mzuriCh ETH Library

Real-Time Metric State Estimation
for Modular Vision-Inertial Systems

Conference Paper

Author(s):
Weiss, Stephan; Siegwart, Roland

Publication date:
2011

Permanent link:
https://doi.org/10.3929/ethz-a-010025261

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/ICRA.2011.5979982

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.



https://doi.org/10.3929/ethz-a-010025261
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/ICRA.2011.5979982
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Real-Time Metric State Estimation for Modular Vision-Itial Systems

Stephan Weiss and Roland Siegwart

Abstract— Single camera solutions - such as monocular visual absolute position and also velocity estimation of the robot

odometry or monoSLAM approaches - found a wide echo in
the community. All the monocular approaches, however, suéfr
from the lack of metric scale. In this paper, we present a soltion
to tackle this issue by adding an inertial sensor equipped
with a three-axis accelerometer and gyroscope. In contrast
to previous approaches, our solution is independent of the
underlying vision algorithm which estimates the camera poss.
As a direct consequence, the algorithm presented here opdes
at a constant computational complexity in real time. We trea
the visual framework as a black box and thus the approach is
modular and widely applicable to existing monocular solutons.
It can be used with any pose estimation algorithm such as visl
odometry, visual SLAM, monocular or stereo setups or even
GPS solutions with gravity and compass attitude estimation
In this paper, we show the thorough development of the
metric state estimation based on an Extended Kalman Filter.
Furthermore, even though we treat the visual framework as a
black box, we show how to detect failures and estimate drifts
in it. We implement our solution on a monocular vision pose
estimation framework and show the results both in simulatio
and on real data.

I. INTRODUCTION

Nowadays the camera pose estimation topic is well studi r%
in the community and a variety of ready-to-use solutions arg
available. In recent years the community launched several
visual odometry and visual SLAM frameworks to avoid
bulky sensor suites like laser scanners. These visuaicofut
carry a very lightweight, cheap and yet powerful sensoesui
and are still capable of running in real time. In [1] and [2]
the authors reduced the sensor suite to one single camer

One camera is probably the only viable sensor solutio
for devices and robots with a very limited weight and powe
budget. We aim in particular at applications on small flyin
platforms. In previous work [3] we implemented a visual
position controller on a quadrotored rotorcraft based an tr]1
visual framework PTAM [1]. This showed the possibilitya
to control a robot in its 6 Degrees of Freedom (DoF) b)f
only using one single camera. The drawback was that ev
time before take-off the visual scale had to be manuall
measured since one camera cannot recover the metric sc&ggt of EKE SLAM is O
of the scene. Moreover, a scale drift, while the robot was
flying, eventually led to instability and crash of the system
Thus, in order to use a monocular solution for controllin
a robot, it is crucial to recover the absolute scale and sc
drift in real time. This information immediately leads to an
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Then, well known position and velocity based controllers
may be applied to robustly control the vehicle.

II. RELATED WORK

Fusing Inertial Measurement Units (IMUs) with a visual
sensor is a well known topic in the community. Recent
work in [4] shows the fusion of IMU and vision in its
6DoF on a robot arm. The authors compare the performance
of an Extended Kalman Filter (EKF) and an Unscented
Kalman Filter (UKF). The scale is recovered from the known
dimensions of the observed patterns in the image frames.
Thus the working area is limited to the area the pattern can
be observed. The authors state that the UKF approach yields
better results at the cost of calculation power. We set a high
priority on speed of the algorithm as we aim at real time full
6DoF state estimation. Thus we implemented our solution in
an EKF framework only.

The work of Mirzaei and Roumeliotis [5] presents a
Kalman Filter (KF) based calibration solution to estimate
tation and translation between a camera and an inertial
nsor mounted on a rigid body. They retrieve the scale from
feature pattern with known dimension. In contrast to their
\?Iork, however, we focus also on the unknown scale.

