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Abstract—During the outbreak of COVID-19, while bringing
various serious threats to the world, it reminds us that we need
take precautions to control the transmission of the virus. The rise
of Internet of Medical Things (IoMT) has made related data col-
lection and processing, including healthcare monitoring systems,
more convenient on the one hand, and requirements of public
health prevention are also changing and more challengeable on
the other hand. One of the most effective non-pharmaceutical
medical intervention measures is mask-wearing. Therefore, there
is an urgent need for an automatic real-time mask detection
method to help prevent the public epidemic. In this paper, we put
forward an edge computing-based mask identification framework
(ECMask) to help public health precautions, which can ensure
real-time performance on the low-power camera devices of buses.
Our ECMask consists of three main stages: video restoration,
face detection, and mask identification. The related models are
trained and evaluated on our Bus Drive Monitoring Dataset and
public dataset. We construct extensive experiments to validate
the good performance based on real video data, in consideration
of detection accuracy and execution time efficiency of the whole
video analysis, which have valuable application in COVID-19
prevention.

Index Terms—COVID-19, Public Health Prevention, Internet
of Things, Edge Computing, Deep Learning, Mask Identification.

I. INTRODUCTION

THE Coronavirus Disease 2019 (COVID-19) caused by

the Severe Acute Respiratory Syndrome coronavirus 2

(SARS-CoV-2), has given rise to a global epidemic [1].

According to the report of World Health Organization (WHO)

on the 3rd July, 2020, there were over more than 10 million

confirmed cased and 500 thousand deaths, which are alarming

numbers [2]. Besides, the growing number still reminds us

that we need to take preventive measures. Based on previous
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studies and measures taken in many regions [3], mask-wearing

is proved to be an effective non-pharmaceutical intervention

measure, which is non-invasive, convenient, and cheap to

lower the infection and spread of COVID-19 [4]. Especially

in China, a populous country with Mega cities, the interaction

and contact between people are frequent in the process of

daily travel and work. If there is no timely prevention, the

possibility of infection is higher. Therefore, it is essential to

develop a method to automatically detect mask-wearing, which

can prevent public epidemic.

During COVID-19, as one of the public transportation,

bus is not only a common way to travel, but also a public

place where people gather. Due to the crowd, some medical

prevention measures have been taken, including sterilization

on time and social distance of passengers. Besides, bus drivers

are more likely to have certain interactions with passengers.

Therefore, it is necessary for bus drivers to detect mask-

wearing for the prevention and control of COVID-19.

For the past few years, as the technology of the Internet

of Things (IoT) developing rapidly [5], the data sensing,

collection and analysis become efficient [6]. IoT will bring

revolutionary changes to work and life [7], [8]. Online inter-

active classrooms have difficulties with large bandwidth, long

link transmission, and wide coverage. Alibaba Cloud uses IoT

and mobile edge computing (MEC) to provide services on

the edge of the network closer to the terminal, which signifi-

cantly improves the overall low-latency and strong interactive

experience in interactive classroom business scenarios. For

some campus monitoring scenarios, Huawei uses IoT to solve

the problem that WiFi/fiber cannot be used in the factory

environment, which prevents data from leaving the campus.

In the medical field, the application of IoT is typically named

IoMT, which makes a significant contribution to healthcare

systems from medical monitoring to smart sensors [9], [10].

Meanwhile, deep learning and artificial intelligence applica-

tions with high computational overhead could be implemented

and applied in the real industry environment [11], [12]. In

particular, under the low-cost and low-power processing ca-

pabilities of camera sensing devices, video analysis is not

processed directly on the device. Instead, the video data can be

transmitted to the cloud service platform for analysis through

cloud computing [13], which shortens a degree of analysis

time.

