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Real-Time Metric State Estimation for Modular Vision-Inertial Systems

Stephan Weiss and Roland Siegwart

Abstract— Single camera solutions - such as monocular visual
odometry or monoSLAM approaches - found a wide echo in
the community. All the monocular approaches, however, suffer
from the lack of metric scale. In this paper, we present a solution
to tackle this issue by adding an inertial sensor equipped
with a three-axis accelerometer and gyroscope. In contrast
to previous approaches, our solution is independent of the
underlying vision algorithm which estimates the camera poses.
As a direct consequence, the algorithm presented here operates
at a constant computational complexity in real time. We treat
the visual framework as a black box and thus the approach is
modular and widely applicable to existing monocular solutions.
It can be used with any pose estimation algorithm such as visual
odometry, visual SLAM, monocular or stereo setups or even
GPS solutions with gravity and compass attitude estimation.
In this paper, we show the thorough development of the
metric state estimation based on an Extended Kalman Filter.
Furthermore, even though we treat the visual framework as a
black box, we show how to detect failures and estimate drifts
in it. We implement our solution on a monocular vision pose
estimation framework and show the results both in simulation
and on real data.

I. I NTRODUCTION

Nowadays the camera pose estimation topic is well studied
in the community and a variety of ready-to-use solutions are
available. In recent years the community launched several
visual odometry and visual SLAM frameworks to avoid
bulky sensor suites like laser scanners. These visual solutions
carry a very lightweight, cheap and yet powerful sensor suite
and are still capable of running in real time. In [1] and [2]
the authors reduced the sensor suite to one single camera.

One camera is probably the only viable sensor solution
for devices and robots with a very limited weight and power
budget. We aim in particular at applications on small flying
platforms. In previous work [3] we implemented a visual
position controller on a quadrotored rotorcraft based on the
visual framework PTAM [1]. This showed the possibility
to control a robot in its 6 Degrees of Freedom (DoF) by
only using one single camera. The drawback was that every
time before take-off the visual scale had to be manually
measured since one camera cannot recover the metric scale
of the scene. Moreover, a scale drift, while the robot was
flying, eventually led to instability and crash of the system.
Thus, in order to use a monocular solution for controlling
a robot, it is crucial to recover the absolute scale and scale
drift in real time. This information immediately leads to an
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absolute position and also velocity estimation of the robot.
Then, well known position and velocity based controllers
may be applied to robustly control the vehicle.

II. RELATED WORK

Fusing Inertial Measurement Units (IMUs) with a visual
sensor is a well known topic in the community. Recent
work in [4] shows the fusion of IMU and vision in its
6DoF on a robot arm. The authors compare the performance
of an Extended Kalman Filter (EKF) and an Unscented
Kalman Filter (UKF). The scale is recovered from the known
dimensions of the observed patterns in the image frames.
Thus the working area is limited to the area the pattern can
be observed. The authors state that the UKF approach yields
better results at the cost of calculation power. We set a high
priority on speed of the algorithm as we aim at real time full
6DoF state estimation. Thus we implemented our solution in
an EKF framework only.

The work of Mirzaei and Roumeliotis [5] presents a
Kalman Filter (KF) based calibration solution to estimate
rotation and translation between a camera and an inertial
sensor mounted on a rigid body. They retrieve the scale from
a feature pattern with known dimension. In contrast to their
work, however, we focus also on the unknown scale.

A similar approach for camera-IMU calibration was cho-
sen by Kelly et al. [6]. The authors present a target free
calibration method where the visual scale to arbitrary but
fixed features is estimated during the calibration procedure.
As the procedure requires fix features, the operation area is
restricted to the area of sight of the features. The same spirit
has the work of Jones [7] and Pinies [8]. The authors coupled
tightly the IMU into an EKF SLAM. This is in essence a
similar approach as Kelly followed but with the extension to
new features. Strelow has already earlier shown a detailed
analysis in this direction [9]. From the filter point of view
these approaches are more robust compared to our solution
as they take all cross couplings of the observed features
into account. However, it is known that the computational
cost of EKF SLAM isO(m2) at its theoretical best, with
m being the amount of features. This issue prevents long
term runs or requires sub-mapping at the cost of cross
couplings. Furthermore in [10] the authors state the need
of many features for a robust pose estimations and favor,
thus, a keyframe-based SLAM approach in most scenarios.
The latter approach runs linear in the number of features
(navigating in a previously visited area).