A similar approach for camera-IMU calibration was cho-
sen by Kelly et al. [6]. The authors present a target free
calibration method where the visual scale to arbitrary but
fixed features is estimated during the calibration procedur

As the procedure requires fix features, the operation area is

fbstricted to the area of sight of the features. The samé spir
has the work of Jones [7] and Pinies [8]. The authors coupled

£{ightly the IMU into an EKF SLAM. This is in essence a

similar approach as Kelly followed but with the extension to
ew features. Strelow has already earlier shown a detailed
nalysis in this direction [9]. From the filter point of view
hese approaches are more robust compared to our solution
they take all cross couplings of the observed features
to account. However, it is known that the computational
(m?) at its theoretical best, with
m being the amount of features. This issue prevents long
term runs or requires sub-mapping at the cost of cross
ouplings. Furthermore in [10] the authors state the need
¥ many features for a robust pose estimations and favor,
thus, a keyframe-based SLAM approach in most scenarios.
The latter approach runs linear in the number of features
(navigating in a previously visited area).
In contrast to the tightly coupled EKF-SLAM approaches

using an IMU (that we call here IMU-EKF-SLAM), our
solution decouples the two frameworks visual pose estimate



and metric scaled state estimation. Figure 1 depicts tte shows the situation of the camera-IMU setup with its
two different approaches. The novelty of our solution icorresponding coordinate frames.

that the metric state estimation is independent of the Visua

framework. More precisely, our work is independent of the Camera:IMU body

visual pose estimation algorithm and is, thus, not limited t
SLAM. Also visual odometry, stereo setups, or even GPS
(unit scale, magnetometer, and gravity for attitude) can be
used as pose input for the filter. This makes our approach
a very versatile solution to control a robot efficiently and
at high frequency in metric position and speed. Of course,
due to the absence of the landmarks in the filter, we lose
cross-coupling effects in the covariance matrix to a certai

amount. We show here, however, that even without these Y
cross-couplings the filter yields precise results whileifgv < World q’ p=0 <
the benefit of constant computational complexity. Using, fo Vision

example, a keyframe-based visual framework the whole statg > \isualization of the different coordinate frames time setup.
estimation framework - visual pose and our filter - ha®etween every frame there is a rotatipmnd translatiorp. Constant values
a complexity OfO(m) instead OfO(mQ) as in the IMU- are in green such as the IMU-cam transformation. Red valeestd th_e

. . variables used for robot control. Blue values are the measents and in
EKF-SLAM proposed in other work. As we treat the visualyrey we denote the short term stationary transformations.
framework as a black box, a second contribution of this paper

is to determine when the visual pose estimator fails and also

to estimate the corresponding drifts. A. Inertial Sensor Model
. We assume that the inertial measurements contain a certain

” EKF biasb and white Gaussian noise Thus, for the real angular

acc State: Pose, scale, biases, M features | ~ Standard approach  VelocCitiesw and the real acceleratiomswe have
Complexity = O(M?)

gyro \

Failure detection B W= Wwm — by, —ng a =y — by, —ng (1)
unscaled A the subscriptm denotes the measured value and the
(blackbox) ) pose+cov EKF ~ Our solution . .
State: Pose, scale, biases dynamics of the non-static bidsare modeled as a random
VIV Complexity = process

gyro

Fig. 1. In contrast to tightly coupled solutions (top schéo)aur filter runs b' =y
at constant computational complexity. Moreover, treatirgpose estimation « “
part as a black box, we are independent of the underlying pstmation .
method. The whole framework has thus the complexity of theseh pose B. State Representation

estimator. As we show in this work, we can still detect falrand drifts The state of the filter is composed p:;fu the position of
of the black box. . . . . Lo
the IMU in the inertial world frame, its velocity!, and
The paper is structured as follows. In the main section II!Its a_ttltude quaterniory,, describing a rotation from the
we explain first the noise models for the Extended KalmawertIal frame to the IMU frame. We add also the gyro and

Filter, then we give a thorough explanation of the statetsof i acceleration biasdsg, andb, as well as the visual scale factor
discretized propagation and finally of its update. In sentio)" The calibration states are the rotation from the IMU frame

IV we describe how to detect failure modes and drifts of th& the cacmera frame; and the .d|sta.1nce between these ,tWO
black box visual part. Section V is dedicated to the resulS€NSOT¥;- We note that the calibration states can be omitted

we obtained in simulation and with real data. We conclud@nd set to a calibrated constant making the filter more robust
the paper in section VI [7]. For completeness we keep them here in the filter state.

