
Real-time Meshless Deformation

Xiaohu Guo Hong Qin

State University of New York at Stony Brook

email: {xguo, qin}@cs.sunysb.edu

http://www.cs.sunysb.edu/{∼xguo, ∼qin}

Abstract
In this paper, we articulate a meshless compu-

tational paradigm for the effective modeling,

accurate physical simulation, and real-time

animation of point-sampled solid objects.

Both the interior and the boundary geometry

of our volumetric object representation only

consist of points, further extending the pow-

erful and popular method of point-sampled

surfaces to the volumetric setting. We build

the point-based physical model upon contin-

uum mechanics, which affords to effectively

model the dynamic elastic behavior of point-

based volumetric objects. When only surface

samples are provided, our prototype system

first generates both interior volumetric points

and a volumetric distance field with octree

structure. The physics of these volumetric

points in a solid interior are simulated using the

Meshless Moving Least Squares (MLS) shape

functions. In sharp contrast to the traditional

finite element method (FEM), the meshless

property of our new technique expedites the

accurate representation and precise simulation

of the underlying discrete model, without the

need of domain meshing. In order to achieve

real-time simulations, we utilize the warped

modal analysis method that is locally linear

in nature but globally warped to account for

rotational deformation. The structural simplic-

ity and real-time performance of our meshless

simulation framework are ideal for interac-

tive animation and game/movie production.

Keywords: physics-based animation, point-

based animation, meshless method

1 Introduction

The rapid technology advancement of scan-

ning devices has already made large-scale sam-

pled surfaces prevalent and popular in the digi-

tal processing pipeline. Developing new algo-

rithms and techniques for point-centered digi-

tal processing has become a common and long-

term mission in the point-based graphics field.

Examining the rich literature of point-centered

geometric processing and graphics rendering,

the topics of real-time (or interactive) manipu-

lation and animation of point-sampled geometry

appear to be less explored. Traditionally in com-

puter animation, meshes are inevitable for phys-

ical simulations since the finite element method

(FEM) requires an explicit mesh structure. For

point-sampled geometry, however, only local

vicinity information is needed. Meshes require

a much stronger condition that their connectiv-

ity should not overlap. The regularities of the

mesh, which are essentially determined from its

connectivity, are crucial for later-on animation

process and numerical computation. In this pa-

per, our goal is to simplify and streamline the en-

tire physical simulation and animation process

without any data conversion to meshes in order

to further improve its utility and broaden its ac-

cess by graphics users.

We present a real-time meshless simulation

and animation paradigm for point-based volu-

metric objects. Our system takes any point sam-

pled surfaces as input, generating a volumetric

distance field sampled at the center of octree

cells for point-sampled surface geometry. The

octree decomposition also implicitly defines the



geometry of the solid object enclosed by sur-

face points on its boundary. The surface dis-

tance field can be utilized to facilitate the em-

bedding of the volumetric point samples. Be-

sides point geometry (on the boundary and at the

interior), our physical model is based on con-

tinuum mechanics, which enables our system

to simulate the dynamic elastic behavior of the

point-based scanned objects. Using continuum

mechanics, the simulation parameters can be ob-

tained from the technical specification of real

materials documented in the typical scientific

references, avoiding the tedious parameter fine-

tuning and ad-hoc parameter selection as in the

case of mass-spring systems (commonly-used in

computer animation). The physics in our sys-

tem are simulated on the volumetric points using

the Moving Least Squares (MLS) shape func-

tions, one of the most popular meshless meth-

ods that have been developed extensively in me-

chanical engineering and material science. The

fast convergence, ease of adaptive refinement,

flexible adjustment of the consistency order and

the continuity of derivatives up to any desir-

able order are some key features of the meshless

methods. Note that, the volumetric points em-

ployed in our dynamic simulation can be easily

generated based on the octree structure outlined

above, which necessarily permits the powerful

adaptive modeling capability through the local

subdivision of any regions of interest in a hi-

erarchical fashion. Traditionally in mechanical

engineering, the high computational load associ-

ated with most meshless methods is one severe

drawback which plagues its further application

in computer graphics and animation. In order

to drastically speed up the simulation process,

we utilize the Modal Warping technique [1], in

which linear modal analysis is employed to sim-

ulate the elastic model in each local reference

frame of the simulation node, and the system

equations can be globally warped to account

for rotational deformation. Through our exten-

sive experiments, we demonstrate that modeling

and simulating point-sampled scanned geome-

try based on the meshless method can stream-

line the entire digital animation process, and

the integration of meshless method with modal

analysis is both natural and necessary to signif-

icantly improve the animation performance to-

wards real-time simulation of large-scale mod-

els using desktop computers.