In contrast to the tightly coupled EKF-SLAM approaches
using an IMU (that we call here IMU-EKF-SLAM), our
solution decouples the two frameworks visual pose estimate



and metric scaled state estimation. Figure 1 depicts the
two different approaches. The novelty of our solution is
that the metric state estimation is independent of the visual
framework. More precisely, our work is independent of the
visual pose estimation algorithm and is, thus, not limited to
SLAM. Also visual odometry, stereo setups, or even GPS
(unit scale, magnetometer, and gravity for attitude) can be
used as pose input for the filter. This makes our approach
a very versatile solution to control a robot efficiently and
at high frequency in metric position and speed. Of course,
due to the absence of the landmarks in the filter, we lose
cross-coupling effects in the covariance matrix to a certain
amount. We show here, however, that even without these
cross-couplings the filter yields precise results while having
the benefit of constant computational complexity. Using, for
example, a keyframe-based visual framework the whole state
estimation framework - visual pose and our filter - has
a complexity ofO(m) instead ofO(m2) as in the IMU-
EKF-SLAM proposed in other work. As we treat the visual
framework as a black box, a second contribution of this paper
is to determine when the visual pose estimator fails and also
to estimate the corresponding drifts.

Fig. 1. In contrast to tightly coupled solutions (top schematic) our filter runs
at constant computational complexity. Moreover, treatingthe pose estimation
part as a black box, we are independent of the underlying poseestimation
method. The whole framework has thus the complexity of the chosen pose
estimator. As we show in this work, we can still detect failures and drifts
of the black box.

The paper is structured as follows. In the main section III
we explain first the noise models for the Extended Kalman
Filter, then we give a thorough explanation of the state, of its
discretized propagation and finally of its update. In section
IV we describe how to detect failure modes and drifts of the
black box visual part. Section V is dedicated to the results
we obtained in simulation and with real data. We conclude
the paper in section VI.

We use standard notation, in particular, we speak about
the units of a variablea when writing it in brackets[a]. The
measured accelerationsam for example have thus[am] = m

s2 .
Also, the skew symmetric matrix ofa is baxc.

III. E XTENDED KALMAN FILTER

The inertial sensor yields the acceleration and rotational
velocity in 3 axes. The visual sensor provides the filter with
unscaled 3D position and scale free attitude estimations with
respect to a visual frame set at the initialization. Figure

2 shows the situation of the camera-IMU setup with its
corresponding coordinate frames.

Fig. 2. Visualization of the different coordinate frames inthe setup.
Between every frame there is a rotationq and translationp. Constant values
are in green such as the IMU-cam transformation. Red values denote the
variables used for robot control. Blue values are the measurements and in
grey we denote the short term stationary transformations.

A. Inertial Sensor Model

We assume that the inertial measurements contain a certain
biasb and white Gaussian noisen. Thus, for the real angular
velocitiesω and the real accelerationsa we have

ω = ωm − bω − nω a = am − ba − na (1)

the subscriptm denotes the measured value and the
dynamics of the non-static biasb are modeled as a random
process

ḃω = nbω
ḃa = nba

(2)

B. State Representation

The state of the filter is composed ofpi
w the position of

the IMU in the inertial world frame, its velocityvi
w and

its attitude quaternionqi
w describing a rotation from the

inertial frame to the IMU frame. We add also the gyro and
acceleration biasesbω andba as well as the visual scale factor
λ. The calibration states are the rotation from the IMU frame
to the camera frameqc

i and the distance between these two
sensorspc

i . We note that the calibration states can be omitted
and set to a calibrated constant making the filter more robust
[7]. For completeness we keep them here in the filter state.
This yields a 24-elements state vectorX :

X = {piT

w viT

w qiT

w bT
ω bT

a λ pc
i qc

i } (3)

The following differential equations govern the state:

ṗi
w = vi

w (4)

v̇i
w = CT

(qi
w)(am − ba − na) − g (5)

q̇i
w =

1

2
Ω(ωm − bω − nω)qi

w (6)



