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Abstract: The COVID-19 pandemic has disrupted the seasonal patterns of several infectious diseases.
Understanding when and where an outbreak may occur is vital for public health planning and
response. We usually rely on well-functioning surveillance systems to monitor epidemic outbreaks.
However, not all countries have a well-functioning surveillance system in place, or at least not
for the pathogen in question. We utilized Google Trends search results for RSV-related keywords
to identify outbreaks. We evaluated the strength of the Pearson correlation coefficient between
clinical surveillance data and online search data and applied the Moving Epidemic Method (MEM) to
identify country-specific epidemic thresholds. Additionally, we established pseudo-RSV surveillance
systems, enabling internal stakeholders to obtain insights on the speed and risk of any emerging
RSV outbreaks in countries with imprecise disease surveillance systems but with Google Trends data.
Strong correlations between RSV clinical surveillance data and Google Trends search results from
several countries were observed. In monitoring an upcoming RSV outbreak with MEM, data collected
from both systems yielded similar estimates of country-specific epidemic thresholds, starting time,
and duration. We demonstrate in this study the potential of monitoring disease outbreaks in real time
and complement classical disease surveillance systems by leveraging online search data.

Keywords: RSV; Google Trends; epidemiology; Moving Epidemic Method; nowcast; real-time

1. Introduction

Respiratory syncytial virus (RSV) is the most common single cause of respiratory
hospitalization of infants and is the second largest cause of lower respiratory infection
mortality worldwide [1]. Currently there is no vaccine against RSV, although many preven-
tive strategies are under development [2]. Historically, infection rates typically rise in late
autumn and early winter in temperate climates. However, the seasonal patterns of several
infectious diseases, including RSV, have been disrupted by the COVID-19 pandemic [3–5].
Specifically, RSV outbreaks were suppressed at the beginning of the COVID-19 pandemic
(i.e., during the 2020–2021 period) [6] and resumed with irregular timing and increased
magnitude from 2021–2022 onwards [7,8], e.g., see Japan [9], United States [10], United
Kingdom [8], Turkey [11], Belgium [12] and Italy [13] in Northern Hemisphere, as well as
Australia [14–16], New Zealand [17], Chile, Africa, Brazil [18] and other countries in the
Southern Hemisphere [10]. These findings highlight the value of surveillance systems for
RSV and other respiratory diseases during and after future pandemics, as the lifting of
mitigation measures may result in severe outbreaks occurring with irregular timing [15].
Nevertheless, in most countries RSV is not a notifiable disease. Even in developed countries,
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surveillance systems have started monitoring RSV activity only recently. For example, New
South Wales, Australia, only made RSV notifiable on 1 September 2022 [19].

Internet searches have previously been used to identify the timing, location, and mag-
nitude of infectious disease outbreaks. In 2004, Johnson et al. reported a correlation between
the frequency of influenza-related article access and the CDC’s surveillance data [20]. Simi-
lar results have been reported in Canada [21] and with Yahoo search queries [22]. In 2009, a
study by Google and the CDC provided the first proof-of-concept for using Google search
queries to detect influenza epidemics [23]. Since then, many influenza-related analyses have
been conducted around the world, for example, in South Korea [24], Latin America [25],
at a regional level in Manitoba, Canada [26] and South China, China [27], and at a city
level in New York City [28] and Baltimore [29] in the US. Google Trends has also been
used as a surveillance tool for other diseases, e.g., chicken pox [30], type 2 diabetes [31],
dengue fever [32], Zika and Chikungunya [33], sexually transmitted infections [34], and
COVID-19 [35].

Google Trends studies can be characterized into three main areas [36]: identifying
seasonality, examining correlations between surveillance data and Google Trends, and
forecasting. Seasonality has most commonly been investigated through visual observa-
tion [37–42], Kruskal–Wallis test [43–45], and Cosinor analysis [42,46–49]. The Pearson
correlation coefficient is the principal statistical measure used to compare surveillance data
to Google Trends [24,27,50–64]. Forecasting is the least studied area. Only nine out of 104
studies reviewed in a 2018 systematic review were focused on prediction forecasting [36],
with methods comprised of statistical modeling [30], linear regression [23,34,65,66], cross-
correlation [58], and time series analysis (e.g., ARIMA [67]).