Figure 1: The general framework of our real-

time meshless simulation system.

2 Related work

In this section we will briefly review some

related work on physically-based animation,

modal analysis, point-based geometry, and

meshless methods.

2.1 Physically-based animation and

modal analysis

Pioneering work in the field of physically-based

animation was carried out by Terzopoulos and

his co-workers in [2]. Later, a large number of

mesh based methods for both off-line and in-

teractive simulation of deformable objects have

been proposed in the field of computer graphics

based on either the boundary element method

[3] or the finite element method [4]. In 1994,

Belytschko et al. proposed the Element Free

Galerkin (EFG) method [5] to solve linear elas-

tic problems, specifically the fracture and crack

growth problems, in which the Moving Least

Squares (MLS) approximation was employed

in a Galerkin procedure. However, later-on

research on meshless methods are mainly re-

stricted to mechanical analysis field, because the

high computational load makes it impractical for

computer animations.

Modal analysis is a well established mathe-

matical technique, which was introduced to the

graphics field in 1989 by Pentland and Williams

[6] as a fast method for approximating deforma-

tion. James and Pai [7] implemented a real-time



simulation of skin and soft tissues attached to

moving rigid bodies by computing modal de-

formation on graphics hardware. Hauser et al.

[8] addressed the manipulation constraints and

combined modal analysis with rigid body simu-

lation. Most recently, Choi and Ko [1] proposed

a technique called Modal Warping that elimi-

nates the linearization artifacts while retaining

the efficiency of modal analysis.

2.2 Point-based geometry and meshless

methods

Research on point-based geometry has received

much attention in the modeling and visual-

ization community in recent years, following

Levoy and Whitted’s pioneering report [9].

Zwicker et al. presented a system called

Pointshop 3D [10] for interactive shape and ap-

pearance editing of 3D point-sampled geometry.

Alexa et al. [11] used the framework of mov-

ing least squares (MLS) projection to approxi-

mate a smooth surface defined by a set of points,

and they developed several associated resam-

pling techniques to generate an adequate repre-

sentation of the surface. Amenta and Kil [12]

presented a new explicit definition of the point

set surfaces in terms of the critical points of an

energy function on lines determined by a vec-

tor field. Guo et al. [13] equiped point surfaces

with level set technique, which can provide var-

ious local and global surface editing operations.

Later they embedded point clouds into dynamic

volumetric implicit models to afford intuitive

haptic interaction [14].

Müller et al. [15] presented a method for

modeling and animating elastic, plastic, and

melting volumetric objects based on the MLS

approximation of the gradient of the displace-

ment vector field. In their implementation, point

collocation method was used to achieve compu-

tational efficiency by avoiding numerical inte-

grals at the expense of the loss of simulation ac-

curacy. Guo and Qin [16] applied the meshless

method for simple crack propagation simulation

using the level set approach. Pauly et al. [17]

combined the meshless method with a highly

dynamic surface and volume sampling method

that affords complex fracture patterns of inter-

acting and branching cracks. Bao et al. [18] ap-

plied the dynamic meshless simulation method

to find a physically meaningful transition path

between two homeomorphic point-sampled sur-

faces.

