
Real time modulable multifocality through 
annular optical elements 

J. Perez1*, J. Espinosa1, C. Illueca1, C. Vázquez1, and I. Moreno2 
1Departamento de Óptica, Universidad de Alicante. Carretera San Vicente del Raspeig s/n, 03690, 

San Vicente del Raspeig, Alicante, Spain 
2Departamento de Ciencia de Materiales, Óptica y Tecnología Electrónica, Universidad Miguel Hernández, 03202, 

Elche, Spain 
*Corresponding author: jorge.perez@ua.es 

Abstract: We present and analyze new multifocal optical elements based on 
an annular distribution of the transmittance. These elements provide 
selectable number of foci and can be designed to work between two fixed 
positions or even to provide extended focal depth. The energy of the foci 
can be modulated through a single parameter that controls the area of each 
ring. In our study we analyze the quality of the peaks and also the limit 
number of foci that can be obtained. The properties shown by these 
elements make them usable in instrumental optics or in ophthalmic optics, 
as new intraocular implants, where multifocal elements are required. The 
implementation has been done on a twisted nematic spatial light modulator, 
thus allowing real time reconfiguration of the element. 
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1. Introduction 

In the last recent years proposal of amplitude and phase only filters for designing the three 
dimensional response of an optical system has been a recurrent topic. Among all proposals, 
radial-symmetric filters have been usually preferred for the ease of its fabrication and analysis 
[1-5]. These filters are use in order to achieve depth of focus, achromatic system, diffractive 
superresolution elements, etc. [6-10]. The use of SLMs to implement diffractive optical 
elements (DOEs) has been reported to be a useful tool in real-time optical processing [11-13]. 

In some applications, e.g. in Ophthalmic Optics, a number of studies of visual 
performance for diffractive lenses has been developed [14]. Diffractive lenses focus light into 
several points simultaneously. A nearly periodic modulation of the surface of these lenses is 
used in order to diffract light into several directions. The two principal applications of 
diffractive multifocal lenses in Ophthalmology are the contact lenses and the intraocular 
lenses implanted during cataract surgery to replace the crystalline lens. Recently, Valle, et al., 
proposed and theoretically analyzed a diffractive trifocal lens design with adjustable add 
powers and light distribution in the foci [15]. 

The aim of this paper is to present and analyze new real time multifocal optical elements 
based on an annular distribution of the transmittance. In Section 2 we theoretically determine 
the different annular areas performance. We compute the axial intensity as well as the 
theoretical limit to the number of isolated foci that can be obtained. In Section 3 we give 
technical details of the experimental setup and results. Special attention is paid to the 
comparison between the experimental results and the theoretical simulations, finding a good 
correlation. Finally, in Section 4, we outline the main results of this paper and future works 
are proposed. 

2. Theoretical considerations 

The basic structure of the proposed elements are composed by n concentric rings with n > 2, 
each ring being characterized by its optical power Pm its boundary radial limits am-1 and am 
and an amplitude function Am. Thus, transmittance for the m-ring can be written as: 
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If we illuminate such element with a collimated monochromatic beam of wavelength λ, the 
obtained on-axis amplitude distribution can be written as 
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sinc(x) being the normalized sinc function and λ0 the diffractive optical element design 
wavelength. This expression is similar to the one obtained in [5]. From here, a convenient 
choice of the parameters will provide different focal structures on the optical axis. In general, 
such structures are used to produce focalization on a determined region of the space [13]. In 
our case, we pretend to cover this range of the space with a series of well-defined equidistant 
peaks or even with a constant focusing segment. To this end, we find that a convenient choice 
consists of taking a recurrence relation which, in general, takes the form: 
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with g(m) being a modulation transmittance function of the m-ring. In principle, there is no 
restriction about the g(p) function, whenever it is continuous in the [1,m-1] interval. Different 
g(p) functions which determine the power steps between each mask zones can be used. The 

simplest relation is that resulting from taking g(p)=1, ∀p, which is maintained through the 
remaining communication. 

