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ABSTRACT

This paper introduces HIMM (histogramic in-motion mapping), a new method for real-time map building with a mobile
robot in motion. HIMM represents data in a two-dimensional array (called a histogram gjid) that is updated through rapid
continuous sampling of the onboard range sensors during motion. Rapid in-motion sampling results in a statistical map
representation that is well-suited to modeling inaccurate and noisy range-sensor data. HIMM is integral part of an
obstacle avoidance algorithm and allows the robot to immediately use the mapped information in real-time obstacle-
avoidance. The benefits of this integrated approach are twofold: (1) quick, accurate mapping; and (2) safe navigation of
the robot toward a given target.

HIMM has been implemented and tested on a mobile robot. Its dual functionality was demonstrated through numerous
tests in which maps of unknown obstacle courses were created, while the robot simultaneously performed real-time
obstacle avoidance maneuvers at speeds of up to 0.78m/sec.

1. INTRODUCTION

Map-building and obstacle avoidance are usually treated as separate, sequential functions of a mobile robot navigation
system. This paper, by contrast, introduces a new integrated mapping and obstacle avoidance system. The map-building
function, called histogramic in-motion mapping (HIMM), is optimized for simultaneous use with the obstacle avoidance
function. Integration benefits both functions in unique ways:

1. Continuous and rapid in-motion sampling generates a statistical world-model, called histogram gfid, that models the
level of evidence for the existence of an obstacle. Collection of range-samples from continuously vaiying locations
( during motion) yields more accurate maps than sampling from a few (stationary) locations does8.

2. The intensity of an obstacle avoidance maneuver is proportional to the level of evidence for the existence of an
obstacle. In other words, the system reacts to weak evidence with a moderate steering maneuver, while stronger
evidence causes a more drastic avoidance maneuver. This progressive-response approach renders the system insensitive
to noisy or erroneous sensory data while maintaining a level of "alertness" that allows the robot to avoid suddenly
appearing obstacles, even when running at high speeds.

This paper focuses on the map building aspect of our system. A comprehensive account of our vector field histogram
( VFH) obstacle avoidance method is given in previous publications23.

The mobile robot used in this research is CARMEL (Computer-Aided Robotics for Maintenance, Emergency, and Life
support). CARMEL is based on a commercially available mobile platform with a unique three-wheel drive (synchro-drive)
that permits omnidirectional steering4. The Cybermation platform has a maximum travel speed of V,,,,= 0.78m/sec and
weights about 125 kg. We equipped this vehicle with a ring of 24 ultrasonic sensors7. In our system, the sonars are set
up to measure distances between 27-200cm, and a complete panoramic scan (readings from all 24 sensors) takes
160 msec. A special sonar-firing algorithm reduces crosstalk dramatically (a rough estimate is one erroneous reading due
to crosstalk per 1500 range readings).
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2. BACKGROUND

Ultrasonic sensors are used in many mobile robots because of their low price and ease of operation. Unlike visual images,
ultrasonic data is easily sampled and processed. However, any system based on ultrasonic sensors must cope with their
inherent limitations, namely: a) poor directionality; b) frequent misreadings due to ultrasonic noise from external sources
or stray reflections from neighboring sensors (i.e., crosstalk); and c) specular reflections.

A powerful method to deal with the problems of ultrasonic sensors is theprobabilistic representation of obstacles in a grid-
type world model. One such method, called the certainty grid, was developed at Carnegie-Mellon University'6 (CMU).

With the certainty grid world model, the robot's work area is represented by a two-dimensional array of square elements
denoted as cells. Each cell contains a certainty value (CV) that indicates the measure of confidence that an obstacle exists
within the cell area. Cvs are updated by a heuristic probability function that takes into account the characteristics of a
given sensor. For example, ultrasonic sensors have a conical field of view. A typical ultrasonic sensor returns a radial
measure of the distance to the nearest object within the cone, yet does not specify the angular location of the object. Thus,
a distance measurement d results from an object located anywhere within the area A (see Fig. 1). However, an object
located near the acoustic axis (the center of the cone) is more likely to produce an echo than an object further away
from the acoustic axis1.

3. REAL-TIME MAP BUILDING WITH HIMM

Map building requires the definition of a data structure and a method to update information in this structure. In this
Section we discuss features of our data structure and the special requirements for real-time map-building.

3.1 The histogrwn grid

HIMM uses a two-dimensional Cartesian grid for obstacle representation, called the histogram grid. Like the certainty
grid, each cell in the histogram gjid holds a certainty value (CV) that represents the confidence of the algorithm in the
existence of an obstacle at that location. The histogram grid differs from the certainty grid in the way it is built and
updated. CMU's method projects a probability profile onto all those cells affected by a range reading. This procedure
is computationally intensive and would impose a heavy time-penalty on real-time execution by an onboard computer. Our
method, on the other hand, increments only one cell in the histogram grid for each range reading, creating a 'pseudo-
probability" distribution * with only small computational overhead. For ultrasonic sensors, this cell corresponds to the
measured distance d (see Fig. la) and lies on the acoustic axis of the sensor. While this approach may seem
oversimplified, a pseudo-probabilistic distribution is actually obtained by continuously and rapidly sampling each sensor
while the vehicle is moving. Thus, the same cell and its neighboring cells are repeatedly incremented, as shown in Fig. lb.
This results in a histogramic pseudo-probability distribution, in which high certainty values are obtained in cells close to
the actual location of the obstacle.