However, the actual application has higher requirements for

real-time performance, especially in healthcare systems. For

example, time-effective alerting and notification to patients can

ensure preventive care and medical management [14]. Facing
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Fig. 1: The basic paradigm of cooperative edge computing

under IoT.

a huge amounts of data generated by edge devices, video

analysis through cloud computing requires a large amount of

bandwidth, which results in the latency for detection. There-

fore, edge computing is proposed to execute deep learning with

high computational overhead and reduce the network latency

by data transmission [15]. With the rise of edge computing,

it has become possible to improve efficiency of the various

tasks [16], [17]. Besides, due to the limitation of single edge

device, cooperation in edge computing is considered to take

full advantage of storage computing power [18]. As shown

in Fig. 1, the whole process of cooperative edge computing

mainly consists of terminal equipment and cooperative edge

devices, which perform the calculation of required algorithms.

Near the data source, that is, the edge of the network, the

shared resources are deployed to perform computation and

inference on the edge device [19].

The latest advances in computer vision provide opportuni-

ties for practical healthcare applications. Among them, deep

neural networks (DNN), particularly convolutional neural net-

works (CNN), has wide application in various fields, such as

object detection, image segmentation, and image classification.

Benefiting from them, face detection, as one of the object

detection, have been made much progress from two aspects

of face detection accuracy and speed [20]–[24]. However,

in order to expand coverage and lower costs, camera sensing

devices cannot guarantee the high-quality images leading to

some problems like noise, blur, and shake for industrial

applications. Therefore, it is necessary to improve the video

super-resolution, which is video restoration [25]. Different

from image restoration, there exists a temporal correlation

among neighboring frames of video. After video restoration,

the low-quality video is improved, and subsequent detection

and recognition are more reliable and accurate.

In this paper, we describe our efforts to propose a framework

of the mask identification on the facial image (ECMask) to

identify mask-wearing in real-time during COVID-19 based on

edge computing. First, based on real video data of bus driver

monitoring, we utilize blur detection method and video restora-

tion to improve detection accuracy for the video data with blur

problems from low-cost cameras, which could be regarded as

part of the video preprocessing. Then, the face detector is

trained and verified by the public datasets and our Bus Drive

Monitoring Dataset. After obtaining and cropping face areas

of Bus Drive Monitoring Dataset, mask identification model

can be trained, which is also the image classification task of

faces (a binary classification), that is, those who wear a mask

(wearing correctly, Masked) and those who are not (including

wearing incorrectly, Non-Masked). Finally, in order to achieve

edge computing of the above deep learning models on a low-

cost device, the Intel Neural Compute Stick 2 (NCS) is added

in edge devices and used to accelerate the models through its

high performance operation.

The main contributions can be summarized as follows:

• We present a framework, ECMask, to detect mask-

wearing with deep learning, including video restoration,

face detection, and mask identification, which is able to

prevent infection of COVID-19 and provide public health

precaution reminders in real-time.

• We apply edge computing in the video analysis process to

enhance the effectiveness of detection and identification

at the edge devices through Intel Neural Compute Stick

2 (NCS) .

• We have constructed comprehensive experiments to verify

the excellent efficiency of our ECMask. Based on the

real Bus Drive Monitoring Dataset, the outcomes indicate

that video restoration can heighten detection accuracy and

edge computing-based method has excellent performance

in inference time efficiency of the whole video analysis.

The rest of this article is structured as follows. In Section

2, we briefly introduce related work. The third section mainly

explains the details of our proposed model and framework

(ECMask). Data description and analysis of experiment result

will be given in Section 4. Finally, we will conclude and

provide further discussion in Section 5.

II. RELATED WORK

In this section, we illustrate the existing works closely

related to the content of this paper.

A. IoMT with Edge Computing

As an emerging field of research, edge computing plays

a significant role in IoMT, due to its adavantages including

faster processing data, reducing the budget, offloading net-

work traffic, improving application efficiency, and security

and privacy protection. Pace et.al. [26] proposed a IoMT

system architecture, BodyEdge, which was designed to support

different healthcare scenarios, including workers in a factory,

athletes, and patients in a hospital. Focus on sustainability

and energy utilization, Han et.al. [27] proposed a clustering

model for medical applications (CMMA) for cluster head

selection, which considered additional factors specially for

IoMT network, such as capacity and queue of the medical

devices. Dong et.al. constructs an edge computing based
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healthcare system in IoMT, which applied Nath bargaining so-

lution in intra-WBANs and developed a non-cooperative game

based decentralized method to minimize the costs in beyond-

WBANs. Besides, deep learning model can also be combined

with edge computing in IoMT. In [28], authors proposed a

effective training scheme for the deep learning neural network

(ETS-DNN) in edge computing enabled IoMT systems, which

incorporated a Hybrid Modified Water Wave Optimization

technique to improve the healthcare system efficiency.

