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ABSTRACT

A recursive procedure is derived for decoding of rate R=l/n binary con-

volutional codes which minimizes the probability of the individual decoding

decisions for each information bit subject to the constraint that the decoding

delay be limited to A branches. This new decoding algorithm is similar to, but

somewhat more complex than, the Viterbi decoding algorithm. A "real-time," i.e.

fixed decoding delay, version of the Viterbi algorithm is also developed and used

for comparison to the new algorithm on simulated channels. It is shown that the

new algorithm offers advantages over Viterbi decoding in soft-decision applications

such as in the inner coding system for concatenated coding.

* This work was supported by the National Aeronautics and Space Administration

under NASA Grant NGL 15-004-026 at the University of Notre Dame in liaison with

the Communications and Navigation Division of the Goddard Space Flight Center

and forms part of a dissertation to be submitted to the University of Notre Dame

in partial fulfillment of the requirements for the Ph.D. degree.
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I. Introduction

A binary convolutional code of rate R=l/n and memory order m can be encoded

using a shift-register of m stages together with n modulo-two adders as shown in

Figure 1. In this diagram at is the

0

a1 2 m Hhunit delay
b4 mod-two

* adder

wO . btl

bt 2

btn

Fig. 1 An Encoder for a Rate R=l/n Convolutional Code of
Memory Order m

-- O ---

input information digit at time t and

-t = [btl'bt2''''btn]

is the encoded branch at time t consisting of the n digits formed by the modulo-

two adders in the encoder. We assume that the encoded digits are transmitted

serially over a discrete memoryless channel (or DMC) and we let

t = [rtl,rt2,...rtn]

denote the corresponding received branch.

The encoding shift-register is initially loaded with zeroes after which

al,a2 ,..aL are encoded and then followed by m zeroes (i.e. aL+l=...=aL+m=0)

to clear the encoder. L is called the frame length. The case L= is not without

interest and in fact most practical threshold decoders for convolutional codes

have operated with an infinite frame length or, as it is usually stated, without

resynchronization of the encoder. Sequential decoders on the other hand.have
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always been employed with rather small frame lengths (on the order of 10m.)

We shall let a[tt,]=at,at+l,...at,] denote the information sequence over

time units t through t' inclusive, and similarly for btt'] and tt']" The

Viterbi decoding algorithm [1], which is the maximum likelihood decoding algorithm

for a convolutionally-coded frame sent over a discrete memoryless channel chooses

as its estimate a[1,L] of the information sequence that sequence which maximizes

the conditional probability

P("a1,L] l[,L+m]

and hence this algorithm minimizes the frame-error probability

PFE=Pr ( 1,L]al,L] (1)

which is.the probability of the event that at least one information bit in the

frame is wrongly decoded.

For any interesting channel, it must be true that

lim PFE = 1

so that PFE is not a meaningful optimality criterion for large frames. The

criterion of real interest in all cases is the bit-error probability
L 

PBE E Pr(atat) (2)
t=l

which gives the fraction of information digits which are wrongly decoded. From

(1) and (2) it follows that

PBE I PFE L PBE

so that when L is fairly small it makes little difference whether PBE or PFE is

minimized (which explains the appropriateness of Viterbi decoding when L is small.)

The bit-error probability, PBE' is minimized by the decoding rule which for

each t, l<t<L, chooses its estimate at as the binary digit which maximizes the

conditional probability

P(at j[1,L+m])"
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Algorithms, similar to Viterbi's, to accomplish this maximization have been pro-

posed independently by Bahl-Cocke-Jelinek-Raviv 12] and by McAdam-Welch-Weber 131.

These algorithms require receipt of the entire frame r11 ,L+m] before decoding

begins and so cannot be used without resynchronization. Moreover their implementa-

tion requires storage which grows linearly in L and hence are practical alterna-

tives to Viterbi decoding only for small L.