3 Meshless methods

Most recently, meshless (mesh-free) meth-

ods [19] have been developed in the field of

mechanical engineering to enable solving par-

tial differential equations (PDEs) numerically,

based on a set of scattered nodes without hav-

ing to recourse to an additional mesh structure

(which must be put in place for the finite el-

ement methods). The advantages of meshless

methods for computer animations are multifold:

(1) there is no need to generate a mesh of nodes

for simulation – the nodes only need to be scat-

tered within the solid object, which is much eas-

ier to handle in principle; (2) properties such as

spatial adaptivity (node addition or elimination)

and shape function polynomial order adaptivity

(approximation/interpolation types) can stream-

line the adaptive model refinement and simula-

tion in both time and space; and (3) data man-

agement overhead can be minimized during sim-

ulation. There are many variants of the meshless

methods. In our simulation we use the Moving

Least Squares (MLS) shape functions, which

has been employed in the Element Free Galerkin

(EFG) method introduced in [5], mainly because

it has been well-developed with mature tech-

niques, and it has shown a superior rate of con-

vergence and high efficiency. Other variants of

available meshless methods can also be adopted

into our prototype system in a straightforward

way without theoretical obstacles. To make this

paper self-contained, we present a brief intro-

duction of the MLS approximation for the def-

inition of shape functions in the following sub-

section. More detailed derivation can be found

in [16].

3.1 MLS shape functions

The shape functions in the EFG method are

constructed by using the Moving Least Squares

(MLS) approximation technique, or alterna-

tively on the basis of reproducibility conditions

(note that both approaches can arrive at the same

expressions for the shape functions), and it can



provide continuous and smooth field approxima-

tion throughout the analysis domain with any

desirable order of consistency.

Each node I is associated with a positive

weight function wI of compact support in the

analysis domain. From the support of the weight

function wI , we can define the domain of influ-

ence of the node: ΩI = {x ∈ R3 : wI(x) =
w(x,xI) > 0}, where w(x, xI) is the weight

function associated with node I evaluated at po-

sition x. The approximation of the field function

f at a position x is only affected by those nodes

whose weights are non-zero at x. We denote the

set of such nodes the active set A(x).
If we consider a field function f(x) defined

in the analysis domain Ω, we can construct its

MLS approximation f̂(x) as:

f̂(x) =
m

∑

i=1

pi(x)ai(x) = pT (x)a(x), (1)

where pi(x) are polynomial basis functions, m
is the number of basis functions in the column

vector p(x), and ai(x) are their coefficients,

which are functions of the spatial coordinates

x. In our implementation, we utilize 3-D lin-

ear basis functions: pT
(m=4) = {1, x, y, z} in the

interest of time performance. The coefficients

a(x) can be derived by minimizing a weighted

L2 norm:

J =
∑

I∈A(x)

w(x−xI)[p
T (xI)a(x)−fI ]

2, (2)

where fI is the nodal field value associated with

the node I . Then we can derive the shape func-

tion φI(x). If we consider the field function as

a function of both space and time f(x, t), the

approximation in the analysis domain Ω can be

written as:

f(x, t) ≈ f̂(x, t) =
∑

I∈A(x)

φI(x)fI(t), (3)

One key attractive property of MLS approxima-

tions is that their continuity is directly related to

the continuity of the weighting functions. Thus,

a lower-order polynomial basis p(x) such as the

linear one can still be used to generate highly

continuous approximations by choosing appro-

priate weight functions with certain smoothness

requirements. Note that the FEM equivalents

can also be reached if the weight functions are

defined as piecewise-constant entities over each

influence domain.

Figure 2: The simulation nodes (green balls),

one of the support domain (the pink

box), and the volume rendered shape

function values.

4 Computational techniques

Our system takes any point set surface as input

and utilizes the octree-based hierarchical dis-

cretization method for constructing the implicit

surface, generating volumetric nodes, and as-

signing the integration points in order to assem-

ble the system matrices.

4.1 Hierarchical discretization for

meshless dynamics

The fundamental idea of general meshless meth-

ods is to create overlapping patches ΩI com-

prising a cover {ΩI} of the domain Ω with

shape function φI subordinate to the cover ΩI .

One way to create the meshless discretization

is to start from an arbitrarily distributed set of

nodes. No fixed connections between the nodes

are required. The nodes are the centers of

the overlapping patches Ωi, which can be ei-

ther parallelepiped or spherical domains. How-

ever, due to the rather unstructured distribution

of nodes over the domain some algorithmic is-

sues may arise. First, a discretization without

structure does not allow determination of the

patches that contribute to a certain integration

point without performing an expensive global

search. Second, the moment matrix in mov-

ing least squares shape function may become

invertible if the patch covering conditions (i.e.