B. Video Restoration

As deep learning developing gradually, the realization of

the super-resolution of images and videos becomes better.

On the one hand, as the pioneering work, SRCNN [29]

designed a simple architecture with CNN, which achieved

the optimal efficiency in terms of image super-resolution.

From here, more and more related work about image super-

resolution was inspired [30]. On the other hand, video super-

resolution contains more temporal information that is different

from image super-resolution and leads to the challenge of

temporal alignment and fusion. Tian et al. [31] proposed

TDAN, which introduce deformable convolutions, instead of

computing optical flow, to address the problem about temporal

alignment of the frames of video. Xue et al. [32] proposed

TOFlow, which estimated the optical flow field and used a

flow image as a motion representation. For video deblurring,

Su et al. [33] introduces a deep learning solution to fuse

neighboring frames, which lessen the requirements for accu-

rate temporal alignment. In [25], EDVR was proposed to solve

the problem of video super-resolution and deblurring, which

utilized pyramid structure with deformable convolution and

attention mechanism to improve efficiency. In our ECMask,

we focus on the effect of video restoration when needed.

Therefore, considering the computational overhead of the

whole process, we try to employ the EDVR to improve the

subsequent detection and identification, if the raw video data

has problems, such as noise and blur.

C. Face Detection

Face detectors based on CNN have been extensively studied

in recent years. Zhang et al. [24] developed a multitask

cascaded architecture using CNN to extract the locations of the

face and landmark from coarse to fine. Following that Faster

R-CNN [34] proposed the concept of the anchor, it was widely

used in object detectors to ensure accuracy and speed up at

the same time, including face detectors. Besides, the pyramid

network structure can improve the small object detection.

In [35], authors put forward a novel face detector, named

Single Shot Scale-Invariant (S3FD), that uses different scale

anchors at different convolutional layers and lowers threshold

to enhance the recall rate of tiny faces outline detection.

Moreover, the contextual information is important in face

detection. For example, Najibi et al. [36] introduced Single

Stage Headless (SSH) face detector, which integrates context

layers into the detection modules to improve the mean average

precision. Meanwhile, to apply detectors to actual system, the

real-time is an important consideration. Redmon et al. [37]

Fig. 2: The architecture of our ECMask.

proposed YOLO, which is an anchor-based detector and can

select feature maps directly to achieve real-time performance.

In [38], anchor-based FaceBoxes designed the Rapidly Di-

gested Convolutional Layers (RDCL) for acceleration on the

CPU devices to ensure real-time. Inspired by FaceBoxes, our

ECMask adopts C.ReLu [39] and inception module [40] to

achieve real-time of face detection.

III. DESIGN OF FRAMEWORK

This details of the procedures and modules will be illus-

trated in our proposed ECMask shown in Fig. 2.

A. Overview

ECMask is shown in Fig. 2 and mainly includes model

training and real-time video analysis at the edge nodes.

According to the goal of video analysis, ECMask needs to

train three models including video restoration, face detection,

and mask identification after collecting and preprocessing our

Bus Drive Monitoring Dataset and the public dateset. These

trained models will be deployed on the edge devices, which

are also optimized to maximize performance. Therefore, in

the framework, monitoring data will be transmitted to high-

performance equipment for auxiliary model training, and then

transmitted to edge equipment for real-time inspection. To be

specific, in the part of real-time video analysis, we will execute

the video blur detection with Laplacian operator to determine

whether video restoration is needed, which can reduce the

huge computational overhead brought by video restoration.