In the following section we derive a recursive procedure for "real-time

minimum-bit-error probability decoding" of rate R=l/n convolutional codes to

minimize PBE under the constraint that the decoding delay be limited to A branches.

In section III we formulate the corresponding decoding algorithm and show that its

storage requirements are independent of L. For comparison purposes, we formulate

a "real-time" modified Viterbi decoding algorithm in Section IV. Section V. reports

the results of using these decoding procedures on a simulated additive white

Gaussian noise channel. It is concluded that the improvement in PBE for the real-

time minimum-bit-error probability decoding algorithm is not enough to justify

the added complexity compared to Viterbi decoding but, as shown in Section VI, the

new algorithm offers advantages in soft-decision applications such as concatenated

coding.

II. Derivation of a Real-Time Minimum-Bit-Error Probability Decoding Procedure.

As in all previous optimal (in some sense) decoding procedures for convolu-

tional codes, we shall make important use of the encoder state which at time t is

defined as the contents of the shift-register in Fig. 1 i.e. the m-tuple of

past information bits

st = [at-,at-2...at-m (3)

and where, by our convention, a =0 for i<0O and i>L. As the term "state" implies,

st completely accounts for the past history of the encoder input in the sense that



st and the input segment at,L] uniquely determine the output segment b[t,L+m]'

By conditioning on the encoder state, the calculation of the probabilities re-

quired for the decision rule can be simplified

The decoding rule which minimizes PBE under the "real-time" constraint that

at be decided from r[l,t+A ] is that which chooses

at = 0 if

P(at=0__l,t+A) (4)

and chooses at=1 otherwise (where we have arbitrarily resolved ties in favor of

the decision at =0.) Since
SP(at=O,r[lt+A]

P(at=0Ir[l,t+A]
) = P(r[lt+A )

-El,t+A]

and since the probabilities on the righthand side of this latter equation can be

expressed as the summation over all states of the joint probabilities including

the state, we have

E P(at=0,r[1,t+A] 'St+A+l=s)
P(at=Ol[l,t+A]) = (rt+] = s )  (5)

Z 11,t+A] t+A+1 =
S

We now proceed to develop recursive formulas for the two probabilities

appearing on the righthand side of (5).

For any t, t > 1, we may write

P(r[l,t],st+l) = rl ,t],stst+l). (6)
stSt

But also

P( r[l,t],st-l'st)= P(rl1,t-1]'st)P(rtst+irl,t-11'st )

P(r[l,t-1]'st)P(rt st+lSt) (7)

where we have made use of the state property and our assumption that the channel

is memoryless. Writing
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P(rt,st+llSt) = P(st+llst)P(rtlst,st+i) , (8)

we then use the fact seen from (3) that the state st+1 = [at,at_-,...atm+l

has only two possible predecessors st, namely [at_l,...,at m+l 0] [at-1,..,a t-m+1],

to write
- if s EP(s )

P(s s) = {t+l (9)
P(st+1ist) = 0 otherwise

where here and hereafter we write P(s) for the set containing the two possible

predecessors of a state s. Finally, we note that,.for stEP(St+l), since st+1

specifies a (by its first digit) then it follows that the encoded branch b is

uniquely determined by st+ 1 and st[and we write b(stst+ ) for this branch] so that

P(rEtst,st+) = PtJ(stst+l)) (10)

and we note that this quantity is determined by the channel transition probabilities.