We use standard notation, in particular, we speak abo-lljp's yields a 24-elements state vecfor

the units of a variable when writing it in bracketsa]. The T T . .
measured accelerations, for example have thus.,,,] = Z. X =Apy vi @ by ba A4} 3)
Also, the skew symmetric matrix of is |a].

by = 1y, 2)

The following differential equations govern the state:

IIl. EXTENDED KALMAN FILTER

The inertial sensor yields the acceleration and rotational Z"Z_u = U, (4)
velocity in 3 axes. The visual sensor provides the filter with Uy = C(T%)(am —by—ng) — g (5)
unscaled 3D position and scale free attitude estimatiotts wi 1

respect to a visual frame set at the initialization. Figure G = FRwm —bs —nu)g, (6)



by = A=0 ps=0 ¢¢=0 (7)

With ¢ as the gravity vector in the world frame aftjw)
as the quaternion multiplication matrix af We assume the

bw = Ny, np

a

scale to drift very slowly, thug = 0. Taking the expectations
of the above derivatives and the beforehand discussed noise

model for the filter state propagation we obtain

o= 0 ®)
0, = Clgiy(am —ba) — g 9)
3 1 7\ 40
B o= 50 b, (10
bo=0 bo=0 A=0 $=0 g¢=0 (11

With C,y as the rotational matrix corresponding to ther, =

guaternionry.

C. Error State Representation

G. to be constant over the integration time step between two
consecutive state propagations. For the discretizatiomase
therefore write

Fy = exp(F.At) = 1q + F.At + 'FQAtQ (20)

2!
Careful analysis of the matrix exponents reveals a repeti-

tive and sparse structure. This allows us to exprésexact

without approximation and to use sparse matrix operations

later in the implementation of the filter. The mattby has

the following structure

[ e, At A B (ﬂ; VAL Osyr
03 Ia, C D C(qw At Ozx7
03 03 E F 03 03x7
03 03 03 Iq 03 O3x7
03 03 03 03 Id3 03x7

| O7x3 O7x3 O7xs  Or7xs O7x3 La, |

In the above described state representation, we use quater-
nions as attitude description. It is common that in such @ cas We use the small angle approximation for whieh — 0,
we represent the error and its covariance not in terms of @&Pply de I'Hopital rule and obtain for the six matrix blocks
arithmetic difference but with the aid of an error quatemio 4. B,C, D, E, F' a compact solution [11]:

This increases numerical stability and handles the quiatern

in its minimal representation [11].
Thus, we define the 22-elements error state vector

&= {Aph Avi 500 AT ABT AN ApS 565} (12)

as the difference of an estimateto its quantityz, i.e.

I = x — 2. We apply this to all state variables except the

error quaternions which are defined as follows

) . . 1.

oy = a,©d, ~[300, 1T (13)
- 1

bgi = qi@ds ~ (o6 1" (14)

The differential equations for the continuous time erraitest
are

Ap:, = Ava (15)
Aiy, = —Cli ) las] 60 — Ol ) Aby — Cfi yna (16)
8, = — me J 56 — Aby, — n, (17)
Ab, =ny, Aby=mny AX=0 Api =0 A =0 (18)

with @ = w,, — b, anda = a,, — b,. This can be

summarized to the linearized continuous-time error state

equation

&=F.i+Gen (19)
[ T T T

with n being the noise vector = [n],n/ ,nl,n/ 7. In
the here presented solution, we are in particular intedeiste
the speed of the algorithm. This is why we assufeand

. At?2 A3 Att
A = —Cl) la:] (T_WLWIJJFTLL"IJz)
. A3 At Atd
= —C’(T%)Lazj< = +TL%J—FMJ2>

At? A3
~Clay) La) <At = lwal 51 szJz)
D = -4
2
foa— Id_mMHA; |we)?
2 3
F o= _Ats A; |wa] _A?)—f w2