Then, the real-time video data is inputted on the subsequent

models to obtain the results of detection and identification,

which are transmitted back to show to management.

B. Model Inference with Cooperative Edge Computing

The high computing power is required in the most effective

deep learning algorithms. In traditional research, there may
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Fig. 3: The architecture and details of our face detector.

be no concern about power consumption and computational

complexity. However, in actual application and deployment, it

is a challenging task, which has led to the demand for low-cost

but powerful inference processors for deep learning. Therefore,

edge computing has been promoted and become popular due to

its ability of low network latency, and privacy protection with

low-cost. In our framework, we apply Intel’s Neural Compute

Stick 2 (NCS) in the edge computing device, which is a small

USB 3.0 Type-A deep learning device and can be used in

computer vision methods at the edge and IoT. Compared with

CPU, its Intel Movidius Myriad Vision Processing Unit (VPU)

is a chip, which is dedicated to computer vision. It has low

power consumption to process images and videos, thus can be

regarded as a micro GPU to accelerate calculation in neural

networks. Besides, the OpenVINO toolkit provides model

optimizer, inference engine, and distributed computing which

will be used with multiple NCSs to implement cooperative

edge computing. The trained deep learning model is optimized

and stored in the NCSs with the inference engine. In the end,

the input video data is obtained from the connected camera

devices.

C. Video Restoration

The first stage of ECMask is to restore and deblur the raw

video data to enhance the accuracy of subsequent detection.

Therefore, we employ Video Restoration framework with

Enhanced Deformable convolutions (EDVR) as the first stage

of ECMask due to its good performance in video restoration.

The architecture of EDVR mainly includes four modules, such

as PreDeblur module, PCD alignment module, TSA fusion

module, and Reconstruction module.

• PreDeblur module is similar to encoder-decoder network,

which is a pyramid structure and consists of down-

sampling layers using convolution layers of 2 stride

and upsampling layers. Furthermore, the feature map is

extracted through the residual block at each layer of

the pyramid. In this way, the frames of video can be

deblurred, which is the preprocessing part before the

alignment module and fusion module.

• In PCD alignment module, to avoid the disadvantages

of optical-flow based methods, like higher computation

overhead, the deformable convolution is employed to

align features of each neighboring frame to its refer-

ence frame. For the three-level pyramid structure, the

cascade deformable alignment method is used to refine

the coarsely aligned feature, that is, the method from

coarse to fine is designed to enhance the pixel alignment

accuracy.

• In TSA fusion module, fusing feature information of the

aligned neighbouring frames is its main goal. For video

restoration task, some unavoidable reasons like object

moving and camera shaking could produce different

degrees of blur of frames, which lead to the different

contributions of neighboring frames to the restored refer-

ence frames. Therefore, the attention mechanism is used

to assign different pixel-level aggregation weights in the

temporal and spatial dimensions of feature maps. To be

specific, in temporal attention mechanism, the features of

each frame, Ft, is embedded in lower dimension space,

then their similarity is computed to indicate the attention,

which is a temporal attention map. The similarity of

neighboring frames is calculated as follows:

Sim(Ft+i, Ft) = σ(Φ(Ft+i)
T
· Φ(Ft)) (1)

where σ is an activation function (like sigmoid), and Φ(·)
is the embedding of features obtained by a simple con-

volutional operation. Therefore, the attention-modulated

feature is written as:

F̃t+i = Ft+i ⊙ Sim(Ft+i, Ft) (2)

where ⊙ denotes the element-wise multiplication. These

attention-modulated features are fused in the fusion

convolutional layer. Similarly, the pyramid structure is

employed to increase attention receptive field for spatial

attention map.
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• Reconstruction module is composed of several residual

blocks. Besides, Charbonnier penalty function is used as

the loss function:

L =

√∥∥∥∥
∧

Ot −Ot

∥∥∥∥
2

+ ε2 (3)

where ε is set to 1× 10−3.