Substituting (7), (8), (9) and (10) into (6) we have our desired recursion

P(1,t]st+) = st(t+) st,t+l))  P( 1 ,t-l] t). (11)

st P(st+1t

The starting value P(r[l,1],s2 ) = P(rs 2 ) needed to apply the recursion is simply

1P(r Ib(0,s 2)) if OP(s2S2 - (12)
P(-1'S2) ={0 otherwise

where we have used the fact that s =0.
1 -

By an entirely analogous argument whose details we omit, the following

recursion for the other probability on the righthand side of (5) may be obtained:

P(at,r[l,t+i],st+i+l) = ' P(bt+ilb(st+i,st+i+1 ))P(atl,t+i_),s

st+i P(st+i+l) (13)

which we shall use for 1 < i < A. The starting value needed for this recursion is

P(at,{l1,t],st+l) P( l,t],st+l)P(at ll,t],St+l)

P(slt],st+l) if at is the first digit of st+l

0 otherwise
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so that the quantities obtained from the recursion (11) directly provide the

necessary initial conditions (14) to be used with the recursion (13). Hence we

have now obtained a complete recursive procedure for performing real-time

minimum-bit-error probability decoding of convolutional codes.

III. Implementation of the Decoding Algorithm

We now describe an algorithm for implementing the decoding procedure whose

recursive basis was developed in the previous section. Our algorithm requires the

storage of two real numbers for each of the 2m encoder states. We denote these

stored quantities for state s as f(s) and g(s). At time t (in the algorithm) the

first of these quantities will store the value

f(s) = P( [l,t],St+1=s) (16)

and the second, will store the value

g(s) = P(at=O,[l ,t+A] 'st+A+l=S). (17)

We shall store the previous A values of this latter quantity summed over all

states and denote these stored values as Gl,G2,...GA so that

G. = Z P(a t i = O ,r [ l ,t +-is t+i+l=s) (18)

for l<i<A will be the stored values at time t (in the algorithm). It follows

then that GA and

Z f(s) = Z P(r [1,t,st+l=s) (19)
s s

are the desired numerator and denominator on the righthand side of (5) for the

decoding of atA which is accomplished at time t (in the algorithm.) The only

additional storage required is that for the received branches rt rt+l,...t+A

The recursions (11) and (14) directly correspond to the following:

The Real-Time Minimum-Bit-Error Probability Decoding Algorithm

Step 0: Set t=l, set f(s)-P(r (o,s))for the two states s having O as a pre-
2 -f

decessor, and set f(s)=O for all other states. Set G.=0 for l<i< A.
1 - -



Step i: Set g(s)=f(s) if the first digit of s is 
a 0 and set g(s)=O otherwise.

Step 2: For i=1,2,...A, make the replacement

g(s) + 1 P(r Ijb(s',s))g(s') for all s.

s'CP(s) 2

Step 3: If t < A, go to step 2. Otherwise set at_ =O if

Z f(s)/G > -

and set atA=l otherwise.

Step : Increase t by 1. Make the replacements

G i+ G . for i=1,2,...,A-1
A-i+1 A-i

and set

G. = F g(s).

Step 5: Make the replacement

f(s) P( tlb(s' ,s))f(s') for all s

s'EP(s) 
2

and then return to step 1.

[NOTE: For simplicity we have omitted the obvious "end 
game" modifications needed

when t>L which of course are necessary only if a finite 
frame length is used. It

should also be pointed out that our "trick" of storing 
the A past values of the

g(s) summation actually results in a "true 
decoding delay" of 2A branches since

we require the use of rt+A in step 2 at time t (in the algorithm) when atA is

decoded. To reduce the "true decoding delay" to A branches requires the storage

of A+2 rather than 2 real numbers per state since f(s) must be updated 
by A

branches and the A-1 previous values of f(s) stored for each state 
or, alternatively,

the storage of 3 real numbers and considerable extra computation within the algorithm.]

The algorithm as given above is directly suited 
for software implementation.

It should be noted that steps 2, 3, and 5 call for both addition and multiplication

of the computed probabilities so that floating-po
i n t arithm etic would normally



be chosen for the calculation. [This contrasts with the Viterbi algorithm as will

be seen in the next section.] For each t, a total of A+l calculations are made

in steps 2 and 5 each involving a sum over all 2m states [whereas, as we shall

see, only one similar calculation is needed for the Viterbi algorithm.]