However, Google Trends as a surveillance tool has not been broadly applied to RSV,
despite it being the leading cause of hospitalization in infants in developed countries. Two
previous studies identified a correlation between Google Trends and RSV [68,69], while
another found that searches for RSV can predict pediatric RSV encounters [70]. All of these
studies have been retrospective. To our knowledge, there have been no studies focused on
the prospective use of Google Trends as a surveillance tool to forecast the emergence of
RSV outbreaks.

Our study aims to rigorously leverage real-time, online search engine data to now-
cast emergence of RSV and consequently better manage the contemporary uncertainties
enhanced by the ongoing COVID-19 pandemic. In this paper, we (1) investigated the
correlation between RSV clinical surveillance data and Google Trends data observed at both
country and city levels, (2) compared epidemiologic estimates derived from the Moving
Epidemic Method (MEM) over Google Trends and clinical surveillance data, (3) discussed
the use of Google Trends as a surveillance tool to nowcast the emergence of RSV outbreaks
for countries where RSV surveillance data are limited.

2. Materials and Methods
2.1. Data

Google Trends data [71] reflect how a specific search interest varies for a region over time.
It ranges from 100% to 0%, scaled by the highest search number that a specific search interest
ever generated within the chosen time period. Weekly or monthly data points are shown if
the chosen time period is shorter or longer than 5 years, accordingly. In this study, Japan,
Germany, and Belgium were selected for illustration purposes because of their high quality
surveillance data and Google Trends data. Five full years of weekly clinical and Google Trends
search data were included for each country in this study. Among many options, one relevant
keyword which shows the clearest seasonal pattern for each country was selected: “RS Virus”
for Japan, “RS Virus” for Germany, and “RSV” for Belgium and the other 14 countries. Weekly
RSV case data were gathered from each country’s official open access website, including
the National Institute of Infectious Diseases [72] for Japan, the Robert Koch Institut [73] for
Germany, and the Belgian Institute for Health [74] for Belgium.
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2.2. Correlation

The Pearson correlation coefficient has been commonly used to assess the correlation
between Google Trends search data and clinical surveillance data [64]. In this study, a
Python library package, SciPy [75], was applied to perform the correlation analysis.

2.3. The Moving Epidemic Method (MEM)

The World Health Organization (WHO) released a guideline on assessing the severity
of influenza in seasonal epidemics and pandemics in 2017 [76] and suggested two types
of thresholds to characterize the start of an epidemic, one based on the Moving Epidemic
Method (MEM) [77,78] and the other based on the pre-selected weekly positivity rates.
However, using a certain percentage of RSV positivity among all RSV tests in a season as a
threshold to define an epidemic [79–81] does not provide insights into the intensity of the
epidemic and should not be used prospectively to detect the start of an epidemic [82]. In
comparison, the epidemic threshold generated by MEM provides a good balance between
sensitivity and specificity to detect seasonal epidemics and to avoid false alerts from data
noises [77]. MEM has been widely adopted to calculate epidemic thresholds for both
influenza [77,78,83,84] and RSV [82]. There have also been studies applying the MEM to
multiple indicators (outpatient visits, hospitalization, and mortality rate) and combining
multiple thresholds to classify the severity of an influenza season [85]. However, to our
knowledge, MEM has not been applied over Google Trends data as an early-warning
system for infectious disease outbreaks.

MEM is modeled based on historical data from a specific country or region. The
method has three main steps [77,78]. In the first step, each season is separated into three
periods: pre-epidemic, epidemic, and post-epidemic period. For each season separately,
the length of the epidemic period is determined by an optimization process that maximizes
positive cases within the least number of consecutive weeks. In the second step, the
epidemic threshold is calculated as the upper limit of the 95% one-sided confidence interval
of the arithmetic mean of the 30 highest pre-epidemic weekly rates from all seasons. The
number of highest rates from each season is 30/(number of seasons). This epidemic
threshold defines the start of the epidemic. In the third step, medium, high, and very high
intensity thresholds are calculated as the upper limits of the 40%, 90%, and 97.5% one-sided
confidence intervals of the geometric mean of 30 highest epidemic weekly rates. For the
purpose of sensing the start of the epidemic, the first 2 steps are sufficient. The third step is
to estimate the intensity of an epidemic. By dividing each season into three periods, the
epidemic threshold is calculated only based on data points within the epidemic period,
excluding false alerts of those abnormal high weekly rates during the pre-epidemic periods.
By comparing the current week’s value against the epidemic threshold, we can know if the
country being investigated is experiencing an epidemic period.