D. Face Detection

Considering the demand for real-time, the inference process

of our face detection is carried out at the low-power edge de-

vice. Inspired by end-to-end FaceBoxes [38], the architecture

of the face detector is shown in Fig. 3, which is an anchor-

based face detector. The network structure of the face detector

can be divided into two stages that make the detector accurate

and efficient on the edge devices with shrinking the spatial

size of input, enriching the receptive fields.

In practical application, the frames of video as input images

have high resolution. Therefore, in order to reduce the com-

putational cost, we need to accelerate downsampling as soon

as possible, that is, most of the reduction in the width and

height of the feature map could be completed due to suitable

stride size and kernel size at the first stage. The stride value

of convolutional layer and pooling layer are shown in Fig. 3.

If the pixel size of the input image is 720 × 720, the total

stride size of the first stage is 24 (3 × 2 × 2 × 2), which

means that it achieves 24 times downsampling. Besides, the

C.ReLU activation function [39] is utilized to help to further

reduce computing overhead. C.ReLU is designed from the

statistical observation that there is a negative correlation in

the lower layers. Based on this, the number of output channels

is concatenated with its negation before the ReLU activation

function.

In the second stage, three Inception modules [40] are

used to enrich the receptive fields, which are able to detect

various scales of faces. The Inception module can factorize

convolution into smaller convolutions, which makes the whole

network wider, but with the smaller number of parameters

and computation. In this way, it provides multiple branches

with different kernels, that are different receptive fields. Then,

through the several convolutional layers, the last two down-

sampling is completed. Similar to SSD, multi-scale feature

maps are generated for detection. Besides, considering that

most of the face box is square, this part uses default boxes with

1:1 aspect ratio for prediction, that is anchor-based methods.

We also employ the anchor densification strategy from [38].

As the definition of the tiling density of anchor, the equation

can be written as follows:

Adensity =
Ascale

Ainterval

(4)

where, Ascale is the scale of default anchor boxes, and

Ainterval is the interval of the anchor. In our face detector,

Ainterval also denotes the multiple of downsampling (i.e. 24,

24, 24, 48, and 96 for default anchors). We set the scale of

default anchor to 24, 48, and 96 pixels for the third Inception

modules, 192 pixels for Conv3 2, and 384 pixels for Conv4 2,

respectively. Therefore, we obtain Adensity of each anchor (i.e.

1, 2, 4, 4, and 4). To have a better ability of the detection of

small size faces, the anchor densification strategy is used that

keeps the value of Adensity constant (i.e. 4), that is, increase

the number of anchors at a center point by translating anchors.

In the end, we adopt loss function which is the same as

Faster R-CNN [34], that is, binary cross-entropy for classifi-

cation and the smooth L1 loss for regression are employed as

loss function:




L (Pface, Q) =
1

N
(
∑

pi∈P

Lcls(pi) + α
∑

qi∈Q

Lreg(qi)),

Lcls(pi) = −[p∗i log(pi) + (1− p∗i ) log(1− pi)],

Lreg(qi) = smoothL1(qi − q∗i ),

(5)

where N is the number of positive samples in one batch, and

α is the balancing parameter. Pface is the set of all predicted

probability of anchor as the face object (pi), and p∗i is an

indicator function of pi, that is, the positive anchor is p∗i = 1;

otherwise p∗i = 0. Q is the set of vectors representing of the

predicted bounding box (qi = [xi, yi, wi, hi]), and q∗i denotes

the ground-truth box related with a positive anchor. Besides,

the probability in Lcls is computed by softmax loss function.

E. Mask Identification

After face detection, our goal is to identify the condition

of mask-wearing based on the cropped faces (i.e. Masked

and Non-Masked). In essence, it is also an image binary

classification task, and it can be regarded as a function,

f : I 7→ Pmask, where I is the face image as input , and

Pmask is the output probability of mask-wearing that is used

to obtain the classification result. In our Bus Drive Monitoring

Dataset, we label incorrectly mask-wearing as Non-Masked,

which may only be slightly different from Masked. Therefore,

the network puts forward some requirements for the ability of

extracting feature.

