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Abstract

Video sensor networks (VSNs) has become the recent research focus due to the rich information it provides to address

various data-hungry applications. However, VSN implementations face stringent constraints of limited communication

bandwidth, processing capability, and power supply. In-network processing has been proposed as efficient means to

address these problems. The key component of in-network processing, task mapping and scheduling problem, is

investigated in this paper. Although task mapping and scheduling in wired networks of processors has been extensively

studied, their application to VSNs remains largely unexplored. Existing algorithms cannot be directly implemented in

VSNs due to limited resource availability and shared wireless communication medium. In this work, an application-

independent task mapping and scheduling solution in multi-hop VSNs is presented that provides real-time guarantees to

process video feeds. The processed data is smaller in volume which further releases the burden on the end-to-end

communication. Using a novel multi-hop channel model and a communication scheduling algorithm, computation tasks

and associated communication events are scheduled simultaneously with a dynamic critical-path scheduling algorithm.

Dynamic voltage scaling (DVS) mechanism is implemented to further optimize energy consumption. According to the

simulation results, the proposed solution outperforms existing mechanisms in terms of guaranteeing application deadlines

with minimum energy consumption.

r 2007 Published by Elsevier B.V.
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1. Introduction

Recently, video sensor networks (VSNs) have
attracted more and more research interest due to
the rich information it offers which benefits numerous
data-hungry applications [8,18,22]. A number of
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camera sensor nodes collaboratively capture visual
information and send data through multi-hop com-
munication to base stations. However, this transmis-
sion of high volume multimedia data stream
challenges the limited bandwidth and energy supplies
of VSNs. Processing information locally and sending
the end results to a central location is generally more
energy-efficient than sending raw data across a multi-
hop VSN. Hence, it is plausible to process the data in-
network, extract features of interests, and send the
data with critical importance back to base stations.
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The real-time feature of video streaming also
necessitates in-network processing. The reduced
communication volume reduces the delivery latency,
and, hence, improves real-time performance. Many
algorithms used for in-network processing require
significant processing power. Applications such as
image registration [22] and distributed visual
surveillance [18] involve computationally intensive
operations. Collaborative in-network processing is a
viable solution to provide the required processing
power not available in stand-alone sensor nodes. To
enable collaborative in-network processing, the task
allocation problem must be solved which includes
two prospects as follows:
�
 Assigning tasks on sensor nodes.

�
 Determining execution sequence of tasks on each

sensor.

In high-performance computing, the first problem
is referred to as task mapping and the second one as
task scheduling. Both problems have been exten-
sively studied in the past for interconnected
processors in wired networks [1,3,5,11,12]. How-
ever, these existing solutions cannot directly be
implemented in VSNs: wireless communication
scheduling such as collision avoidance is not
addressed. Furthermore, most of these solutions
do not explicitly consider energy consumption
during communication and task execution, which
is one of the major constraints in VSNs.

Task allocation problem has been investigated in
large-scale WSNs, as well. Events of interest generally
occur in remote regions that only local sensors can
detect. Consequently, local information processing,
and localized task mapping and scheduling is more
suitable for large-scale WSNs. In [6], an online task
scheduling mechanism (CoRAl) is proposed to
allocate network resources between the tasks of
periodic applications in WSN clusters iteratively: the
frequencies of the tasks on each sensor are optimized
subject to the previously evaluated upper-bound
execution frequencies. However, CoRAl does not
address mapping tasks to sensor nodes. Distributed
computing architecture (DCA) is proposed in [19],
which executes low level tasks on sensing sensors and
offloads all other high-level processing tasks to cluster
heads. However, processing high-level tasks can still
exceed the capacity of cluster heads’ computation
power. Furthermore, application-specific design of
these solutions limit their implementation for generic
applications.
Localized task mapping and task scheduling have
been jointly considered for mobile computing [14]
and for WSNs [16,17,21] recently. Task mapping
and scheduling heuristics are presented in [14] for
heterogeneous mobile ad hoc grid environments.
However, the communication model adopted in [14]
is not well suited for WSNs, which assumes
individual channels for each node and concurrent
data transmission and reception capacity of every
node. In [17], the EcoMapS algorithm is proposed
for energy-constrained applications in single-hop
clustered WSNs to map and schedule communica-
tion and computation simultaneously. While Eco-
MapS does not provide execution deadline
guarantees for applications, RT-Maps algorithm
proposed in [16] addresses this problem from
another perspective. It presents a real-time solution
which minimizes the energy consumption subject to
certain schedule deadline. In [21], energy-balanced
task allocation (EbTA) is introduced to minimize
balanced energy consumption subject to application
deadline constraints. In [21], communications over
multiple wireless channels are first modeled as
additional linear constraints. However, the commu-
nication scheduling model in [21] does not exploit
the broadcast nature of wireless communication,
which can conserve energy and reduce schedule
length. The algorithms proposed in [16] aim to meet
application deadline constraints with minimum
energy consumption. The broadcast nature of
wireless communication is exploited in [16]. How-
ever, all localized mechanisms above assume a
single-hop cluster environment, which hinders their
application to general implementations.