We can now derive the discrete time covariance maprjx
[12] as

Qu— / Fa(r)GeQuGT Fa(r)Tdr (21)
At

with Q. being the continuous time system noise covari-

ance matrixQ. = diago2 ,02 02 02 )

Ng? nb 'Y Yng,,
With the discretized error state propagation and error
process noise covariance matrices we can propagate tke stat

as follows:

1) propagate the state variables according to their differ-
ential equations (8) to (11). For the quaternion, we
used the first order integration described in [11].
calculateF; and Qg

compute the propagated state covariance matrix ac-
cording to the filter equation

2)
3)

Poiije = FaPyi Py + Qa (22)



D. Update WhereH;“i andH;'c are the matrices when the error mea-

1) Covariances: From [13] and [14] we assume to pe Surement is linearized versus the filter error staltgs and
able to obtain the uncertainties of the camera translatioh a0¢; respectively. Finally the measurements can be stacked
rotation axis and magnitude using one of the described metifgether as
ods. We distinguish between the positing and rotational
ng measurement noise. This yields the six-vector Zp } _ [ _Hy s

Osxe Hy'' O3x10 Hyf
z = Hx

Zq (32)
(23)

Nm = [Ny 1g)

Using the approximation of{;¥ = (031,1 ?g}ﬁ ). This is
z q

justified since the expectation of the error quaterniéagfs
?nddqf are unit quaternions.

2) Update: Once we obtained the measurement matrix
H we can update our estimate according to the well known
Kalman Filter procedure:

1) compute the residua =z — 2

2) compute the innovatio§ = HPH” + R

3) compute the Kalman gaif = PHTS~!

4) compute the correction = K2

From the correction: we can compute the updated state

variables in our stat&'. The error quaternion is calculated
5 = 2p— % by following eq. (13) and ensuring its unit length. The error

with its measurement covariance matfix

E. Measurement Model

1) Measurement:For the camera position measuremen
pS we obtain from the visual algorithm, we have the follow-
ing measurement model

zp = P = Ol (0l + Cle \ )X+ 1y

; (24)
with C(,: y as the IMU’s attitude and’(,.) the rotation
from the visual frame to the inertial world frame.

We define the position error as

= c(fl;w(piu 4 C(Z;L)pg){\ + np— (25) state covariance is updated as following
Clly (Bl + Ol DDA
which can be linearized to Piirpper = Ta=KH)Peyrp(la—KH)' + KRE™ (33)
5, = Hyi (26) IV. DRIFT AND FALSE POSE ESTIMATES
Unlike tightly coupled approaches with our solution, we
with _ ok _ can treat the visual part (i.e. the visual pose estimatien) a
C(q:,“)/\ a black box. Of course, one desires to detect failures and
03 o drifts of the black box to ensure ongoing functionality of
—C(J;;u)C(T%) ZaR the whole framework. The scale drift is handled by the scale
T — 03 estimate in real time. We explain the detection of failurés o
P 03 the vision part in the following.
C(:’;w)c& )]554-0(7;“,)15 We note that in section Il we considered the rotation
Sortor 3 between the inertial world frame and the frame of the visual
(@ )0 (@) frameworkg® as constant during a filter step. At each filter
N 3 N stepk we can measure this rotation as
using the definition of the error quaternion » .
Cay = CinClq (28) Since the drift is slow compared to the filter frequency,
w 2 (qd,)
: we can smooth a sequence of measurements’of). We
O(qgf) ~ la- L‘W;va (29) suggest a median filter as the vision part is better modeled

Yith non-zero mean outlier jumps. The estimation of the
rotation between inertial and visual fran@ (k) using a
window of sizeN is then

For the rotation measurement we again apply the notion
an error quaternion. The vision algorithm yields the rotati
from the vision frame to the camera framfe We can model

this as

G, (k) =medg,’(i)) i=k—-N—Fk (35)