ḃω = nbω
ḃa = nba

λ̇ = 0 ṗc
i = 0 q̇c

i = 0 (7)

With g as the gravity vector in the world frame andΩ(ω)
as the quaternion multiplication matrix ofω. We assume the
scale to drift very slowly, thuṡλ = 0. Taking the expectations
of the above derivatives and the beforehand discussed noise
model for the filter state propagation we obtain

ˆ̇pi
w = v̂i

w (8)
ˆ̇vi
w = CT

(q̂i
w)(am − b̂a) − g (9)

ˆ̇qi
w =

1

2
Ω(ωm − b̂ω)q̂i

w (10)

ˆ̇
bω = 0

ˆ̇
ba = 0

ˆ̇
λ = 0 ˆ̇pc

i = 0 ˆ̇qc
i = 0 (11)

With C(q) as the rotational matrix corresponding to the
quaternionq.

C. Error State Representation

In the above described state representation, we use quater-
nions as attitude description. It is common that in such a case
we represent the error and its covariance not in terms of an
arithmetic difference but with the aid of an error quaternion.
This increases numerical stability and handles the quaternion
in its minimal representation [11].

Thus, we define the 22-elements error state vector

x̃ = {∆piT

w ∆viT

w δθiT

w ∆bT
ω ∆bT

a ∆λ ∆pcT

i δθcT

i } (12)

as the difference of an estimatêx to its quantityx, i.e.
x̃ = x − x̂. We apply this to all state variables except the
error quaternions which are defined as follows

δqi
w = qi

w ⊗ q̂i−1

w ≈ [
1

2
δθiT

w 1]T (13)

δqc
i = qc

i ⊗ q̂c−1

i ≈ [
1

2
δθcT

i 1]T (14)

The differential equations for the continuous time error state
are

∆ṗi
w = ∆vi

w (15)

∆v̇i
w = −CT

(q̂i
w) bâxc δθ − CT

(q̂i
w)∆ba − CT

(q̂i
w)na (16)

δ ˙θi
w = −bω̂xc δθ − ∆bω − nω (17)

∆ḃω = nbω
∆ḃa = nba

∆λ̇ = 0 ∆ṗi
c = 0 ∆θ̇c

i = 0 (18)

with ω̂ = ωm − b̂ω and â = am − b̂a. This can be
summarized to the linearized continuous-time error state
equation

˙̃x = Fcx̃ + Gcn (19)

with n being the noise vectorn = [nT
a , nT

ba
, nT

ω , nT
bω

]T . In
the here presented solution, we are in particular interested in
the speed of the algorithm. This is why we assumeFc and

Gc to be constant over the integration time step between two
consecutive state propagations. For the discretization wemay
therefore write

Fd = exp(Fc∆t) = Id + Fc∆t +
1

2!
F 2

c ∆t2 + . . . (20)

Careful analysis of the matrix exponents reveals a repeti-
tive and sparse structure. This allows us to expressFd exact
without approximation and to use sparse matrix operations
later in the implementation of the filter. The matrixFd has
the following structure

Fd =



















Id3
∆t A B −CT

(q̂i
w)

∆t2

2 03x7

03 Id3
C D −CT

(q̂i
w)∆t 03x7

03 03 E F 03 03x7

03 03 03 Id3
03 03x7

03 03 03 03 Id3
03x7

07x3 07x3 07x3 07x3 07x3 Id7



















We use the small angle approximation for which|ω| → 0,
apply de l’Hopital rule and obtain for the six matrix blocks
A, B, C, D, E, F a compact solution [11]:

A = −CT
(q̂i

w) bâxc

(

∆t2

2
−

∆t3

3!
bωxc +

∆t4

4!
bωxc

2

)

B = −CT
(q̂i

w) bâxc

(

−∆t3

3!
+

∆t4

4!
bωxc −

∆t5

5!
bωxc

2

)

C = −CT
(q̂i

w) bâxc

(

∆t −
∆t2

2!
bωxc +

∆t3

3!
bωxc

2

)

D = −A

E = Id − ∆t bωxc +
∆t2

2!
bωxc

2

F = −∆t +
∆t2

2!
bωxc −

∆t3

3!
bωxc

2

We can now derive the discrete time covariance matrixQd

[12] as

Qd =

∫

∆t

Fd(τ)GcQcG
T
c Fd(τ)T dτ (21)

with Qc being the continuous time system noise covari-
ance matrixQc = diag(σ2

na
, σ2

nba
, σ2

nω
, σ2

nbω
)

With the discretized error state propagation and error
process noise covariance matrices we can propagate the state
as follows:

1) propagate the state variables according to their differ-
ential equations (8) to (11). For the quaternion, we
used the first order integration described in [11].