∀x ∈ Ω card{I : x ∈ ΩI} > m, see [16]

for more details) are not satisfied. Last, the ef-

fective handling of the interaction between scat-

tered nodes with the geometric boundary (the



surface of point clouds in our prototype system)

becomes very difficult. From a pure implemen-

tation point of view, it is very important that the

patches are clearly defined. The interaction be-

tween the patches themselves, and between the

patches and the boundary, has to be well under-

stood and easily accessible during the runtime

of the system execution. These problems can

be solved perfectly with the assistance of octree

discretization.

4.1.1 Octree-based distance field for surface

geometry

In our prototype system, the input data is an

unstructured point cloud comprising a closed

manifold surface. If we conduct our later-

on processing and simulation solely on sur-

face points, many difficulties arise. For exam-

ple, performing inside/outside tests based en-

tirely on surface point information is a forbid-

ding task with many ambiguities. To amelio-

rate, we compute a volumetric distance field for

the input surface points. Such a distance field,

which expands to the entire volumetric domain,

will aid in the selection of volumetric points

at the interior of solid objects for the dynamic

simulation. In our implementation, we utilize

multi-level partition of unity (MPU) implicit sur-

face construction method proposed by Ohtake

et al. [20]. The multi-level approach allows us

to construct implicit surface models from large

point sets based on an octree subdivision method

that adapts to variations in the complexity of the

local shape. Figure 3 (left) shows the visualiza-

tion of distance fields using color contours on

2D slices.

We also observed that the octree discretiza-

tion of the volume can provide a structure to

construct the patches which would provide a pri-

ori information with respect to the size and inter-

actions of the patches. The octree subdivides the

volume of an object represented as point set sur-

face into cubes, giving a non-overlapping dis-

crete representation of the domain, on which

efficient numerical integration schemes can be

employed. The octants serve as the basic unit

from which to construct the patches and allow

the efficient determination of patch interactions.

In the following subsection, we will describe the

use of the octree structure as the basic building

block to help us define our meshless patches and

integration cells.

Figure 3: Distance field visualization, and vol-

umetric nodes (pink balls) generated

based on octree cells (green lines).

4.1.2 Octree-based volumetric node

placement

An octree structure can be defined by enclosing

the object domain of interest Ω in a cube which

represents the root of the octree, and then subdi-

viding the cube into eight octants of the root by

bisection along all three directions. The octants

are recursively subdivided to whichever levels

are desired. Note that the terminal level used for

our node placement does not need to coincide

with the terminal level of the MPU implicit sur-

face construction. Actually, in our implementa-

tion, the size of the terminal octant used for our

volumetric node placement (for meshless simu-

lation) is much larger than the terminal octant

used for MPU implicit surface reconstruction

because the surface point density is much larger

compared to the volumetric node density. Figure

3 (right) shows the volumetric nodes generated

based on octree-discretization. We restrict the

octree to be a one level adjusted octree, where

the level difference of all terminal octants and

their face and edge neighbors is no more than

one. This restriction can facilitate the automatic

satisfaction of patch covering condition.

Since we already have the implicit surface

representation of the object, we can easily clas-

sify each terminal octants as interior (I) octants

OI , exterior (E) octants OE , and boundary (B)

octants OB (see Figure 4). Interior octants are

those that are fully embedded in the interior of

the geometric domain Ω. Exterior octants are

those that are located totally outside of Ω, and



Figure 4: The definition of I, E, IB, and EB oc-

tants. We can use octree cells of the

same level to place nodes (left); or hi-

erarchically select octree cells (right).

Figure 5: The definition of open cover {ΩI} re-

gions based on the octree structure

(left); the interaction between open

covers and integration cells (right).

boundary octants are those that are intersected

by the boundary of Ω. The boundary octants

are further classified into interior boundary (IB)

OIB and exterior boundary (EB) OEB octants.