24 =45 =4 g, @ qy (30) Due to the fact that the drift is slow we can identify abrupt
which yields for the error measurement jumps in }he measured onentaquj‘i_(k) w.r.t. the smoo_thed
estimateg® (k) as failures of the visual pose estimation. A
Zg = 2~ % _ typical plot of the measurement gf (k) is shown in figure
= ¢®q¢,0¢ @@ eq,q) " (31) 3. The sequences where the visual part failed to estimate a

0qf @ ¢ ® 0ql, ® ¢
H'sql, = Hi¢dqs

correct pose are clearly visible. As soon as a measurement
q¥ (k) lies outside the3o error bounds of the pasd/



estimatesj” (k) it is considered as false pose estimate. Notdevice’s position with millimeter accuracy and attitudetap
that, analyzing the rotation for wrong measurements, this a tenth of a degree both at 200Hz.
less sensitive to loop closure jumps. Usually these jumps The faster sampling rate of the IMU compared to the

affect greatly the position but less the attitude.

0.5

of ( 1

. v

E

-05F —roll
—pitch
_ i i i i i i i —yaw
100 120 140 160 180 200 220 240 260 280
seconds
Fig. 3. Roll, pitch, yaw representation of the calculatethtion between

the black box visual frame and the world frame. Note the fiveireled
areas which depict a failure of the vision algorithm. Eveouth we treat
the vision algorithm as a black box we can clearly identifyufas.

During such failure periods neithét’ (k) nor the biases

and scale are updated since the measured data is corrup
Note that we do update the IMU orientation, the velocit;}S
and position to bound the error during long dropouts. Lo
cost accelerometers suffer from large drifts and should n
be integrated over longer periods of time without update

vision system demands for a multi rate handling in the
practical implementation. We propagate the filter stateitsnd
error covariance each time an IMU measurement is obtained
as described in section Ill. We perform an update on a vision
reading. Our simulated data reflects this multi rate aspect
as well as the noises given by the manufacturer of the real
hardware.

A. Simulated Data

In simulations we evaluate the filter with respect to differ-
ent hardware configurations and their error in the initaliz
tion. For each simulation run we modify one parameter and
its error in the initialization and keep the others constant
with correct initialization. More precisely we analyze the
{deiatance between IMU and camesg, their rotationg?, the
cale factor\, and the acceleration and rotational rate biases

v9f the IMU b, and b,,. The default values are randomly

gosen and are listed in table I. A simulation run lasted
simulated seconds with accelerations of max’; and
rotational velocities of male%.

In contrast, gyroscope integration is fairly robust als@rov
longer periods of time. Thus we increase the visual mea-
surement noise for the position much less than for the
attitude. The increasing of the measurement noise during

TABLE |
DEFAULT SIMULATION VALUES

failure sequences bounds the filter error yet trusts thelsimp po[m] 105 1057

integration to a large extent. As figure 4 shows, the attitude f)]\,ﬂmd] gpg[oj 12017

is still estimated reliably. - [__0.1 —
bw[729] | [0.01 0.02 -0.015]7

~—— Visual measurement
——Filter estimate
——Ground truth

For the distance between IMU and camgfave changed
the setup between 0.1m, 0.6m and 1.1m for each single axis
and then all axis together. An initial error of 10% to 100%
was applied for each configuration. Figure 5 shows the error
of the results of the filter compared to ground truth after

roll angle [rad]
)
o

L
165 170 175 180 185
seconds

Fig. 4. Example for the roll angle estimate evolution duradailure of

the black box visual framework. During a failure mode biaaed scale are
not updated. The measurement noise for the attitude isyhighteased as
gyroscopes are reliable for long term integration. Theadis the position
measurement is less increased, because accelerometfens fearh larger
drifts. This results in an slight erroneous position estemaf the filter but

80 seconds. Note that the filter is still converging after 80
seconds for large absolute initialization errors on alkéhr
axis together. Be aware of the different y-axis scales in the
plots.