As the image classification performance of CNN,

Mobilenet-V2 is adopted to identify the condition of mask-

wearing, which not only has high accuracy, but also

is a lightweight image classification network. Therefore,

Mobilenet-V2 is well suited for edge devices. Compared with

traditional CNN, Mobilenet-V2 can decrease the amount of

computation and the number of model parameters by replacing

the standard convolutional layer with the depthwise separable

convolution, which can ensure the high image classification

accuracy. The depthwith separable convolution includes two

parts that are depthwise convolution and pointwise convo-

lution, which are used to filter and combine, respectively.

Besides, the inverted residuals are used to enhance the ability

of propagating the gradient to multiplier layers and memory

efficiency, which increase and then decrease the number of

channels. In the bottleneck inverted residual block (BIR), the

linear bottleneck is used instead of ReLU after the second

pointwise convolution to retain feature diversity. The network

structure of Mobilenet-V2 is shown in TABLE I, where n is

the number of repetitions and k is expansion ratio.

Similarly, for the classification task, the softmax function

is utilized to compute the confidence of classes (i.e. Masked
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Fig. 4: Visualized results of video restoration (VR) compared with ground truth (GT) on Bus Drive Monitoring Dataset

including 1 Non-Mask frame and 3 Masked frames. (Zoom in for suitable view, and faces portions are pixelated for keep

anonymity.)

TABLE I: The network structure of Mobilenet-V2.

Input Operator Output n k

2242×1 Conv2d 1122×32 1 -

1122×32 BIR 1122×16 1 1

1122×16 BIR 562×24 2 6

562×24 BIR 282×32 3 6

282×32 BIR 142×64 4 6

142×64 BIR 142×96 3 6

142×96 BIR 72×160 3 6

72×160 BIR 72×320 1 6

72×320 Conv2d 1×1 72×1280 1 -

72×1280 AvgPool 7×7 12×1280 1 -

12×1280 Conv2d 1×1 1 - -

and Non-Masked), and the cross-entropy is till utilized as the

object function. Considering the problem of overfitting, we

add an L2 regularization term to the object function, which is

written as follows:



L(M) = −
1

|M |
(Lcls(M) + Lreg)

Lcls(M) =
∑

mi∈M

[m∗

i log(mi) + (1−m∗

i ) log(1−mi)]

Lreg = λW ·WT /2
(6)

where M is the set of predicted probabilities of samples

(cropped faces), and m∗

i is the indicator function of mi, that

is, m∗

i = 1 which denotes face image i that belongs to label

Masked, otherwise m∗

i = 0. For the rest term of L, L2

regularization term (Lreg), W is the learned parameters of

network, and λ > 0 is the regularization coefficient.

IV. EXPERIMENTS

In this section, we first describe the collected Bus Driver

Monitoring Dataset and training details. Then, we show the

performance and evaluation of three analysis tasks in our

ECMask, including video restoration, face detection, and mask

identification. Finally, we present the inference time efficiency

of ECMask at the edge nodes.

A. Dataset Description and Training Details

1) Dataset Description: For the pubic health prevention

and the mask identification during COVID-19, we collect

the real bus driver monitoring video clips (each with 104

consecutive frames) as Bus Drive Monitoring Dataset, which

are standard quality (720 × 576), provided by Panda Bus

Company. The dataset contains 642 video clips, which are la-

beled as Masked and Non-Masked. After labeling, the dataset

is divided into 488 clips with label Masked and 154 clips with

label Non-Masked. Bus Drive Monitoring Dataset consists of

80% training clips, 10% validation clips, and 10% testing

clips (i.e. 516, 63, and 63, respectively). For the training of

video restoration, we execute specific processing, which is

downsampling to 144 × 115 and Gaussian Blur with 7 × 7
kernel size and 5 standard deviation, to complete the training

dataset.

2) Training Details:

Video Restoration. The training of video restoration is the

same as EDVR [25], except that our Bus Drive Monitoring

Dataset is added for training.