A hardware realization of the real-time minimum-bit-error algorithm could be

made employing 2m small computational units (or CU's) each of which corresponds

to an encoder state s. Each such unit would receive f(s') and g(s') from the

two CU's corresponding to the two states s' which are predecessors of s and, with

the aid of the received branches as inputs, would compute new values of f(s) and

g(s) and pass these values on in turn to the two CU's corresponding 
to the states

for which s is a predecessor. Each CU would execute A+1 computational cycles for

each t [as compared to 1 cycle for the CU's in a hardware Viterbi decoder.]

IV. Real-Time Viterbi Decoding

As mentioned in section I, the Viterbi decoding algorithm chooses a[1,L] to

be the information sequence which maximizes the conditional probability

p(a[1,L]Ir[1,L+m]). The following decoding rule, which we call real-time Viterbi

decoding, is the natural modification of this rule to satisfy the "real-time

constraint" that at be decoded from rl,t+A]: Choose at as the digit at in the

information segment a~[,t+A] which maximizes the conditional probability

P([l,t+A] (lt+A])

In keeping with our previous notation, we let

sit,t,]  = [st,st+l,...,st,]

denote the sequence of encoder states from time to to time t' inclusive. It

follows from (3) that S[l,t+A+l ] and a[l,t+A] uniquely determine one another and,

moreover, that at is the first digit of st+l . Hence we may rephrase the real-time

Viterbi decoding rule as: Choose at as the first digit of the state st+l in the

state sequence s[l.t+41]1 which maximizes the conditional probability
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SP(s lt+A+lr] ,t+A (20)

P(s[l,t+A+l] i l ,t + A ])  P([{l,t+A]

Since the denominator on the righthand side of (20) is independent of SIl,t+A+1] '

we can equivalently maximize the numerator alone.

To obtain a recursion for the numerator in (20) we use the same arguments as

in Section II which, for t > 2, give

P(s[l,t+l]' [l,t ] ) = P(s[l,t],rl,t-1iP(st+l t slt],r!lt1] )

= P(s[1,t,r,t-1])P(st+1,rt ist)"

= P(s 1,t], l,t-l] )P( t s t)P(Et I tst+ l)

SI (st+l))P(s[Il,tr )l,tl) if stEP(st+1 )
2 ;--t -t"St+l ,t] r-[llt-l

0 otherwise. (21)

Equation (21) is our desired recursion. The initial condition to be used for

t=2 is 1 P(rb(O,s)) if OEP(s )
S2 -2 (22)

P(s[1,2] -,1] 0 otherwise.

Just as for the ordinary Viterbi algorithm, the key to the efficient implemen-

tation of real-time Viterbi decoding is the fact [readily seen from (21)] that

the best state sequence [in the sense of maximizing the joint probability on the

lefthand side of (21)] s[l,t+l] with St+l=s must be the extension of the best

sequence S[l,t ] with st=s' or st=s'' where s' and s'' are the predecessors of s.

Hence at each time t the only storage required for each state is the best sequence

to that state. Actually, since real-time Viterbi decoding requires only knowledge

of the first digit of the state A states previously along the sequence, we need

store only A bits per state together with the joint probability needed for the

recursion in (21). We write B.(s), l<i<A, and h(s) for these stored quantities

which at time t (in the algorithm) have the values
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h(s)=P(s*[l,t+l],r[l,t]) (23)

where s*[l,t+l ] is the best path S[l,t+l] with st+l=s and

first digit of state st+l i

B.(s) = (24)
1 in the path s*[,t+l].

Then we may state:

The Real-Time Viterbi Decoding Algorithm:

Step 0: Set t=l, set h(s)= P(r 1 b(0,s)) for the two states s having 0_as a

predecessor, and set h(s)=O otherwise. Set B (s)=O for l<i<A and all states s.

Step 1: If t < A, go to Step 2. Otherwise set

at- =BA(s)

where s is the state for which h(s) is maximum.

Step 2: Increase t by 1. Make the replacement B Ai+ ) + B(s) for i=1,2,...