still very reliable attitude estimate. For the rotation between IMU and cameyawe changed

the setup between Orad, 1.5rad and 3rad for each single

With the above approaches we showed both, the handliagis and then all axes together. An initial error of 0.1rad
of scale drift and failures of the visual part treated as &lla to 1rad was applied for each configuration since an error in
box. percentage is not meaningful due to the circular nature of
rotations. The fix offset resulted in a similar behavior for
each configuration. We summarize the performance in figure

In this section we demonstrate the use of our solutiof. It shows the error of the results of the filter compared
based on both simulated and real data. We use the Cro$s-ground truth after 80 seconds of simulation. Naturally th
bow VG400CC IMU running at 75Hz and a uEye WVGA error increases with larger initialization errors. Notatttvith
monochrome camera with global shutter. As a vision systean initialization error of 1rad (i.e. 57°Bafter 80 seconds we
black box we use the PTAM monocular SLAM frameworkonly have an error of less than 2.8 roll, pitch, and yaw.
[1]. We process images at around 20Hz. We assume toWe also altered the scales from 0.1 to 5.5 in steps of 0.5
have accurate timestamps from the sensors to deal widmd apply at each value initialization errors from 10% to
time delays. For ground truth measurements of the real dat@0% of the real value. Note that a good initial estimate
we use a Vicon pose measurement system providing us tb&the scale is crucial to not break the filter. This my be

V. RESULTS
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Fig. 5.

the IMU-camera distancg§ to 0.1m, 0.6m and 1.1m on each axis. We

distorted the initial filter values by adding 10% to 100% o tinue value.

We measured the norm of the filter valg¢ after 80 seconds of simulated

filtering as performance evaluation. Graph a) depicts thfopeance when
p$ has different magnitudes on the axis. In contrast to [6] theres in
the same range no matter which axis is more elongated. Thiscause we
can move freely and no particular features need to remaihdrgiven field
of view. Graph b) shows the error with equally elongated afip$. Note
that for large initial errors the filter did not yet converggly (i.e. bottom
plot with 0.2m final error and 90% error added to the initidlrea All units
are in [m]

o —rol® o ——pitch? 0 —yauf
0.04 - 0.015] 0.04]
5 0.3 s 5003
° 2 0.0 2
E 0.02 £ Zo02
0.005
0.01 0.01
0.2 04 0.6 0.8 1 0 0.2 0.4 0. 1 0 0.2 04 0.6 0.8 1
additional initial error in rad additional initial error in rad additional initial error in rad
Fig. 6. The three plots show the error of the estimated ialietween

IMU and camera. We run simulations for 80 seconds each ambekathe
initial filter state by adding from 0.1rad up to lrad of errorthe correct
value.

achieved by a comparison of the visual speed with a short-

period acceleration integration during initializatioriglre 7

shows the error of the estimated scale after 80 seconds of
filtering time. Note that this is a single run experiment to
also demonstrate outliers (i.e. no mean filtering is applied

—— Ground truth -
* Initial value . ;
© Final filter value » » .

scale

i
0 10 20 30 40 50 60 70 80 90 100 110 120
simulation run

Fig. 7. The solid blue line depicts the ground truth. We addeeach
scale an error of 10% to 100% of the true value for the initiérfistate
(green stars). After 80 seconds of simulated filtering we tiie filter value
for the scale in red circles. Note that this is a single runeexpent. We
like to draw the attention to the convergence behavior aft@ulation run
70. The outliers occurring every now and then after run 70edie that
a good initial guess of the scale is important.

eration and angular rate biases. We used the true values 0,
1.5 and 3% for the accelerometer and 0.1, 0.6 and 1%1

for the gyro biases. For each value we tested the filter adding
an initial error of 10% to 100% of the true value. We did not
experience any different convergence behaviors by distprt
only one axis or all three axes together. We evaluate the
filter as fairly insensitive to wrong initial bias estimatd@he
resulting estimates after 80 seconds are summarized ie tabl
Il.