2) calculateFd andQd

3) compute the propagated state covariance matrix ac-
cording to the filter equation

Pk+1|k = FdPk|kFT
d + Qd (22)



D. Update

1) Covariances:From [13] and [14] we assume to be
able to obtain the uncertainties of the camera translation and
rotation axis and magnitude using one of the described meth-
ods. We distinguish between the positionnp and rotational
nq measurement noise. This yields the six-vector

nm = [np nq]
T (23)

with its measurement covariance matrixR.

E. Measurement Model

1) Measurement:For the camera position measurement
pc

v we obtain from the visual algorithm, we have the follow-
ing measurement model

zp = pc
v = CT

(qw
v )(p

i
w + CT

(qi
w)p

c
i )λ + np (24)

with C(qi
w) as the IMU’s attitude andC(qw

v ) the rotation
from the visual frame to the inertial world frame.

We define the position error as

z̃p = zp − ẑp

= CT
(qw

v )(p
i
w + CT

(qi
w)p

c
i )λ + np−

CT
(qw

v )(p̂
i
w + CT

(q̂i
w)p̂

c
i )λ̂

(25)

which can be linearized to

z̃pl
= Hpx̃ (26)

with

HT
p =



























CT
(qw

v )λ̂

03

−CT
(qw

v )C
T
(q̂i

w)

⌊

p̂c
ix

⌋

λ̂

03

03

CT
(qw

v )C
T
(q̂i

w)p̂
c
i + CT

(qw
v )p̂

CT
(qw

v )C
T
(q̂i

w)λ̂

03



























using the definition of the error quaternion

qi
w = δqi

w ⊗ q̂i
w (27)

C(qi
w) = C(qi

î
)C(qî

w) (28)

C(qi

î
) ≈ Id −

⌊

δθi
wx

⌋

(29)

For the rotation measurement we again apply the notion of
an error quaternion. The vision algorithm yields the rotation
from the vision frame to the camera frameqc

v. We can model
this as

zq = qc
v = qc

i ⊗ qi
w ⊗ qw

v (30)

which yields for the error measurement

z̃q = zq − ẑq

= qc
i ⊗ qi

w ⊗ qw
v ⊗ (qc

i ⊗ q̂i
w ⊗ qw

v )−1

= δqc
i ⊗ q̂c

i ⊗ δqi
w ⊗ qc−1

i

= Hwi
q δqi

w = Hic
q δqc

i

(31)

WhereHwi
q andHic

q are the matrices when the error mea-
surement is linearized versus the filter error statesδqi

w and
δqc

i respectively. Finally the measurements can be stacked
together as

[

z̃p

z̃q

]

=

[

Hp

03x6 H̃wi
q 03x10 H̃ic

q

]

x̃

z̃ = Hx̃

(32)

Using the approximation ofHxy
q = (

1 01x3

03x1 H̃xy
q

). This is

justified since the expectation of the error quaternionsδqi
w

andδqc
i are unit quaternions.

2) Update: Once we obtained the measurement matrix
H we can update our estimate according to the well known
Kalman Filter procedure:

1) compute the residual̃z = z − ẑ

2) compute the innovationS = HPHT + R

3) compute the Kalman gainK = PHT S−1

4) compute the correctioñ̂x = Kz̃

From the correction̂̃x we can compute the updated state
variables in our stateX . The error quaternion is calculated
by following eq. (13) and ensuring its unit length. The error
state covariance is updated as following

Pk+1|k+1 = (Id−KH)Pk+1|k(Id−KH)T +KRKT (33)

IV. D RIFT AND FALSE POSE ESTIMATES

Unlike tightly coupled approaches with our solution, we
can treat the visual part (i.e. the visual pose estimation) as
a black box. Of course, one desires to detect failures and
drifts of the black box to ensure ongoing functionality of
the whole framework. The scale drift is handled by the scale
estimate in real time. We explain the detection of failures of
the vision part in the following.