A-1 and for all s.

Step 3: For each s, make the replacement h(s) -( P(rJb(s',s))h(s')

where s' is the predecessor of s which maximizes the replacing quantity and set

Bl(s) = first digit of s'.

Then return to step 1.

The algorithm just given is directly suited for software implementation.

Since the algorithm calls for only multiplication of the computed probabilities

and selection of a maximum, logarithms may be used with the result that only

computer additions are required and hence fixed-point arithmetic would normally

be chosen for the calculation. For eact t, only one maximum over all states need

be taken, an operation equivalent in complexity to a sum over all states as is

required A+1 times in the algorithm of the preceeding section. In a hardware

realization of the real-time Viterbi algorithm, the CU corresponding to state S

would receive h(s') from the two CU's corresponding to the two predecessors s'

of s and, with the aid of the received branch, would compute the new value of h(s)



and pass this value on in turn to the two CU's for the states having s as a

predecessor. Each CU would execute only one computational cycle for each time

unit t and would be somewhat simpler than the CU's described in the preceeding

section since only one quantity, h, (rather than two, f and g) would be processed

and only additions need be performed.

It should be emphasized that real-time Viterbi decoding may be used for

L=-, i.e. when the convolutional encoder is not periodically resynchronized.

Moreover, ordinary Viterbi decoding can be considered the special case of real-time

Viterbi decoding for finite L when A=L+m-l.

V. Simulation Results

To evaluate the performance of real-time minimum-bit-error probability de-

coding (hereafter called RTMBEP decoding), a rate R=1/2 convolutional coding system

was implemented for a simulated additive white Gaussian noise (AWGN) channel with

8-level output quantization and with binary antipodal signalling. The results of

this simulation are given in Table I where Eb is the energy per information bit,

NO is the one-sided noise power spectral density,and K=m+l is the encoder con-

straint length measured in information bits.

The simulation reported in Table I shows that the RTMBEP decoding algorithm

gives a noticeable improvement in PBE compared to real-time Viterbi decoding and

ordinary Viterbi decoding only for small Eb/NO, the improvement being about .2dB

and .4dB respectively when Eb/NO is 0 dB for K=3. We conclude that the slight

improvement in PBE for RTMBEP decoding would generally not justify the added

complexity relative to real-time Viterbi decoding.

In Table II, we show the effect of the decoding delay A on PBE for K=3.

From this table we see that a A of about 3K is sufficient for near optimal

performance.
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PBE

SK L No. Frames A RTMBEP Real-Time Ordinary

NO  Decoded Decoding Viterbi Viterbi

OdB 3 2400 1 9 .109 .113 .119

2dB 3 2400 2 9 .0165 .0186 .0173

4dB 3 2400 5 9 .00083 .00083 .00083

OdB 5 2400 1 19 .154 .169

2dB 5 2400 2 19 .0165 .0184

4dB 5 2400 5 19 .00033 .0033

Table I. Results of Decoding for a Simulated Additive White

Gaussian Noise Channel

Eb P
b K. L No. Frames A BE

NO  Decoded

OdB 3 1200 1 4 .133

OdB 3 1200 1 5 .125

OdB 3 1200 1 7 .113

OdB 3 1200 1 9 .109

OdB 3 1200 1 19 .106

OdB 3 1200 1 29 .102

2dB 3 1200 2 4 .0325

2dB 3 1200 2 9 .0165

2dB 3 1200 2 19 .0140

Table II. Effect of Decoding Delay A for RTMBEP Decoding for a

Simulated Additive White Gaussian Noise Channel
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VI. Erasure

Although RTMBEP decoding is not an attractive alternative to Viterbi decoding

(either real-time or ordinary) for hard-decision decoding, it has good potential

for use in soft-decision decoding such as in an inner coding system for con-

catenated decoding (See [4] for an example of a concatenated scheme using an inner

convolutional system.) This follows from the fact that the a posteriori probability

P(atA =0or[lt])= Z f(s)/G (25)
s

is directly computed (in step 3) by the algorithm so that the quality of the

decoding decision for atA is directly known.