The aim of this work is to develop an application-

independent solution to provide the in-network
computation capacity required by arbitrary real-
time VSN applications while minimizing energy
consumption. We consider delay-constrained appli-
cations executed in multi-hop clusters of homo-
geneous wireless sensors. We propose the dynamic
critical-path task mapping and scheduling
(DCTMP) solution that jointly schedules commu-
nication and computation tasks of an application
with minimum energy consumption subject to delay
constraints. The proposed DCTMP algorithm is
based on the high-level application model that
describes applications through a Directed Acyclic
Graph (DAG) [21], which can be used to model
arbitrary applications. A novel communication
model is proposed to model multi-hop wireless
channels. Based on this channel model, a multi-hop
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communication scheduling algorithm is integrated
as part of DCTMP. In DCTMP, communication
and computation are jointly scheduled in two
phases: task mapping and scheduling phase and
dynamic voltage scaling (DVS) phase. In the task

mapping and scheduling phase, communication and
computation events are scheduled at highest proces-
sing power to find a feasible solution. The DVS is
implemented in the DVS phase to reduce the energy
consumption.

2. Preliminaries

2.1. Network assumptions

Our proposed task mapping and scheduling
mechanism is designed for applications executed
within a multi-hop cluster of VSNs. We assume the
following VSN properties:
�
 Sensors are grouped into k-hop clusters with a
clustering algorithm. In this paper, we define a
k-hop network as a network G with diameter
diamðGÞpk � r, where r is the sensor transmission
range.

�
 Each cluster executes an application which is

either assigned during the network setup time or
remotely distributed by base stations during the
network operation. With application arrivals,
cluster heads create schedules for execution
within clusters.

�
 Calculated schedules are used to run the asso-

ciated applications as many times as required by
applications.

�
 Location information is locally available within

clusters.

�
 Communication within a cluster is isolated

from other clusters through time division or
channel hopping mechanisms with appropriate
hardware support such as the Chipcon CC2420
transceiver [2].

�

Fig. 1. DAG examples. (a) An example DAG, and (b) Hyper-

DAG representation.
Sensors are equipped with DVS processors [19]
whose speed and supply voltage can be dynami-
cally adjusted with finite number of levels. The
overhead of speed and voltage adjustment is
assumed to be negligible.

It should be noted that while the intra-cluster
communication is isolated from each other, the
communication across clusters is assumed to be
handled over common time slots or channels
orthogonal to those used inside a cluster. As such,
information flow across the network is not hindered
by intra-cluster communication isolation.

2.2. Application and energy consumption model

To have an application-independent solution, we
represent applications executed in clusters with
DAGs [21]. A DAG T ¼ ðV ;EÞ consists of a set
of vertices V representing the tasks to be executed
and a set of directed edges E representing commu-
nication dependencies among tasks. The edge set E

contains directed edges eij for each task vi 2 V that
task vj 2 V depends on. The computation weight of
a task is represented by the number of CPU clock
cycles to execute the task. Given an edge eij, vi is
called the immediate predecessor of vj, and vj is
called the immediate successor of vi. An immediate
successor vj depends on its immediate predecessors
such that vj cannot start execution before it receives
results from all of its immediate predecessors. A
task without immediate predecessors is called an
entry-task and a task without immediate successors
is called an exit-task. We assume that a DAG may
have multiple entry-tasks and one exit-task. If there
are more than one exit-tasks, they will be connected
to a pseudoexit-task with computation cost equals
zero. Fig. 1(a) shows an example of a DAG.

In this paper, we assume that an entry-task is a
sensing-task to detect certain physical events, and its
sensor assignment is determined according to
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application requirements. This entry-task assign-
ment requirement is referred to as entry-task

assignment constraint throughout the paper.
In the DAG scheduling problem, if a task vj

scheduled on one node depends on a task vi

scheduled on another node, a communication
between these nodes is required. In such a case, vj

cannot start its execution until the communication
is completed and the result of vi is received.
However, if both of the tasks are assigned on same
node, the result delivery latency is considered to be
zero and vj can start to execute after vi is finished.
This execution dependency between tasks is referred
to as communication dependency constraint through-
out the paper.