We note that in section III we considered the rotation
between the inertial world frame and the frame of the visual
frameworkqw

v as constant during a filter step. At each filter
stepk we can measure this rotation as

qw
v (k) = q̂i−1

w (k) ⊗ q̂c−1

i (k) ⊗ qc
v(k) (34)

Since the drift is slow compared to the filter frequency,
we can smooth a sequence of measurements ofqw

v (k). We
suggest a median filter as the vision part is better modeled
with non-zero mean outlier jumps. The estimation of the
rotation between inertial and visual framêqw

v (k) using a
window of sizeN is then

q̂w
v (k) = med(qw

v (i)) i = k − N → k (35)

Due to the fact that the drift is slow we can identify abrupt
jumps in the measured orientationqw

v (k) w.r.t. the smoothed
estimateq̂w

v (k) as failures of the visual pose estimation. A
typical plot of the measurement ofqw

v (k) is shown in figure
3. The sequences where the visual part failed to estimate a
correct pose are clearly visible. As soon as a measurement
qw
v (k) lies outside the3σ error bounds of the pastM



estimateŝqw
v (k) it is considered as false pose estimate. Note

that, analyzing the rotation for wrong measurements, this is
less sensitive to loop closure jumps. Usually these jumps
affect greatly the position but less the attitude.
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yaw

Fig. 3. Roll, pitch, yaw representation of the calculated rotation between
the black box visual frame and the world frame. Note the five encircled
areas which depict a failure of the vision algorithm. Even though we treat
the vision algorithm as a black box we can clearly identify failures.

During such failure periods neither̂qw
v (k) nor the biases

and scale are updated since the measured data is corrupted.
Note that we do update the IMU orientation, the velocity
and position to bound the error during long dropouts. Low
cost accelerometers suffer from large drifts and should not
be integrated over longer periods of time without updates.
In contrast, gyroscope integration is fairly robust also over
longer periods of time. Thus we increase the visual mea-
surement noise for the position much less than for the
attitude. The increasing of the measurement noise during
failure sequences bounds the filter error yet trusts the simple
integration to a large extent. As figure 4 shows, the attitude
is still estimated reliably.
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Fig. 4. Example for the roll angle estimate evolution duringa failure of
the black box visual framework. During a failure mode biasesand scale are
not updated. The measurement noise for the attitude is highly increased as
gyroscopes are reliable for long term integration. The noise for the position
measurement is less increased, because accelerometers suffer from larger
drifts. This results in an slight erroneous position estimate of the filter but
still very reliable attitude estimate.

With the above approaches we showed both, the handling
of scale drift and failures of the visual part treated as a black
box.

V. RESULTS

In this section we demonstrate the use of our solution
based on both simulated and real data. We use the Cross-
bow VG400CC IMU running at 75Hz and a uEye WVGA
monochrome camera with global shutter. As a vision system
black box we use the PTAM monocular SLAM framework
[1]. We process images at around 20Hz. We assume to
have accurate timestamps from the sensors to deal with
time delays. For ground truth measurements of the real data
we use a Vicon pose measurement system providing us the

device’s position with millimeter accuracy and attitude upto
a tenth of a degree both at 200Hz.

The faster sampling rate of the IMU compared to the
vision system demands for a multi rate handling in the
practical implementation. We propagate the filter state andits
error covariance each time an IMU measurement is obtained
as described in section III. We perform an update on a vision
reading. Our simulated data reflects this multi rate aspect
as well as the noises given by the manufacturer of the real
hardware.

A. Simulated Data

In simulations we evaluate the filter with respect to differ-
ent hardware configurations and their error in the initializa-
tion. For each simulation run we modify one parameter and
its error in the initialization and keep the others constant
with correct initialization. More precisely we analyze the
distance between IMU and camerapc

i , their rotationqc
i , the

scale factorλ, and the acceleration and rotational rate biases
of the IMU ba and bw. The default values are randomly
chosen and are listed in table I. A simulation run lasted
80 simulated seconds with accelerations of max4.5 m

s2 and
rotational velocities of maxπ2

rad
s

.