We may consider that the shape of the whole MFM element is circular with a pupil 
aperture of 2Rp. The area of each ring is directly related to the relative energy between peaks. 
Since the energy transmitted by the element is proportional to the area of the element, equal 
area ring would be the trivial solution. Nevertheless, it would be convenient to redistribute 
energy between the peaks. The simplest form to control the energy ratio between peaks is by 
redistributing the zone areas. To this end we have introduced an area modulation factor of the 
form: 
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By imposing that the outer ring is limited by the size of the element, an=Rp, we deduce that 
(see appendix): 
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We should notice that h=0 implies that all the rings have the same area. Modifying the size of 
each ring will have different consequences on the energy distribution around each focus. If we 
consider the recurrence relation in Eq. (3), previous expression is reduced to: 
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The condition 2 0 ,ma m≥ ∀ , provides an upper limit to the parameter h given by (see 

appendix): 
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And, finally, by substituting Eq. (6) in Eq. (2) we obtain the axial amplitude distribution of a 
MFM: 
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with 
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Mathematical properties of the sinc function state that as bm tends to zero, the function reaches 

a delta peak at zm=λ0/Pmλ. Thus, for small values of bm the axial distribution presents well 
defined energy peaks, each one corresponding to a different ring of the MFM. The value of bm 

increases with the number of rings, being m=1 the most unfavourable case in all 
configurations. 

In order to obtain as isolated as possible punctual peaks we must impose that side lobes of 
two consecutive peaks must not overlap. To this end, it is sufficient condition to impose that 
the first zero at right side of one peak, coincides with the first zero at left side of the following 

peak. As sinc(ξ)=0 if ξ ∈ Z , the first zero on the right side of the peak number m will be 
taken into: 

                
( ) ( )

10 0 01 null null
m m mnull

m m m m mm

P z z
b P b P bz

ξλ λ λ
ξ

λ ξ λλ
=−⎛ ⎞

− = ⎯⎯→ = ⎯⎯⎯→ =⎜ ⎟
+ −⎝ ⎠

          (10) 

Similarly, the first zero to the left of the peak m+1, can be found at: 
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Therefore, the following condition must be met: 
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Having (3) and (9) in mind, and after some basic mathematical manipulation, the following 
condition is obtained: 
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Expression (13) fulfilled for any m assuming fulfillment for m=1. That is, if it is wanted to 
have separate foci axis, the maximum number of foci is limited by the relation: 
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This restriction imposes a limitation on the number of zones that a MFM can admit. In Fig. 1 
we depict left and right sides of the inequality (14). The limits in the number of foci for two 
different diameters in the particular case of h=0 are indicated there. 
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Fig. 1. Limit number of zones in a MFM according to Eq. (14). Bold lines represent the left 
side of the inequality for two different pupil sizes and the dot line corresponds to the right side 
of the inequality. 

 
Figure 2 represents the theoretical value of the axial intensity for the case of a phase only 

MFM (Am=1) with the following parameters: P1=1/20 mm-1, Pn=1/25 mm-1, Rp=3.5 mm, h=0 
and with a number of rings from n =2 to n=9. According to what we explained above, we can 
observe there that as we approach to the limit number of foci (n=8), the quality of the peaks is 
getting worse. For the case beyond the limit, although we obtain a series of peaks, axial 
aliasing does not allow multifocal implementations. 

Fig. 2. Axial intensity distribution for different MFMs with the following parameters: 

λ=λ0=555 nm, Rp=3.5mm, P1=1/20 mm-1, Pn=1/25 mm-1, h=0 and with a number rings of n=2 
(a), n=5 (b), n=8 (c) and n=9 (d). 

 
We have also analyzed the effect of the amplitude factor Am in the transmittance function. 