We first applied the MEM over countries with both clinical surveillance and Google
Trends search data. The consistency of epidemiologic estimates derived from MEM with
clinical surveillance vs. Google Trends search data were investigated to validate whether
Google Trends can represent the clinical surveillance data in terms of estimating the epi-
demic starting week and duration. The ‘mem’ library in R was used in this study [86].
Google Trends search data applied with MEM were prepreprocessed with Loess transfor-
mation with default fixed criterium method provided in ‘R-mem’ library.

We also applied MEM to countries with limited publicly accessible clinical surveillance
data. MEM thresholds estimated over the Google Trends data can be interpreted whether
they are reliable or not without directly comparing to clinical case data. To interpret the
reliability of the results, we can examine the goodness of fit of the MEM model using
estimators such as sensitivity, specificity, positive predictive value, percent agreement,
Matthews correlation coefficient, etc. In this paper, the Matthews correlation coefficient is
reported. Details about how goodness of MEM is estimated are explained in [86]. Besides
the goodness of fit, the epidemic percentage, which is the proportion of cases in the
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epidemic period over all cases, is generally a good indicator for understanding if there is a
clear seasonality pattern and how well the MEM performed.

3. Results
3.1. Identical Seasonal Patterns between Google Trends and Case Data

Google Trends data matched case data with no delay in terms of seasonal start time,
end time, and peak time for each epidemic in Japan and Germany (with Pearson correlation
coefficient = 0.87, p-value < 0.0001 for Japan and Pearson correlation coefficient = 0.65,
p-value < 0.0001 for Germany) (Figure 1). Note that weekly reports from Japan contained
absolute case numbers from all sentinel hospitals, while reports from Germany contained
positive test rates, where the test sample sizes ranged throughout the year. As a result,
the correlation between case and search data for Germany was lower due to a higher
fluctuation of cases. We did not apply any smoothing preprocessing on any of the data.
These matched patterns were also found at the regional level (Figure 2). Tokyo and Kyoto
analyses are presented here to illustrate this point.

Figure 1. Correlation between Google Trends and case data at country level: Japan 2017–2021
(top) Pearson correlation coefficient = 0.87, p-value < 0.0001. Germany 2016–2020 (bottom) Pearson
correlation coefficient = 0.65, p-value < 0.0001. Google Trends and case data are marked in blue
and red accordingly. Y-axis for both Google Trends and case data ranges from the minimum to the
maximum values of each function over time.
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Figure 2. Correlation between Google Trends and case data at regional level: Tokyo 2017–2021
(top) Pearson correlation coefficient = 0.92. Kyoto 2017–2021 (bottom) Pearson correlation
coefficient = 0.83. Both p-value < 0.0001. Google Trends and case data are marked in blue and
red accordingly. Y-axis for both Google Trends and case data ranges from the minimum to the
maximum values of each function over time.

Google Trends data were also able to capture intra-annual abnormalities observed in
case data. Using Belgium as an illustration, the seasonal patterns of RSV outbreaks can be
seen in both case and search data shown in Figure 3. For the 2020–2021 season, the outbreak
started later than previous years and had two peaks. This was also observed in the Google
Trends data (shown above in Figure 3).

3.2. Identical Epidemiological Estimates from Case and Google Trends Data

Identical epidemic estimates in terms of season starting week and duration were
obtained by applying MEM to Google Trends and clinical case data. In the cases of Japan
and Germany, MEM provided identical estimates for the average start week and epidemic
duration from the clinical case and Google Trends search data, with detailed results shown
in Table 1.

3.3. Epidemic Estimates from Google Trends Data in Countries with Limited Case Surveillance

We selected 14 countries without RSV clinical surveillance data to investigate using
Google Trends. Using the same keyword “RSV”, seven out of 14 countries selected showed
clear visual seasonal patterns (left panel of Figure 4) and the rest did not (right panel of
Figure 4). Countries with clear visual seasonal patterns in Figure 4 generally correspond
to higher epidemic percentage values. The purpose of using the same keyword is to
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illustrate how we can interpret whether the data with the chosen keyword is reliable or if
the keyword is good enough to capture the pattern.