TABLE Il
SIMULATED FILTER RESULTS ON DIFFERENT BIAS VALUES

ba ba ba
Ground truth o 1.5% m
Absolute error | 0.0024 7% 0.005 7% 0.0275%

bw bw bw
Ground truth 0.17ad 0.67ad r1red
Absolute error| 0.0006722 | 0.000872¢ [ 0.0009722

B. Real data

Using the results of the above simulations we ensured
that the filter is robust enough against some initialization
errors. We mounted a camera on an IMU as described
in the beginning of this section and performed hand-held
movements. The maximal excitations in accelerations are
477 in z-direction,37; in y-direction and belowl 37 in x-
direction. In angular velocity the maximal excitations are
about2%i in all directions. Note that this is less excitation
than the values used in the simulations. The results are
summarized in table Ill. Note that the estimated scale has
an error of just under 2% compared to the calculated scale
aid of ground truth data.

TABLE Il
FILTER RESULTS ON REAL DATA

ps xyz[m] q¢ rpy[rad] | Scale
—0.039 —0.038
Filter —0.026 0.072 0.774
0.018 3.115
—0.0381 0
Measured| —0.0381 0 0.789
0.02 T

The novelty of this work is also to have the full metric
scaled state in real time at constant calculation powentfro
the filter point of view). We evaluate first the RMS of the
position. We analyzed the case where the estimated position
is rescaled with the true scafe= 0.789 to show errors in
the pure position estimate. Next we analyze the same using
the scale estimated by the filter at the eil,dnaz = 0.774
analyzing the filter’s position error after convergencestLa
we compute the RMS of the filter's position estimaig)
and the true position taking also the evolution of the scale
estimate\(¢) into account. Table IV summarizes the results.
In the same table we do the same calculations for the
estimated velocity.

In our work, we treat the vision part as a black box

Finally, we analyzed the initialization errors of the aecelproviding the unscaled 6DoF pose only. We are, however,



TABLE IV
FILTER RESULTS ON REAL DATA

RMS | pa[m] | py[m] | pe[m] | ve[m] | vy[m] | v.[m]

X 0.0445 | 0.0604 | 0.0708 | 0.0680 | 0.0731 [ 0.0794
Afina | 0.0373 | 0.0622 | 0.0755 | 0.0689 | 0.0740 | 0.0806
A) 0.1115 | 0.1005| 0.1239 | 0.0694 | 0.0743 [ 0.0812

able to detect failures as figure 8 shows. Failure modes

207-214 using the algorithm explained in section IV.
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Fig. 8. In real data, failure modes of the black box visualgpestimator

are correctly detected. For better visualization, the igraxector is rotated
from the world frame to the estimated visual frame. Abruparges (i.e.
failures) in the visual pose estimate result in similar abrchanges in the

rotation between visual and world framgé’. These changes are detected

according to section IV. Visual failures are marked in magesiars. Note
that the failure sections may be several seconds long, pasos integration
is thus not feasible. Short dropouts usually reflect bundjestment steps
of the pose estimator while longer ones reflect wrong tragkin

A typical evolution of the estimated position, velocity and

scale is shown in figure 9.
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Fig. 9. The top graph shows the evolution of the estimatedtipns Only
from second 137 on we perform enough excitation to let thdesfdly
converge. We note, however, that already before the scalenged to about
4% of the true value. That is, we actually need remarkably degitations
to estimate roughly the scale factor of the black box visuaiiework.

%

correctly detected at seconds 109, 156, 168-176, 187 a

visual SLAM, monocular or stereo setups or even GPS
solutions with gravity and compass attitude estimatiore Th
pose estimation part can be treated as a black box which
makes our solution usable for closed third party algorithms
as well. The decoupling of the algorithms leads directly to
a constant computational complexity of the state estimatio
filter. It consists of multiplications of22 x 22 matrices
and an inversion of & x 6 matrix only. That is, with
r solution the whole framework takes the complexity of
used pose estimation algorithm. Moreover, we propose
a second contribution to address failure and drift estimate
issues arising when treating the pose estimation part as a
black box. We carefully implemented and analyzed the state
estimation filter and evaluated its sensitivities to ihistate
errors. We also demonstrated successfully the functiooing
the filter on real data and showed that we reliably can idgntif
failures and drifts of the pose estimation algorithm. This
ensures proper functioning of the filter only having access
to the pose output of the black box.
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