TABLE I

DEFAULT SIMULATION VALUES

pc
i [m] [-1.1 0.5 1.05]T

qc
i [rad] rpy[0.7 -1.2 0.1]T

λ 0.5
ba[ m

s2
] [-0.1 -0.2 0.15]T

bw[ rad
s

] [0.01 0.02 -0.015]T

For the distance between IMU and camerapc
i we changed

the setup between 0.1m, 0.6m and 1.1m for each single axis
and then all axis together. An initial error of 10% to 100%
was applied for each configuration. Figure 5 shows the error
of the results of the filter compared to ground truth after
80 seconds. Note that the filter is still converging after 80
seconds for large absolute initialization errors on all three
axis together. Be aware of the different y-axis scales in the
plots.

For the rotation between IMU and cameraqc
i we changed

the setup between 0rad, 1.5rad and 3rad for each single
axis and then all axes together. An initial error of 0.1rad
to 1rad was applied for each configuration since an error in
percentage is not meaningful due to the circular nature of
rotations. The fix offset resulted in a similar behavior for
each configuration. We summarize the performance in figure
6. It shows the error of the results of the filter compared
to ground truth after 80 seconds of simulation. Naturally the
error increases with larger initialization errors. Note that with
an initialization error of 1rad (i.e. 57.3◦) after 80 seconds we
only have an error of less than 2.3◦ in roll, pitch, and yaw.

We also altered the scales from 0.1 to 5.5 in steps of 0.5
and apply at each value initialization errors from 10% to
100% of the real value. Note that a good initial estimate
of the scale is crucial to not break the filter. This my be
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Fig. 5. The graphs read as follows: we changed the initial true setup for
the IMU-camera distancepc

i to 0.1m, 0.6m and 1.1m on each axis. We
distorted the initial filter values by adding 10% to 100% of the true value.
We measured the norm of the filter valuêpc

i after 80 seconds of simulated
filtering as performance evaluation. Graph a) depicts the performance when
pc

i has different magnitudes on the axis. In contrast to [6] the error is in
the same range no matter which axis is more elongated. This isbecause we
can move freely and no particular features need to remain in the given field
of view. Graph b) shows the error with equally elongated axisof pc

i . Note
that for large initial errors the filter did not yet converge fully (i.e. bottom
plot with 0.2m final error and 90% error added to the initial value. All units
are in [m]
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Fig. 6. The three plots show the error of the estimated rotation between
IMU and camera. We run simulations for 80 seconds each and changed the
initial filter state by adding from 0.1rad up to 1rad of error to the correct
value.

achieved by a comparison of the visual speed with a short-
period acceleration integration during initialization. Figure 7
shows the error of the estimated scale after 80 seconds of
filtering time. Note that this is a single run experiment to
also demonstrate outliers (i.e. no mean filtering is applied).
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Fig. 7. The solid blue line depicts the ground truth. We addedat each
scale an error of 10% to 100% of the true value for the initial filter state
(green stars). After 80 seconds of simulated filtering we plot the filter value
for the scale in red circles. Note that this is a single run experiment. We
like to draw the attention to the convergence behavior aftersimulation run
70. The outliers occurring every now and then after run 70 underline that
a good initial guess of the scale is important.

Finally, we analyzed the initialization errors of the accel-

eration and angular rate biases. We used the true values 0,
1.5 and 3m

s2 for the accelerometer and 0.1, 0.6 and 1.1rad
s

for the gyro biases. For each value we tested the filter adding
an initial error of 10% to 100% of the true value. We did not
experience any different convergence behaviors by distorting
only one axis or all three axes together. We evaluate the
filter as fairly insensitive to wrong initial bias estimates. The
resulting estimates after 80 seconds are summarized in table
II.