Figure 3. RSV seasonality for Belgium: identical patterns within each season (i.e., bimodal for season
2020–2021, unimodal for other seasons) observed in both case (top) and Google Trends (bottom) data.

Table 1. Epidemic estimates of Japan 2015–2020 using MEM: identical epidemic seasonal start time
and length were obtained by applying MEM over Google Trends and case data.

Japan Germany

Data Source Case Google Trends Case Google Trends

Goodness (Matthews correlation coefficient) 0.75 0.64 0.44 0.83
Epidemic percentage 61.03% 54.76% 71.95% 75.28%
Average start week 33 33 1 1

Average length 14 14 12 12

We then applied MEM to Google Trends data for the selected 14 countries to generate
insightful epidemiologic estimates (Table 2). The surveillance column shows whether the
countries are experiencing an epidemic based on MEM estimates. Current values for week
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25, 2022 and thresholds were calculated based on the data of the five years before week 25,
2022, excluding 2020 and 2021 (due to abnormal RSV activities compared to other years) using
MEM. A country is considered to be entering an epidemic if its current Google trend data
value is above the estimated epidemic threshold dynamically generated by MEM. The column
of 2020–2021 in Table 2 shows the start week and end week of last season. We are aware that
the COVID-19 pandemic shifted the starting time for RSV outbreak in some countries. The
2020–2021 column is listed for a comparison to investigate whether this phenomenon can also
be observed over the Google Trends data. Countries with clear visual seasonal patterns in
terms of fewer fluctuations in Figure 4 on the left generally correspond to higher epidemic
percentage values (Table 2 on the top), with a few countries as exceptions. As an unusually
high RSV peak for Italy, the Philippines, Hungary, Thailand, Poland and New Zealand can
dominate all other seasonal peaks and patterns in Google Trends, we attempted a few data
selection heuristics to improve the method’s fitting results. One choice is to heuristically
exclude abnormal, one-time-only epidemic peak data. For example, excluding Google Trends
data for 2020 and 2021 for Hungary, Poland, Thailand and New Zealand resulted in an
improved fitting performance (evaluated by the epidemic percentage value). By contrast, the
low fitting performances for the Philippines and Italy have not yet been resolved, partially
due to the facts that the abnormal peak is outside 2020 and 2021 and the identified Google
Search data has an authentic unclear seasonal pattern, respectively.

Figure 4. Google Trends of countries with limited surveillance: using the same keyword “RSV”,
countries with clear patterns are listed on the (left). Countries without clear patterns are listed on the
(right). Countries that are close to each other geographically are boxed in the same color.

Table 2. MEM estimates for countries with limited surveillance for week 25, 2022: Estimates were
based on Google Trends data between week 25, 2022 and previous 5 years, excluding 2020 and 2021
due to their abnormal intensified RSV activities. The upper part of the table contains countries listed
on the left in Figure 4 with clear patterns. The lower part of the table contains countries listed on the
right in Figure 4 with no clear patterns. Both parts are ranked by epidemic percentage, which is the
ratio of cases during the epidemic to all cases.

Estimator Surveillance 2020–2021

Country Epidemic
Percentage Start Week Aver.

Length
Epidemic
Threshold

Current
(W25, 2022)

Above
Threshold?

For How
Long

(Week)?
Start Week End Week

Poland 72.75 1 15 1.26 1.20 NO 38 50
Thailand 62.33 31 15 4.02 1.06 NO 47 4
Turkey 55.06 49 14 13.77 12.59 NO 40 1

New
Zealand 52.21 31 11 0.22 2.24 YES 11 36
Hungary 44.25 6 12 4.46 3.51 NO 44 4
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Table 2. Cont.

Estimator Surveillance 2020–2021

Country Epidemic
Percentage Start Week Aver.

Length
Epidemic
Threshold

Current
(W25, 2022)

Above
Threshold?