Face Detection. The training of face detection utilizes

12880 images of the WIDER FACE training set 1. The training

data is augmented with random 90◦ rotations and horizontal

flips. The model is trained with SGD, which sets 10−3 initial

learning rate, 0.9 momentum, and 5 × 10−4 weight decay.

Besides, the learning rate is adjusted with a drop factor of

0.9 every 30 epochs. During training, the threshold of Jaccard

overlap of matching anchors to faces is set to 0.35.

Mask Identification. After face detection on Bus Drive

Monitoring Dataset, we obtain the position of the faces, which

are cropped as the inputs of the model of mask identification.

Similarly, we use SGD to train the model with 0.045 initial

learning rate and 0.9 momentum, and the learning rate is

1The dataset is available at http://shuoyang1213.me/WIDERFACE/
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Fig. 5: Visualized results of our face detector with video restoration (VR) and without VR on Bus Drive Monitoring Dataset

including 1 Non-Mask frame and 3 Masked frames. (Faces portions are pixelated for keep anonymity.)

Fig. 6: Visualized results of mask identification with video restoration (VR) and without VR on Bus Drive Monitoring

Dataset including 1 Non-Mask frame and 3 Masked frames. (Faces portions are pixelated for keep anonymity.)

adjusted with cosine decay. Besides, λ, the factor of L2

regularization, is 4× 105.

Our models are implemented based on the PyTorch frame-

work, and trained using NVIDIA GPU with CUDA and

cuDNN enabled in the edge server.

B. Experiment Results

1) Video Restoration: For the blur detection, we make sure

that the number of clips that need to be restored is few.

Therefore, we set the threshold to 115 with the variance of the

Laplacian operator based on the statistic analysis on Bus Drive

Monitoring Dataset. There are a small number of clips that

require video restoration, accounting for 3% (i.e. 13 Masked

clips, and 6 Non-Masked clips). We evaluate the performance

of video restoration on two quality metrics.

- Peak Signal-to-Noise Ratio (PSNR). PSNR is extensively

applied to evaluate the quality of an image after process-

ing compared with its original image. The higher value of

PSNR means they have smaller difference. The formula

is as follows:

PSNR(X,Y ) = 10 log10

(
(2n − 1)2

MSE(X,Y )

)
(7)

where MSE means mean square error operation, and n

denotes the number of bits per pixel (generally n = 8).

- Structural SIMilarity index (SSIM). As a common image

standard evaluation index, SSIM can evaluate the sim-

ilarity between two images from different perspectives

including brightness, contrast, and structure. The value

range of SSIM is [0, 1], and the closer to 1, the higher

similarity. Its equation can be defined as:

SSIM(X,Y ) =
(2µXµY + c1)(2σXY + c2)

(µ2
X + µ2

Y + c1)(σ2
X + σ2

Y + c2)
(8)

where µ and σ are the mean and covariance operations.

c1 and c2 are positive constants to avoid the denominator

being 0.

TABLE II demonstrates the calculation results of the quan-

titative metrics compared with ground-truth clips. Experiments

present that the effect of video restoration is verified, and the
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TABLE II: Quantitative results of video restoration.

Approach PSNR SSIM

Downsample 28.79 0.8730

Gaussian Blur 30.55 0.9037

Video Restoration 35.56 0.9495

TABLE III: The accuracy results of our face detector

compared with different methods.

Approach

Dataset

FDDB WIDER FACE WIDER FACE

(easy) (medium)

Faceness 90.3% 71.6% 60.4%

CMS-RCNN 90.6% 89.2% 87.0%

LDCF+ 93.3% 79.7% 77.2%

MTCNN 95.0% 85.1% 82.0%

ScaleFace 96.0% 86.7% 86.6%

Ours 95.9% 89.8% 87.1%

values of PSNR and SSIM after restoration are higher than

those after downsampling and Gaussian Blur. Moreover, the

visualized results are shown in Fig. 4, including 3 Masked

clips and 1 Non-Mased clip whose scores of the variance of

the Laplacian operator are less than 115, which present that

our video restoration can enhance face details.