The energy consumptions of transmitting and
receiving l-bit data over a distance d that is less than
a threshold d0 are defined as Etxðl; dÞ and ErxðlÞ,
respectively,

Etxðl; dÞ ¼ Eelec � l þ �amp � l � d
2, (2.1)

ErxðlÞ ¼ Eelec � l, (2.2)

where Eelec and �amp are hardware related para-
meters [7,19].

The energy consumption of executing N clock
cycles with CPU clock frequency f is given as

EcompðV dd ; f Þ ¼ NCV2
dd þ Vdd ðIoe

Vdd=nVTÞ
N

f

� �
,

(2.3)

f ’ KðV dd � cÞ, (2.4)

where VT is the thermal voltage and C, Io, n, K and
c are processor-dependent parameters [13,19].

It should be noted that the energy consumption
model presented above only considers the energy
expenditure directly related with application execu-
tions, thus energy consumption during idle time is
not taken into account.

2.3. Problem statement

The task mapping and scheduling problem is to
find a set of task assignments and their execution
sequences on a network that minimizes an objective
function such as energy consumption or schedule
length. Let Hx ¼ fhx

1 ; h
x
2 ; . . . ; h

x
ng denote a task

mapping and scheduling solution of the application
DAG T on a network G, where x is the index of
the task mapping and scheduling solution space.
Each element hx

i 2 Hx is a tuple of the form
ðvi;mk; si;mk
; ti;mk

; f i;mk
; ci;mk

Þ, where mk represents
the node to which task vi is assigned, si;mk

, ti;mk
,

f i;mk
, and ci;mk

represent the start time, execution
time, finish time, and energy consumption of vi on
node mk, respectively. The design objective of
DCTMP is to find an H0 2 fHxg that has the
minimum energy consumption under the delay
constraint:

min energyðH0Þ ¼
X
i;k

ci;mk
ð2:5Þ

s:t: lengthðH0Þ ¼ max
i;k

f i;mk
pDL, ð2:6Þ

where lengthðHÞ and energyðHÞ are the schedule
length and energy consumption of H, respectively,
and DL is the deadline of the application. DAG
scheduling problem is shown to be an NP-complete
problem in general [4]. Therefore, heuristic algorithms
are needed to solve this problem in polynomial time.

Some notations are listed here for convenience:
�
 predðviÞ and succðviÞ denote the immediate
predecessors and successors of task vi, respec-
tively,

�
 mðviÞ denotes the node on which vi is assigned,

�
 TðmkÞ denotes the tasks assigned on node mk,

�
 T

ft
stðmkÞ denotes the tasks assigned on node mk

during the time interval ½st; ft�.

3. The proposed scheduling solution

The proposed scheduling solution consists of two
phases: task mapping and scheduling phase and DVS

phase. In the task mapping and scheduling phase,
applications are scheduled across application, MAC
and network layers: computation tasks are assigned
to sensors, their execution sequence are decided, and
communications between sensors are scheduled
based on the communication dependency constraints.
The task mapping and scheduling phase aims to
guarantee application deadline constraints. We
design a dynamic critical-path task mapping and
scheduling (DCTMS) algorithm as the multi-hop
task schedule search engine. DCTMS dynamically
evaluates critical-paths of task graphs, and assigns
the most critical task to shorten schedule lengths.
To guarantee application deadline constraints,
sensors are scheduled with the maximum CPU
speed f max

cpu by the DCTMS algorithm. Then, energy
consumption of the schedules created in the first
phase are optimized in the DVS phase by reducing
CPU speeds to exploit CPU slack times.
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Unlike traditional dynamic critical-path schedul-
ing algorithms such as [12] without considering
wireless communication, DCTMS is designed for
multi-hop WSN applications. We developed a new
multi-hop communication scheduling algorithm based
on our proposed Hyper-DAG representation of
tasks and multi-hop channel model. The commu-
nication scheduling algorithm is utilized by the
DCTMS algorithm during task scheduling to satisfy
the communication dependency constraints. In the
following sections, the main components of our
proposed task mapping and scheduling algorithm,
namely, Hyper-DAG extension and multi-hop
channel modeling, communication scheduling algo-
rithm, DCTMS algorithm, and DVS algorithm, are
presented.