In order to evaluate the accuracy of this method, we have developed an index ofperfonnance (TOP) for grid-type map-
building8. This lOP is a measure of the weighted average distance between a filled cell in the grid and the closest actual
obstacle boundary. The mathematical formulation of the lOP as well as more implementation details are given in a
previous publication8. For comparison, we have implemented one version of the certainty grid method6. In experimental
runs through numerous obstacle courses we found that HIMM consistently produced significantly more accurate maps8.
We accredit this result to the fact that rapid, in-motion sampling produces many more useful readings than the certainty
grid method, which assembles readings from only a few (stationary) positions. HIMM, on the other hand, shows objects
from constantly changing angles and positions, since one panoramic "snapshot' (i.e., 24 readings) is assembledevery 8-
13cm of travel.

* We use the term pseudo-probability in the literal sense of Nprobabj/jtya or Nllkelihoodu, in contrast to the strict
mathematical sense of Nprobabj/jtyl
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When a range measurement d is returned from an ultrasonic sensor, it is reasonable to assume (although not always true)
that the sector bounded by S and A (see Fig. la) is free of obstacles. One may thus decrement cells in that area. This
function is desirable,, as it "clears" the area from erroneous readings. In our implementation, only those cells that are
located on the line connecting center cell C, and origin cell C0 (i.e., the acoustic axis) are decremented.

A fmal note concerns the actual implementation of 111MM: Whenever a cell is incremented, the increment (denoted I)
is actually 3 (not 1, as may be expected) and the maximum CV of a cell is limited to CVm 15. Decrements (denoted
r), however, take place in steps of -1 and the minimum value is CVm,n 0. Increments are larger than decrements because
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of motion

a. Only one cell is incrementedfor each range reading. With ultrasonic sensors, this is the cell that
lies on the acoustic axis and corresponds to the measured distance d.

b. A histogramic probability distribution is obtained by continuous and rapid sampling of the
sensors while the vehicle is
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only one cell is incremented for each reading, whereas multiple cells are decremented (i.e., all cells between C and C0,
in Fig. la).

3.2 Fast mapping for real-time obstacle avoidance

In addition to producing maps, HIMM also provides instantaneous environmental information for use by the integrated
obstacle avoidance algorithm. To understand how this function is supported, it is necessary to mention some
characteristics of our vectorfield histogram (VFH) method for real-time obstacle avoidance.

The response of our VFH algorithm is proportional to the square of a CV. We will call this the squared certainty value
(SCV). For example, if five readings have incremented a particular cell (ij), then CV,=5x3= 15, and SCV,d=(15)2=225.
We introduce the SCV to express our confidence that recurring range readings represent actual obstacles (as opposed
to single readings, which may be caused by noise or crosstalk).

Furthermore, the VFH obstacle avoidance response is stronger when a cluster of SCVs is encountered, whereas single,
unclustered cells provoke only a mild response. For this reason, we will define the term obstacle cluster strength (OCS)
as the sum of all SCVs in a certain cluster (i.e., a grouping of neighboring cells with CV> 0).
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With a maximum range of Rm2OOCm and a minimal avoidance distanceD= 100cm, CARMEL has
1 .28sec to produce an OCS strong enough to cause an avoidance maneuver.

Fig. 2:

mox2OOcm
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HIMM, as explained so far, works very well for slow-moving vehicles; yet when a vehicle is traveling at relatively high
speeds (e.g., V,,,>O.5m/sec), matters are more complicated. The following example explains one of these problems.

Suppose CARMEL approaches a thin vertical pole while traveling at its maximum speed V,=O.78m/sec. To avoid a
collision at this speed, CARMEL must begin an avoidance maneuver at a distance of approximately D =100cm from the
obstacle, as shown in Fig. 2. The obstacle is initially detected by the robot at R,,,= 200cm. Thus, the HIMM algorithm
has at most t= (R,,,-D)/V= 1.28sec to produce an OCS strong enough to cause an avoidance maneuver. Since each
sensor is sampled once every 7 = l6Omsec, the robot can sample at most n =t/7, =8 readings from the same sensor (for
simplicity, we assume here that only one sensor can 'see" the object, as is often the case with thin vertical poles or pipes).
nc is the critical number of readings needed to provoke an avoidance maneuver.