The simple rule is that the centroid of an IB oc-

tant is located within the domain, whereas the

centroid of an EB octant is located outside the

domain. After the geometric classification, we

can place a volumetric node (for meshless dy-

namics) at the center of each interior (I) and

boundary (IB, EB) octant. For an EB octant,

the node should be displaced by projecting from

its center onto the implicit surface to ensure that

each node resides in Ω. Let octant Oi ∈ OI∪OB

and node i reside in Oi, the open cover (support

region) associated with node i is a cube of size

α · size(Oi) centered around node i (see Fig-

ure 5 (left)). Both the volumetric nodes and their

open cover regions are necessary constituents

for meshless dynamics.

The open cover construction based on termi-

nal octants can provide the structure needed to

perform efficient neighboring search and patch

intersection test. By choosing a suitable size for

α, the validity of the open cover can be guar-

anteed a priori. For example, for a linear ba-

sis p(x)T
(m=4) = {1, x, y, z}, any point in the

domain will be covered by at least 4 patches if

we choose α to be 3. The generation of an oc-

tree is much more efficient than a finite element

mesh in practice. Furthermore, the octree allows

adaptive refinement of the discretization in areas

where simulation accuracy is of user’s prime in-

terest. Figure 4 shows two different octree dis-

cretizations for the same object.

4.1.3 Octree-based Gaussian integration for

matrix assembly

In order to assemble the entries of the system

matrices, such as the mass matrix or stiffness

matrix, we need to integrate over the problem

domain. This can be performed through numer-

ical techniques such as Gaussian quadrature, us-

ing the underlying integration cells. The inte-

gration cells can be totally independent of the

arrangement of nodes. The integration cells

are used merely for the integration of the sys-

tem matrices but not for field value interpola-

tion. In our octree-based discretization scheme,

since the terminal octants do not overlap (ex-

cept on their shared boundaries), we can fur-

ther subdivide the terminal octants OI and OB

into smaller cells and use them as the integra-

tion cells (see Figure 5 (right)). There may exist

some integration cells that do not entirely belong

to the analysis domain. We can easily separate

the portion of the cell which lies outside of the

domain by evaluating the implicit function (used

for representing the surface distance field). The

creation of the open cover and the integration

cells, as described here, eliminates any global

searching for members of the open cover during

matrix assembly and time integration. With the

prior knowledge of the value α and utilizing the

direct face neighbor links, all patches covering

a integration point x ∈ Ω can be found in O(1)
time.

4.2 Modal analysis for meshless dynamics

In our meshless approximation, the motion pa-

rameters of the material point x, i.e., the dis-

placements u, velocity u̇, and acceleration ü,



can be approximated by using the moving least

squares shape functions φI(x) in similar formu-

lae as Equation (3). The partial derivatives with

respect to the referencing coordinates xk can be

obtained simply as:

u,k(x, t) =
∑

I

φI,k(x)uI(t).

The system of ordinary differential equa-

tions which results from the application of the

Element-free Galerkin discretization of the spa-

tial domain can either be integrated directly, or

analyzed by mode superposition. That is, the

time dependent solution can be expressed as the

superposition of the natural (or resonant) modes

of the system. In the following section, we will

briefly introduce some basics of Modal Analysis.

More detailed discussions can be found else-

where [6, 7, 8, 1].

4.2.1 Basics of modal analysis

Consider the discretized Euler-Lagrange equa-

tions for elastic deformation:

Mü(t) + Cu̇(t) + Ku(t) = F(t) (4)

where M, C, and K are the mass, damping and

stiffness matrices, respectively, F is the exter-

nal load vector and u(t) is the vector of nodal

displacements. Under the commonly adopted

Rayleigh damping assumption, we can replace

the damping matrix with C = αM+βK, where

α and β are weighting coefficients. For linear

elasticity models, both M and K are constants.