To indicate the potential of RTMBEP decoding for soft-decision decoding, we

consider the simplest case, for the AWGN channel viz. erasure decoding where

the decision of at A is either 0, 1 or E where E is an erasure symbol. The over-

all convolutional coding system then converts the channel to a binary symmetric

erasure channel (BSEC) as shown in Figure 1 where q is the erasure probability

and p is the

1-P-
0 0

at at

1-P-q

Fig. : The Binary Symmetric Erasure Channel (BSEC) Resulting from
Erasures Decoding

crossover probability. It whould be stressed that the BSEC model applies for a

single decoding decision only since the encoder memory introduces memory into the

overall channel. Nonetheless, the capacity C of the memoryless BSEC is a lower

bound on the capacity of the true channel and hence a meaningful measure of the

quality of the erasures decoding.
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The natural erasures rule for RTMBEP decoding is: Choose at=E when

1 - a < P(a t_=01[lt]) < + a. (26)
2 t-A-[lt] 2

In Table III, we show the results of RTMBEP erasures decoding on the AWGN channel

when a in (26) is chosen to maximize the capacity C of the memoryless BSEC.

[It is interesting to note that the optimum a in all cases corresponded to the

case when 1/3 of the erased digits would have been converted to errors in hard-

decision decoding while 2/3 of the erased digits would have been correctly de-

coded.] We also show the capacity for hard decisions, i.e. q=0, as a standard to

evaluate the gain for erasures decoding. The increase in capacity is seen to be

.8 dB and 1.0 dB for K=3 and K=5 respectively. We conclude that RTMBEP decoding

has considerable potential for use in soft-decision applications for convolutional

codes.

EB
N K L A No. Frame p q Capacity C Capacity for
NO Decoded of BSEC Hard Decisions

OdB 3 1200 9 1 .0284 .248 .577 .480

OdB 5 1200 19 1 .0342 .327 .478 .380

Table III: The Effectiveness of RTMBEP Erasures Decoding for the

Additive White Gaussian Noise Channel

It should be remarked that there seems to be no simple way to do effective

erasures decoding with either real-time or ordinary Viterbi decoding since there

is no simple way to determine the quality of the individual bit decoding decisions.

For this reason, erasure of the entire frame has been used previously when Viterbi

decoding is used for the inner decoder in a concatenated system 14]. This requires

the interleaving of many frames to obtain satisfactory performance which is a

substantial complication of the overall concatenated system which is avoided when

individual bit decoding decisions can be effectively erased.
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VII. Summary and Remarks

We have given a fairly comprehensive treatment of optimum real-time decoding

of convolutional codes and introduced an algorithm to minimize the decoding bit

error probability. We also stated a real-time Viterbi decoding algorithm which,

although not previously given in the literature, is probably the form of the

Viterbi algroithm which has actually been used in many previous investigations.

We remark that, although we considered only rate R=l/n convolutional codes,

our discussion is easily generalized to the case R=k/n where k>l. In this case

a = [atl,at 2 '.. .atk]

is the vector of information bits at time t. The RTMBEP decoding algorithm as

we have given it becomes, mutatis mutandis, the algorithm which minimizes the

symbol error probability
L

PsE P(L t )
t=l

Since at contains only k bits, it follows that

PsE- PBE Lk PsE

and since k is always small in applications there seems to be no practical

justification for a decoding algorithm which minimizes PBE when k > 1.

Our major conclusion from simulations of the RTMBEP decoding algorithm is

that, although it does not reduce PBE sufficiently to be a practical alternative

to Viterbi decoding in hard-decision applications, the fact that it provides a

direct measure of the quality of its decoding decisions makes it an attractive

candidate for the inner decoder in concatenated coding systems.
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