In Fig. 3, we compare the same phase mask with and without amplitude modulation. In Fig. 
3(a), we show the axial irradiance for the only phase case. There, we can see that for the case 
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h=0 the intensity of the peaks diminishes for larger distances from the element. For the last 
peak, it is observable an amplitude decay in 40%. The equivalent case in Fig. 3(b), with a 
factor Am=1/Pm shows a clear stabilization of the energy of the peaks along the optical axis. 
Thus, this factor also acts as energy modulator. Different choices in Am have different effects 
on the axial distribution energy. Nevertheless, optical implementation of amplitude and phase 
mask is difficult, and it results easier to implement phase only filter. That is why we have 
introduced the area modulation factor, as we anticipated in Eq. (4). Therefore, it is feasible to 
find a factor h that compensates the intensity of each focus. Taking the same parameters of the 
previous figures, the upper limit for h results hC=0.00680556 mm. 

 

 

 

 

 

Fig. 3. Comparison between phase only MFM and hybrid amplitude and phase modulated 
MFM (a) Am=1, h=0; (b) Am=1/Pm, h=0. 

 
With Am=1, we have represented in Fig. 4 the axial amplitude for a 4 zones MFM for 

different h values. As it can be observed, changes in the value of this parameter modify the 
width and relative height of the peaks. One can also see that as the value of h increases, the 
further peaks gets higher and narrower, and the contrary happens for the closer peaks. In the 
limit case h=hC -see Eq. (7)- first maximum is completely lost.  

Fig. 4. Influence of modulating parameter h. (a) h=0; (b) h=hC/9; (c) h=hC/2; (d) h=hC 

 
Once we have defined all the parameters in the MFM determination, we have also 

evaluated the optical quality of the proposed element through the calculation of the MTF at 
each peak location. To do that, we have evaluated Fresnel patterns following the criteria 
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explained in [16]. In Fig. 5 we depict the radial MTF of the patterns obtained with a MFM 
with n=4 zones, an optical power interval of P1=50 D, P4=40 D, and a pupil diameter of 7.00 
mm, at distances where maxima are expected (z=20.00, 21.43, 23.08 and 25.00 mm) and 
h=hC/9. 

 

 

Fig. 5. Radial MTF at the focal planes (z=20.00, 21.43, 23.08 and 25.00 mm) of a MFM with 
n=4, P1=50 D, P4=40 D, Rp=3.5 mm. Legend stands for the number of peaks, being p1 the 
nearest peak and p4 the furthest one. 

 
The presence of multiple foci degrades the MTF with respect to the one of a single lens. 

Fast decay in very low frequencies is due to the presence of off-axis light corresponding to 
defocused patterns. Thus, we expect background noise superposed to the image object. This 
noise can be removed by subtracting a constant value to the whole image. Comparing with 
other works where multifocality is proposed, we find that MFM presents slightly better 
response than elements presented in Iemmi, et al., [13] and Mikula, et al. [17]. 

It is interesting to note that, theoretically, for a large number of rings, all peaks overlap 
and axial distribution tends to form a continuous focal segment between two well defined 
distances. In Fig. 6 we present the axial intensity distribution for n=1000, h=hC /3, P1=1/20 
mm-1 and Pn=1/25 mm-1. 
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Fig. 6. Depth of focus provided by MFM with n=1000, λ=λ0=555 nm, Rp=3.5mm, P1=1/20 
mm-1, Pn=1/25 mm-1, h=hC/3. 

 
There, one can observe that light intensity remains stable from 20 to 30 mm, which 

provides a focal depth of 16.7 D. Thus MFM may be used to produce very high focal depth 
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provided that the number of rings is high enough. This application is of major importance in 
ophthalmologic implants, where such elements are currently being designed. 

3. Experimental results 

Experimental implementation of MPMs has been done through a twisted nematic spatial light 
modulator (TN-SLM). Although the Nyquist limit of these modulators limits the optical 
power of the rings, these systems provide real time manipulation possibilities. Thus, the area 
of the different rings can be changed at video rate and thus increasing the applications of the 
MPM masks. The scheme of the experimental setup can be seen in Fig. 7. The core of the 
experimental setup is a twisted nematic liquid crystal display (TN-LCD) from CRL-Opto, 
model XGA3. This device has a resolution of 1024 x 768 squared pixels, being the pixel pitch 

18x18 µm2, the mask is addressed through a standard VGA output.  
 