A map building algorithm for simultaneous real-time obstacle avoidance must thus build a significant OCS quickly and
from few readings, while maintaining high contrast with erroneous readings. This task is further complicated by in-motion
sampling, as the following example shows:

When a stationa,y ultrasonic sensor is repeatedly sampled, it will always increment the same cell for an obstacle, even
if that cell does not accurately correspond to the obstacle. After n readings, the CV of that cell will reach the maximum
value, CV = 15, with an OCS = 152 225. In-motion sampling, on the other hand, will usually cause the same n sonar
readings to be scattered over several neighboring cells, even when the obstacle is a thin pole. This might result in a cluster
such as the one shown in Fig. 3a. In this example, eight range readings were taken and projected onto the histogram gfid
in the following order: two readings - cell a; two readings - cell b; one reading each — cells c,d,e, and f. This cluster yields
ocs = 62 + 62 + 32 + 32 32 + 32 108, which is less than the OCS that would result from the same number of readings by
a stationary sensor (i.e., OCS =225 since all readings are registered in a single cell).
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To compensate for this adverse scattering effect (caused by in-motion sampling), we introduce a method to increase the
ocs growth rate. This method uses a growth rate operator (GRO) to increment a cell (i,j) faster when the immediate
neighbors of the cell hold high CVs. This function is implemented in real-time by convolving CV with the 3x3 mask given
in Fig. 3b, and adding the increment I =3, yielding
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Fig. 3: a. In-motion sampling causes sonar readings of an object to be scattered over several cells,
resulting in a low obstacle cluster strength (OCS).

b. 3x3 mask for the growth rate operator (GRO).
c. With the GRO, OCSs are built up fast and from few readings.
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moves on, subsequent range readings detect the empty space and, accordingly, decrement the temporarily high CVs. The
resulting map usually shows only a faint trace of the path of the object, which does not cause the robot to avoid a
'phantom" object. Subsequent robot travel through the path of the object erases the trail completely.

Fig. 4 shows an experiment with moving objects. Three layers of information are depicted in this figure:

1. The robot's path, starting at '5' and ending at 'T', is plotted as the curved line. This path resulted from an actual run
of our mobile robot, with real-time obstacle avoidance by the VFH method.

2. Obstacles and walls are outlined by solid lines. The objects labeled "Partition" is a two-inch-thick styrofoam sheets.
The object labeled 'Pole" is a 3/4 inch cardboard pipe, and the object labeled 'Box" is a cardboard box.

3. The histogram grid is also shown in Fig. 4. Empty cells are not indicated, while small black rectangles (blobs) represent
filled cells. Each cell represents a real-world square of size lOcmxlOcm. On the computer screen, CVs are coded with
a different color for each one of the 16 possible CVs (ranging from 0 to 15). This effect cannot be reproduced in the
screen-dump of Fig. 4a, but classes of low, medium, and high CVs can be distinguished by different blob sizes, as
described in Fig. 4a.

Fig. 4 shows CARMEL's path after accelerating and running at its maximum speed, O.78m/sec. At t0(with CARMEL
at R, in Fig. 4a), a person starts to walk into the robot's path. The person's starting position is P0 and he walks in the
direction indicated by the arrow. At t1, the OCS (due to the moving person) grows strong enough to provoke a significant
obstacle avoidance response, and the robot takes a sharp turn to the right. Note the CVs representing the walking person.

During the avoidance maneuver (Fig. 4b), the robot slows down considerably, while the person continues walking at a
steady pace, leaving a trail of medium-to-high CVs. This trail, however, is eroded by the decrementing function of free
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Fig. 4: a. CARMEL detects and avoids a person suddenly stepping into its path.

b. After completing the task, the histogram grid shows only a faint trail of the person's path.
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space implemented in HIMM. Within one or two seconds, CVs in the trail are decremented to values small enough to
allow the robot to pass through the trail, behind the walking person. The diagram in Fig. 4b shows the screen after the
robot successfully reaches its original target T. Note how CVs along the person's trail have been reduced to low values.
Application of a reasonable threshold (e.g., CVthre, 12) would result in a permanent map that does not show any of the
temporary path of the moving person.

5. CONCLUSIONS

HIMM, a new method for combined real-time map building and obstacle avoidance has been introduced and tested. In
this method, inaccurate ultrasonic sensor data is pseudo-probabilistic modeled in a two-dimensional histogram gfid. A
statistical representation is obtained through rapid, continuous sampling of the sensors during motion. With HIMM, any
range reading is immediately represented in the map and has immediate influence on the concurrent obstacle avoidance
algorithm.

Further optimization, by means of the growth rate operator (GRO) allows the HIMM method to build high-contrast
representations based on only a few range readings. This feature allows the robot to react quickly to obstacles that appear
suddenly, even when traveling at high speeds.

Moving objects in the robot's path are treated as obstacles and can be avoided by the obstacle avoidance algorithm.
However, CVs in the trail are decremented to values that allow the robot to pass through the trail, once the object has
moved on. The resultingpennanent map is free of traces of the moving objects and can be used for subsequent global
path planning.
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