 pp. [Available from Cooperative Institute for Mesoscale Me-
teorological Studies, 401 East Boyd, 100 East Boyd St., Norman,
OK 73019.]

Wu, B., J. Verlinde, and J. Sun, 2000: Dynamical and microphysical
retrieval from Doppler radar observations of a deep convective
cloud. J. Atmos. Sci., 57, 262–283.

Xu, Q., C.-J. Qiu, J.-X. Yu, H.-D. Gu, and M. Wolfson, 1993: Adjoint
method retrievals of microburst winds from TDWR data. Pre-
prints, 26th Int. Conf. on Radar Meteorology, Norman, OK,
Amer. Meteor. Soc., 433–434.

Zhang, J., and T. Gal-Chen, 1996: Single-Doppler wind retrieval in
the moving frame of reference. J. Atmos. Sci., 53, 2609–2623.