Let the columns of Ψ be the solution to the gen-

eralized eigenvalue problem Kx = λMx, and

Λ be the diagonal matrix of eigenvalues, then

equation (4) can be transformed to:

z̈ + (αI + βΛ)ż + Λz = ΨTF, (5)

where z = Ψ−1u is the vector of modal ampli-

tudes, and Ψ is called modal displacement ma-

trix whose i-th column represents the i-th mode

shape. The decoupled ODEs in Equation (5) can

be computed independently and combined by

linear superposition. The computational loads

can be further reduced by removing modes that

are too stiff to be observed (corresponding to

higher eigenvalues). So we can take only l dom-

inant columns of Ψ, to reduce the amount of

computation significantly.

Figure 6: Top: a solid bar with surface point

samples before and after bending un-

der gravity (the red balls are fixed po-

sitional constraints); Bottom: the local

coordinate frame associated with each

volumetric simulation node.

4.2.2 Modal warping for rotational

deformation

Our Meshless Modal Analysis framework is

build upon the Modal Warping technique pro-

posed by Choi and Ko [1]. Their innovative

approach tracks the local rotations that occur

during the deformation based on the infinitesi-

mal rotation tensor, and warps the pre-computed

modal basis in accordance with the local rota-

tions of the mesh nodes. For the space limit, we

only briefly introduce their general ideas here.

More specific technical details and proofs can

be found in [1].

Considering an infinitesimal deformation

with displacement u, the rotation tensor is de-

fined as:

ω =
1

2
(∇× u)× = w×, (6)

where ∇×u is the curl of the displacement, w×
denotes the standard skew-symmetric matrix of

vector w. Here w = 1
2(∇ × u) can be consid-

ered as a rotation vector that causes the rotation

by angle ‖w‖ around the unit axis w/‖w‖. In

the Modal Analysis setting, the rotation vector

can be expressed in terms of the modal ampli-

tude z:

w(x) =
1

2
(∇×)Φ(x)Ψz (7)

where Φ(x) is the vector of MLS shape func-

tions evaluated at position x.



The basic idea of the Modal Warping ap-

proach is to embed a local coordinate frame at

each simulation node (see Figure 6). The ro-

tation matrix Ri of the local coordinate frame

associated with node i can be computed from

its rotation vector wi. For a general non-

linear elastic deformable model, the stiffness

matrix K(u) is not a constant. In order to ap-

ply the linear Modal Analysis method, it has

been shown in [1] that the non-linear Euler-

Lagrangian equations

Mü + Cu̇ + K(u)u = F (8)

can be approximated using the displacement uL

measured from each local orientation frame:

MüL + Cu̇L + KuL = RTF (9)

where R = [δijRi] is the block diagonal rota-

tion matrix for all the nodes. Actually there are

two basic assumptions to guarantee the validity

of this approximation (please refer to [1] for the

details and proofs). And we found that these as-

sumptions can be directly applied to our mesh-

less setting without influencing its validity. Us-

ing modal decomposition: uL(t) = ΨzL(t), the

linear elastodynamic equation (9) for uL can be

reduced to a set of decoupled ODEs:

z̈L + Cz ż
L + Kzz

L = ΨT (RTF). (10)

where Cz = (αI + βΛ) and Kz = Λ are both

diagonal matrices. We solve the above decou-

pled ODEs using implicit time integration. We

take an approach similar to [21] by making a

first-order approximation of the total force at the

next time step, to get the following linear sys-

tem:
{

∆z = h(ż0 + ∆ż)
∆ż = h(F0 − Kz(z0 + ∆z) − Cz(ż0 + ∆ż))

where h is the size of the time step, z0 and ż0 are

the current modal amplitude and velocity, and

∆z and ∆ż are their expected change in the next

time step. By regrouping, we obtain

Az∆ż = bz (11)

where

Az = I + hCz + h2Kz

and

bz = h (F0 − Kzz0 − (Cz + hKz)ż0)

Note that Az is a diagonal matrix, which makes

equation (11) to be solved efficiently.

4.2.3 Manipulation constraints

In order for the users to interact with the sim-

ulated objects, position and orientation con-

straints are important and must be enforced.