For How
Long

(Week)?
Start Week End Week

Philippines 27.19 45 9 5.0 2.79 NO 33 37
Italy 2.4 13 1 3.89 4.32 YES 40 51

Puerto Rico 59.59 44 13 22.02 28.60 YES +1 45 2
Greece 34.97 2 10 23.93 10.52 NO 42 1

Malaysia 22.19 33 7 40.45 79.61 YES +6 19 now
Romania 15.11 4 5 17.25 13.08 NO 35 35
Singapore 9.27 26 3 21.12 88.83 YES +5 20 now
Czechia 8.5 5 3 36.16 27.30 NO 42 50
Mexico 2.82 26 1 15.33 19.40 NO 31 37

4. Discussion

Google Trends can complement existing surveillance systems for monitoring disease
outbreaks in real time. Using RSV as a case study, we revealed the strong correlation be-
tween Google Trends and clinical case data from Japan and Germany. We also observed that
although many countries generate high quality case data, weekly reports may be delayed
for several weeks due to various reasons. Google Trends can be used as a supplemental
surveillance system for countries with limited sentinel network coverage, as well.

Google Trends is also not linked to the number of sentinel hospitals or the variation in
reporting between testing sites. Most countries may not be able to extend their surveillance
systems to collect data from all hospitals on time or maintain a reliable testing sample size
across different times of the year. The positive testing rates may be sensitive to the testing
sample size, creating false alarms as a result.

In our multiple country comparison effort, we also observed that Google Trends data
were of a higher quality among countries with better surveillance systems. This may be
due to socioeconomic factors such as better public health education that drove information
seeking behavior online.

Occasionally, a single keyword such as “RSV” or “RS Virus” could be sufficient for
identifying the clear seasonality patterns for RSV in Google Trends in certain countries, but
not all: each country’s most suitable keyword for monitoring RSV outbreaks is still highly
dependent on the local language choice. Unlike flu, adding additional keywords describing
the disease symptoms may weaken the patterns, as many respiratory pathogens share a
common pool of flu-like symptoms. Additionally, preprocessing the search data and then
using MEM could prevent the false alarms caused by noisy fluctuation in the trends.

However, there can be issues with Google Trends. For example, Google Trends data
are scaled based on the highest value in the time frame of choice. The abnormally high
volume of Google Trends searches in 2020–2021 due to the COVID-19 pandemic scales
down the rest of the normal seasons, which diminishes their seasonality patterns. The peak
in 2020–2021 caused the epidemic threshold to considerably shift up compared to previous
years. Therefore, when applying MEM to estimate country-specific outbreak thresholds, we
excluded data from 2020 to 2021 because travel restrictions were in place in most countries.
However, when obtaining data from Google Trends, 2020–2021 data were included to keep
the current data point on the same scale as previous years, since Google Trends cannot
exclude certain years. Additionally, monthly instead of weekly Google Trends data will
be displayed if the time period selected on the platform is specified to be longer than five
years. When there are no clinical case data to compare Google Trends data against, we
can examine the epidemic percentage as an indicator of how the MEM performed. If the
epidemic percentage is low, the estimates from MEM from Google Trends data may not be
reliable. For example, although Italy had clear seasonal Google Trends patterns, searches at
the start of the COVID-19 pandemic diminished compared to previous years, leaving the
epidemic percentage value low and unreliable. One possible solution may be referring to
the results from nearby countries in the same geographic region (Figure 4).
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Notably, when the disease is not that well known (such as RSV), people tend to search
for multiple keywords. Since respiratory diseases share similar symptoms, it may be
challenging to collect accurate keywords for a particular disease or identify a seasonal
pattern specific caused by a specific disease.

Additionally, both lower search volumes and clinical cases were observed after vac-
cination was introduced for other diseases such as rotavirus [87]. It remains unclear how
much this would affect the correlation between clinical case and Google Trends search data
for RSV, or if predicting using Google Trends data remains as sensitive as before a vaccine
was introduced.

5. Conclusions

Google Trends can complement existing surveillance systems to monitor disease out-
breaks in real time, especially in countries with limited or no sentinel network surveillance.
Search data correlated well with clinical case data when both were available. Identical
estimates of epidemic start time and duration were obtained from MEM using both Google
Trends and clinical case data. The quality of clinical case data from countries with surveil-
lance systems is linked to the sentinel hospital surveillance systems. This further identifies
the importance of using alternative data streams, such as internet search data, to assist in
locations where surveillance systems are not well established.
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