TABLE II

SIMULATED FILTER RESULTS ON DIFFERENT BIAS VALUES

ba ba ba

Ground truth 0 m
s2

1.5m
s2

3 m
s2

Absolute error 0.0024 m
s2

0.005 m
s2

0.02 m
s2

bω bω bω

Ground truth 0.1rad
s

0.6rad
s

1.1rad
s

Absolute error 0.0006 rad
s

0.0008 rad
s

0.0009 rad
s

B. Real data

Using the results of the above simulations we ensured
that the filter is robust enough against some initialization
errors. We mounted a camera on an IMU as described
in the beginning of this section and performed hand-held
movements. The maximal excitations in accelerations are
4 m

s2 in z-direction,3 m
s2 in y-direction and below1 m

s2 in x-
direction. In angular velocity the maximal excitations are
about2 rad

s
in all directions. Note that this is less excitation

than the values used in the simulations. The results are
summarized in table III. Note that the estimated scale has
an error of just under 2% compared to the calculated scale
aid of ground truth data.

TABLE III

FILTER RESULTS ON REAL DATA

pc
i xyz[m] qc

i rpy[rad] Scale

Filter
−0.039
−0.026
0.018

−0.038
0.072
3.115

0.774

Measured
−0.0381
−0.0381

0.02

0
0
π

0.789

The novelty of this work is also to have the full metric
scaled state in real time at constant calculation power (from
the filter point of view). We evaluate first the RMS of the
position. We analyzed the case where the estimated position
is rescaled with the true scaleλ = 0.789 to show errors in
the pure position estimate. Next we analyze the same using
the scale estimated by the filter at the endλ̂final = 0.774
analyzing the filter’s position error after convergence. Last
we compute the RMS of the filter’s position estimatep̂(t)
and the true position taking also the evolution of the scale
estimatêλ(t) into account. Table IV summarizes the results.
In the same table we do the same calculations for the
estimated velocity.

In our work, we treat the vision part as a black box
providing the unscaled 6DoF pose only. We are, however,



TABLE IV

FILTER RESULTS ON REAL DATA

RMS px[m] py[m] pz[m] vx[m] vy [m] vz [m]
λ 0.0445 0.0604 0.0708 0.0680 0.0731 0.0794
λ̂final 0.0373 0.0622 0.0755 0.0689 0.0740 0.0806
λ̂(t) 0.1115 0.1005 0.1239 0.0694 0.0743 0.0812

able to detect failures as figure 8 shows. Failure modes are
correctly detected at seconds 109, 156, 168-176, 187 and
207-214 using the algorithm explained in section IV.
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Fig. 8. In real data, failure modes of the black box visual pose estimator
are correctly detected. For better visualization, the gravity vector is rotated
from the world frame to the estimated visual frame. Abrupt changes (i.e.
failures) in the visual pose estimate result in similar abrupt changes in the
rotation between visual and world frameqw

v . These changes are detected
according to section IV. Visual failures are marked in magenta stars. Note
that the failure sections may be several seconds long, pure sensor integration
is thus not feasible. Short dropouts usually reflect bundle adjustment steps
of the pose estimator while longer ones reflect wrong tracking.

A typical evolution of the estimated position, velocity and
scale is shown in figure 9.
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Fig. 9. The top graph shows the evolution of the estimated position. Only
from second 137 on we perform enough excitation to let the scale fully
converge. We note, however, that already before the scale converged to about
4% of the true value. That is, we actually need remarkably lowexcitations
to estimate roughly the scale factor of the black box visual framework.

VI. CONCLUSION

In this paper, we showed an approach to estimate the
full and metric scaled state of a camera-IMU device in real
time. The novelty of our solution lies in the decoupling of
the (visual) pose estimate and the filter state estimation.
This makes our approach highly modular to be used with
any pose estimation algorithm such as visual odometry,

visual SLAM, monocular or stereo setups or even GPS
solutions with gravity and compass attitude estimation. The
pose estimation part can be treated as a black box which
makes our solution usable for closed third party algorithms
as well. The decoupling of the algorithms leads directly to
a constant computational complexity of the state estimation
filter. It consists of multiplications of22 × 22 matrices
and an inversion of a6 × 6 matrix only. That is, with
our solution the whole framework takes the complexity of
the used pose estimation algorithm. Moreover, we propose
a second contribution to address failure and drift estimate
issues arising when treating the pose estimation part as a
black box. We carefully implemented and analyzed the state
estimation filter and evaluated its sensitivities to initial state
errors. We also demonstrated successfully the functioningof
the filter on real data and showed that we reliably can identify
failures and drifts of the pose estimation algorithm. This
ensures proper functioning of the filter only having access
to the pose output of the black box.
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