 

Fig. 7. Experimental apparatus for obtaining multifocal distributions: F, laser source; SF, 
spatial filter; L, imaging lens; ID iris diaphragm; P1, P2 linear polarizers; D1, D2, quarter wave 
plates; TN-LCD, twisted nematic spatial light modulator; GF gray filter; S screen; C, digital 
camera. 

 
In order to use these transmission modulators as pure phase elements we used the 

arrangement described by J. A. Davis, et al., [18], who used two quarter wave-plates D1 and 
D2 and two polarizers P1 and P2. Previously, the angles of these four elements were properly 
fitted so that the phase modulation provided by the modulator was the most efficient one for 
used wavelength. With the aim of achieving a relatively large phase modulation, it was used 
an Ar laser, F, of a wavelength of 488 nm together with a spatial filter, SF, used to expand the 
beam. The lens L with 25 cm of focal length allow to move the object point in order to obtain 
the images provided by the different ring on a fixed semitransparent screen S, located at 1.25 
m from the modulator. The first polarizer was placed against an iris diaphragm, ID, which 
limits the diameter of the beam to 13.9 mm. Finally, an 8-bit camera, C, captured the image 
on S. In order to not saturating the image detected by the camera, a grey filter, GF, was 
located to the left of the screen. 

A four zones (n=4) phase mask was implemented in the modulator. In order to conduct the 
experimental verification, the chosen zone powers (P1=1.82 D, Pn=0.40 D) followed Eq. (3). 
Those values were limited by the number and size of the pixels of the used modulator. In Fig. 
8 we represent the phase mask implemented in the modulator. The radial limits of the four 
areas were in this case: 2.32, 3.90, 5.43, 6.95 mm and the area parameter used for modulator 
was h=hC/1.8=0.00211425 mm. 
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Fig. 8. Phase mask implemented in the modulator for h=hC/1.8, Rp=6.95 mm, n=4, P1=1.818 D and Pn=0.4 D. 

 
Figure 9(a) shows the theoretical light distribution that should be collected in the four foci 

planes. Again, this calculation was made by using the propagation algorithm for convergent 
light patterns proposed by Mas, et al., in [16]. 
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Fig. 9. (a). Calculated intensity distribution at the theoretical focus of each ring. (b). Real 
intensity captured with a CCD camera of a phase only MPM (h=hC/1.8) implemented in a TN-
LCD. Maximum values of intensity at each plane are shown. 

 
In Fig. 9(b), we show the intensity distribution of the four foci found on the screen, S, as 

we varied the position of the lens L. Maximum intensity at distances, zi=1/Pi being Pi the 

(C) 2008 OSA 31 March 2008 / Vol. 16,  No. 7 / OPTICS EXPRESS  5103

#92801 - $15.00 USD Received 14 Feb 2008; revised 13 Mar 2008; accepted 13 Mar 2008; published 28 Mar 2008



optical power of the i-th ring are shown. A simple application of Geometrical Optics laws 
indicates the required successive distances between the lens L and the spatial filter in order to 
obtain the different foci on the screen, depending on the powers introduced in the phase 
modulator. Regarding the value of the maximum peak of each focus, the theoretical 
calculation shows that the absolute maximum of axial irradiance for the programmed 
parameters corresponds to the second focus, located 734 mm from the modulator, which has 
been given a value of 255 (Fig. 9(a)). The grey filter GF has been adjusted to allow maximum 
response of the camera to this spot. Thus, all other registered intensities must not saturate the 
camera. As it can be seen in Fig. 9, the relative values between the maximum comply with the 
theoretical values predicted. 

In order to analyze the influence of the area modulation parameter, h, we introduced a new 
phase distribution with the same characteristics that those previously described but with h=hC 
(Fig. 10). 
 

 

Fig. 10. Phase mask implemented in the modulator for h=hC, Rp=6.95 mm, n=4, P1=1.818 D and Pn=0.4 D. 