In general, the MLS shape functions lack the

Kronecker delta function property and result in

u(xI) 6= uI . The position and orientation con-

straints (Cp and Co, respectively) can be formu-

lated as:

Cp(xc) = Φ(xc)u(t) − dc(t) = 0

Co(xc) =
1

2
(∇×)Φ(xc)u(t) − wc(t) = 0

where xc is the constrained position of the

object, dc(t) is the desired displacement, and

wc(t) is the desired orientation, which are

known a priori. If we express both the position

and orientation constraints in terms of the modal

amplitude z, they can be simply written as:

C = Acz − bc = 0 (12)

where Ac is a k × n constraint matrix (k is the

number of constraints), and each row of Ac rep-

resents a linear constraint on z, and the vector bc

represents the values of these constraints. The

constraint condition (12) can be integrated into

the system equation (11) by Lagrange multipli-

ers. In our implementation, we replace the con-

straint equation C = 0 by the damped second-

order equation C̈ + 2ηĊ + γ2C = 0, where η
and γ are stabilization factors [22]. So we can

obtain the constrained equations of motion:

[

Az AT
c

Ac 0

] [

∆ż

λh

]

=

[

bz

h(−2ηĊ − γ2C)

]

.

(13)

Since both the number of selected modes l and

the number of constraints k are typically small

(l ≤ 128, k ≤ 20 in all of our examples), equa-

tion (13) could be solved in real-time.

5 Experimental results

The simulation and rendering parts of our sys-

tem are implemented on a Microsoft Windows

XP PC with dual Intel Xeon 2.8GHz CPUs,

2.0GB RAM, and an nVidia GeForce Fx 5900

Ultra GPU. We have conducted extensive ex-

periments on various scanned point-surface data



sets. Table 1 shows the statistics of various mod-

els and the corresponding simulation time for

each frame. For most of the data sets, the MLS

pre-computation for the system matrices takes

less than 10 minutes, while the modal decompo-

sition takes less than 1 minute.

model points nodes modes time

bar 5,634 1,008 64 0.013 s

Igea 134,345 822 64 0.023 s

balljoint 137,062 357 64 0.026 s

rabbit 67,038 1,251 64 0.019 s

Santa 75,781 1,150 128 0.028 s

Table 1: The statistics of various models and

their simulation time for each frame.

Figure 7 shows an example of the facial defor-

mation of the Igea model. The facial expression

of Igea can be changed by manipulating sev-

eral positional constraints. The first and second

rows of Figure 8 show the deformation of the

balljoint and rabbit models under users’ manipu-

lation with the bottom of the models fixed. In the

bottom row of Figure 8, the Santa Claus model

can be simulated based on either users’ manip-

ulation, or an input skeletal motion sequence.

Please refer to the accompanying video for more

simulation details.

Figure 7: Real-time facial deformation of the

Igea model using several positional

constraints. The meshless simulation

nodes are shown in the top left figure.

6 Conclusion

We have presented a real-time meshless simu-

lation and animation paradigm for volumetric

Figure 8: Top: dragging the balljoint while

fixing its bottom; Middle: drag-

ging/twisting the rabbit’s head with its

bottom fixed; Bottom: real-time ma-

nipulation of the Santa Claus model.

objects, whose interior and surface representa-

tions only comprise point samples. The mesh-

less property of our new technique expedites the

accurate representation and precise simulation

of the underlying discrete model, without the

strong need of domain meshing. The meshless

dynamics have many unique features, including

fast convergence, ease of adaptive refinement,

flexible adjustment of the consistency order and

the continuity requirement, etc. We exploit

the methodology of Modal Analysis and adapt

the Modal Warping technique into our meshless

simulation framework to achieve real-time ma-

nipulation and deformation. Based on our exten-

sive experiments, we believe that our new para-

digm can significantly advance the current state

of the knowledge in point-based solid model-

ing and animation of physical objects. In the

near future, the meshless methods and their en-

gineering principles, augmented by novel com-

putational techniques, are expected to open up

new research directions in computer graphics,

modeling, simulation, and visualization.

Acknowledgements

This research work was partially supported by

the NSF grant ACI-0328930, the ITR grant IIS-

0326388, and Alfred P. Sloan Fellowship to

Hong Qin. The Igea, rabbit, balljoint, and santa

models are courtesy of Cyberware Inc.



References

[1] M. G. Choi and H. S. Ko. Modal warping:

real-time simulation of large rotational de-

formation and manipulation. IEEE Trans.