2) Face Detection: For face detection, our fade detector

is evaluated against other methods [20]–[24] on the popular

face detection benchmarks, including the FDDB dataset and

WIDER FACE dataset (easy and medium subsets) in TABLE

III. Our face detector almost outperforms others on two subsets

of WIDER FACE. ScaleFace has similar performance to ours

on the FDDB on the FDDB. Furthermore, we design the

simple ablation experiment to illustrate the effect of video

restoration based on our Bus Driver Monitoring Dataset, that

is, each frame of clips is detected after video restoration or

not. As shown in TABLE IV, the performance evaluation

results with and without video restoration are compared. These

results prove that video restoration can improve the accuracy

of face detection, that is, video restoration effectively increases

accuracy by 1.23%. Our face detector reaches a high accuracy

of 97.98%, which can meet the needs of face detection

accuracy for most industrial environments. The examples of

visualized results are shown in Fig. 5.

3) Mask Identification: After face detection, we perform

mask identification based on the previous results of faces

obtained in each frame of clips. Similarly, we compute the

confusion matrixes to demonstrate the performance of mask

identification including those with and without video restora-

tion as shown in Fig. 7. Our mask identification method can

correctly classify 6382 frames of 6552 frames (the accuracy is

TABLE IV: The accuracy results of our face detector with

video restoration (VR) and without VR.

Approach Bus Drive Monitoring Dataset

VR × X

Accuracy 96.75% 97.98%

(a) With VR (b) Without VR

Fig. 7: Confusion Matrix results of mask identification (a)

with video restoration (VR), and (b) without VR on Bus

Drive Monitoring Dataset.

97.41%), which is better than those without video restoration.

In addition, we observed and analyzed the failed cases of mask

identification, and found several reasons for identification

errors, that is, low clip quality, the arm covering a large area

of the face, and incomplete face (looking back). The examples

of mask identification results are given in Fig. 6.

C. Inference Time Efficiency

In order to evaluate runtime efficiency, we calculate the

average inference time of face detection and mask identifi-

cation, and use their sum as the whole inference time. In our

experiments, we use the NCS and Raspberry Pi 4 as the low-

cost edge device, which is compared with the higher prices

hardware, CPU (Intel Xeon E5-2690 v4@2.60). In addition,

the distributed computing method is adopted with multiple

NCSs to further reduce the inference time and achieve real-

time, which can be regarded as cooperation between the edge

devices. Fig. 8 shows the results of average inference time.

Obviously, the performance on one single NCS is reluctant

for real-time, that is, our ECMask can run at the average

6.09 FPS by using one NCS to accelerate. However, through

the distributed computing method, the more NCSs are used

to accelerate, the more efficiency ECMask has. Moreover,

the efficiency of 3 NCSs with distributed computing can be

increased by 2.1 times, which is enough to meet the real-time

industrial requirement of video analysis. As the number of

NCS reaches 4, the increase in efficiency is no longer obvious.

Therefore, as the number of NCSs increases, the growth curve

of the FPS would tend to smooth. Furthermore, on the basis of

saving costs and improving performance as much as possible,

low-cost edge devices with edge computing through NCSs

can reach mostly the performance of the higher prices CPU

hardware.

V. CONCLUSION

In this paper, we developed an edge computing-based mask

identification framework (ECMask), which can identify the

condition of mask-wearing in the videos from bus driver mon-

itoring in real-time. Firstly, the blur detection with the Lapla-

cian operator is used to determine whether video restoration

is needed. Then, after possible video restoration, the accuracy

of face detection can be improved. Finally, the cropped face

images are further used for mask identification. Cooperative

edge computing is implemented by the distributed computing

with multiple NCSs as low-cost devices. The trained deep
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Fig. 8: Inference time and accuracy results for mask

identification on the multiple NCSs and CPU (E5-2690

v4@2.60), respectively.

learning model is optimized and stored in the NCSs with the

inference engine. Our results present that ECMask has not

only high accuracy in face detection and mask identification,

but also has the real-time ability of video analysis, which is

significant for the healthcare systems of COVID-19 in public

places, like buses.
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