 
In theory, this should lead to the elimination of the focus determined by the area with more 

dioptric power, corresponding to the central ring. Implementation of the new mask at the TN-
LCD show that that the focus corresponding to z=0.550 m of focal length is lost. In Fig. 11(a) 
we can see the theoretical axial irradiance for the mask shown in Fig. 10. 
 

(a)
Axial irradiance max: 132

z = 0.743 m

Axial irradiance max: 255

z = 1.146 m

Axial irradiance max: 111

z = 2.500 m

Axial irradiance max: 14

z = 0.550 m

 

Fig. 11. (a). Calculated intensity distribution at the theoretical focus of each ring of a phase 
only MPM (h=hC). Maximum values of intensity at each plane are shown. 
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z = 0.743 m

Axial irradiance max: 255

z = 1.146 m

Axial irradiance max: 102

z = 2.500 m

Axial irradiance max: 41

z = 0.550 m

Axial irradiance max: 119
(b)

 

Fig. 11. (b) Real intensity captured with a CCD camera of a phase only MPM (h=hC) 
implemented in a TN-LCD. Maximum values of intensity at each plane are shown. 

 
The focus corresponding to a power of P2=0.873 D (z=1.146 m) marks the absolute 

maximum. Figure 11(b) shows the experimental radial mean of the intensity found in the three 
focal planes. Note that the relative values of the maxima are consistent with those 
theoretically predicted. 

4. Conclusions 

In this work we have proposed and analyzed the optical performance of a new multifocal 
mask which allows modulating the relative intensity between peaks. The mask is divided in 
concentric rings setting the power of each zone by means of a recursive relation. We obtain a 
range of equidistant peaks covering a desired range with good axial resolution. Relative 
energy between peaks is controlled by an area modulating factor. The possibilities and 
limitations of the design have been also stated. 

The multifocal phase mask has been experimentally implemented on a Twisted Nematic 
Spatial Light Modulator. This device permits changing the mask in real time, thus allowing 
full modulability of the element. As a future work, this real time modulable multifocal 
elements could be used in order to make previous studies of new multifocal lenses proposals, 
to analyze the depth of focus capabilities whether high zone number is used and, of course, to 
study the implications in imaging real scenes. 

Appendix 

In order to ensure clarity to the readers, in this appendix we describe the mathematical 
derivations realized to deduce Eq. (5) and Eq. (7). 

First, in order to obtain Eq. (5), bearing in mind Eq. (4), with 2m =  it results: 

                                 ( )2 2 2 2 2

2 1 1 2 1

1 2 1 2

2
h

a a a h a a
P P P P

− = + ⎯⎯→ = +
− −

π
π π                         (A.1) 

If 3m =  is used, it can be deduced that: 
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Repeating the process successively, we obtain the following recurrence relation: 
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By imposing that the outer ring is limited by the size of the element, an=Rp, we deduce that: 
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expression from which we can finally deduce the equation that provides the zone radius 
values (Eq. (5)): 
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In second place, to obtain the Eq. (7), if we consider the recurrence relation in Eq. (3) with 

g(m)=1, ∀m, it results: 
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Therefore, 
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Thus, expression describing the zone radius results: 
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Making the summation, the above expression is reduced to: 
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The condition 2 0 ,ma m≥ ∀ , provides an upper limit to the parameter h given by: 
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that is the Eq. (7), 

                                       
( )

( )( )
( )

( )

2 2

1 1

2

2 2
0

1 1

n p n p

C

P P R P P R
h h

n n n m n n

− −
≤ ≤ ≤ =

− − −
                             (A.11) 

Acknowledgments 

This work has been supported by the Ministerio de Educación y Ciencia through the projects 
nr. FIS2005-05053, FIS2006-13037-C02-02 and by the University of Alicante through the 
project GRE07-7P. 
 

(C) 2008 OSA 31 March 2008 / Vol. 16,  No. 7 / OPTICS EXPRESS  5106

#92801 - $15.00 USD Received 14 Feb 2008; revised 13 Mar 2008; accepted 13 Mar 2008; published 28 Mar 2008