Vis. Comput. Graph., 1(1):91–101, 2005.

[2] D. Terzopoulos, J. Platt, A. Barr, and

K. Fleischer. Elastically deformable mod-

els. In SIGGRAPH, pages 205–214, 1987.

[3] D. L. James and D. K. Pai. Artdefo: accu-

rate real time deformable objects. In SIG-

GRAPH, pages 65–72, 1999.

[4] G. Debunne, M. Desbrun, M. P. Cani, and

A. H. Barr. Dynamic real-time deforma-

tions using space & time adaptive sam-

pling. In SIGGRAPH, pages 31–36, 2001.

[5] T. Belytschko, Y. Y. Lu, and L. Gu. Ele-

ment free galerkin methods. Int. J. Numer.

Methods Eng., 37:229–256, 1994.

[6] A. Pentland and J. Williams. Good vibra-

tions: model dynamics for graphics and

animation. In SIGGRAPH, pages 215–222,

1989.

[7] D. L. James and D. K. Pai. Dyrt: dynamic

response textures for real time deformation

simulation with graphics hardware. SIG-

GRAPH, pages 582–585, 2002.

[8] K. Hauser, C. Shen, and J. O’Brien. In-

teractive deformation using modal analy-

sis with constraints. In Graphics Interface,

pages 247–255, 2003.

[9] M. Levoy and T. Whitted. The use

of points as a display primitive. Tech.

Report85-022, University of North Car-

olina at Chapel Hill, 1985.

[10] M. Zwicker, M. Pauly, O. Knoll, and

M. Gross. Pointshop3d: an interactive sys-

tem for point-based surface editing. SIG-

GRAPH, pages 322–329, 2002.

[11] M. Alexa, J. Behr, D. Cohen-Or, S. Fleish-

man, D. Levin, and C. T. Silva. Com-

puting and rendering point set surfaces.

IEEE Trans. Vis. Comput. Graph., 9(1):3–

15, 2003.

[12] N. Amenta and Y. J. Kil. Defining point-set

surfaces. ACM Trans. Graph., 23(3):264–

270, 2004.

[13] X. Guo, J. Hua, and H. Qin. Scalar-

function-driven editing on point set sur-

faces. IEEE Comput. Graph. Appl.,

24(4):43–52, 2004.

[14] X. Guo, J. Hua, and H. Qin. Touch-based

haptics for interactive editing on point set

surfaces. IEEE Comput. Graph. Appl.,

24(6):31–39, 2004.

[15] M. Müller, R. Keiser, A. Nealen, M. Pauly,

M. Gross, and M. Alexa. Point-based an-

imation of elastic, plastic, and melting ob-

jects. In ACM SIGGRAPH/Eurographics

symp. Computer Animation, pages 141–

151, 2004.

[16] X. Guo and H. Qin. Point-based dynamic

deformation and crack propagation. Tech.

Report, Stony Brook University, 2004.

[17] M. Pauly, R. Keiser, B. Adams, P. Dutré,

M. Gross, and L. J. Guibas. Meshless an-

imation of fracturing solids. ACM Trans.

Graph., 24(3):957–964, 2005.

[18] Y. Bao, X. Guo, and H. Qin. Physically-

based morphing of point-sampled surfaces.

to appear in Comput. Animat. Virtual

Worlds, 2005.

[19] T. Belytschko, Y. Krongauz, D. Organ,

M. Fleming, and P. Krysl. Meshless meth-

ods: an overview and recent developments.

Comput. Meth. Appl. Mech. Eng., 139:3–

47, 1996.

[20] Y. Ohtake, A. Belyaev, M. Alexa, G. Turk,

and H. P. Seidel. Multi-level partition of

unity implicits. In SIGGRAPH, pages 463–

470, 2003.

[21] D. Baraff and A. Witkin. Large steps in

cloth simulation. In SIGGRAPH, pages

43–54, 1998.

[22] D. Metaxas and D. Terzopoulos. Dynamic

deformation of solid primitives with con-

straints. In SIGGRAPH, pages 309–312,

1992.