3.1. Hyper-DAG extension and multi-hop channel

modeling

In VSNs, communication is broadcast in nature.
When a node transmits information, it is potentially
received by multiple nodes in the cluster. This
property can be leveraged to relay information
generated by a task to all its successors in a single
transmission rather than multiple, sequential trans-
missions. This approach reduces both the execution
time as well as the energy consumption. To
represent the broadcast feature of wireless commu-
nication, the DAG representation of applications is
extended as follows: for a task vi in a DAG, we
replace the edges between vi and its immediate
successors with a net Ri. The weight of Ri equals to
the result data volume of vi. Ri represents the
communication task to send the result of vi to all its
immediate successors in the DAG. This extended
DAG is a hypergraph and is referred to as Hpyer-

DAG. The Hyper-DAG representation of the DAG
in Fig. 1(a) is shown in 1(b). A Hyper-DAG is
represented as T 0 ¼ ðV 0;E 0Þ, where V 0 ¼ fgig ¼ V [

R denotes the new set of tasks to be scheduled
and E0 represents the dependencies between tasks.
Here, V ¼ fvig ¼ {Computation Tasks}, and R ¼

fRig ¼ fCommunication Taskg.
With Hyper-DAGs, communication events be-

tween computation tasks are explicitly represented
in task graphs. To properly schedule communica-
tion events, we model multi-hop channel as a virtual
node C on which only communication tasks can be
executed. Different from the virtual node model in
[6,17], where only single-hop channels are consid-
ered, our channel model takes potential interference
between simultaneous communications in multi-hop
networks into consideration.

Unlike in single-hop networks, there can be
multiple simultaneous communications in multi-
hop networks. Thus, the virtual node C in multi-hop
channel model should be able to execute multiple
communication tasks simultaneously. To avoid
interference between scheduled communication
tasks, a ‘‘penalty function’’ is introduced into the
cost function of communication scheduling. Under
unit disc graph model, the ‘‘penalty’’ of scheduling a
communication task is zero if it does not cause
interference; otherwise, it is infinite. The commu-
nication scheduling algorithms will only schedule a
communication task with the minimum finite cost.
The penalty function P

ft
st ðvÞ of assigning a commu-

nication task v onto C during time interval ½st; ft� is
defined as

P
ft

st ðvÞ ¼

1 if 9g 2 T
ft
stðCÞ : SðgÞ 2 NðRðvÞÞ or

RðgÞ 2 NðSðvÞÞ;

0 otherwise;

8><
>:

(3.1)

where SðgÞ and RðgÞ are the sender and receivers of
communication task g, respectively, and NðmkÞ is
the set of sensor mk’s one-hop neighbors. Fig. 2
illustrates an example for the above penalty func-
tion. Given start time s1 and finish time f 1 for a
scheduled communication task r1 on the virtual
channel node, the penalty function for scheduling
task r2 starting anytime between s1 and f 1 is
P

f 1
s1
ðr2Þ ¼ 1, because node n3 is n2’s one-hop

neighbor. The data transmission from n3 to n4 will
destroy the data received at node n2. However, as
shown in Fig. 2(b), task r1 and r3 can be scheduled
simultaneously, since r1 and r3 do not have
interference between each other. With the penalty
function defined above, the multi-hop channel
model is presented as follows:
�
 Wireless channel is modeled as a virtual node C.

�
 C executes communication tasks only.

�
 There can be multiple tasks on C in time interval
½st; ft�, denoted as T

ft
stðCÞ.
�
 The cost of executing communication task vi

on C in time interval ½st; ft� is costðvi; st; ftÞ ¼
stþ P

ft
stðviÞ.

With the Hyper-DAG representation and the
channel model, the communication dependency con-

straint in Section 2.2 is rephrased as follows: in the
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Fig. 2. Illustration of multi-hop communication modeling penalty function. (a) P
f 1
s1
ðr2Þ ¼ 1, where s1 and f 1 are the start time and finish

time for task r1, and (b) P
f 1
s1
ðr2Þ ¼ 0. r1 and r3 can be scheduled simultaneously on the same multi-hop channel.
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Hyper-DAG scheduling problem, if a computation
task vj scheduled on node mk depends on a
communication task vi scheduled on another sensor
node or C, a copy of the communication task vi

needs to be scheduled to mk, and vj cannot start to
execute until all of its immediate predecessors are
received on the same node.

3.2. Communication scheduling algorithms

To meet the communication dependency constraint

in Hyper-DAG scheduling, communication between
nodes is required if a computation task depends on
a communication task assigned on another node. In
multi-hop clusters, the sender and the receiver of a
communication task can be one or more hops away
from each other. We schedule multi-hop commu-
nication following the paths generated by a routing
algorithm. In every hop, we use the one-hop
communication scheduling algorithm.

We first introduce the one-hop communi-
cation scheduling algorithm. With the Hyper-
DAG and the multi-hop channel models presented
in Section 3.1, scheduling communication between
single-hop neighbors is equivalent to first duplicat-
ing a communication task from the sender to C, and
then from C to the receiver. If the requested
communication task has been scheduled from the
sender to another node before, the receiver will
directly duplicate the communication task from C if
it is sent within its communication range and not
interfered by other scheduled neighboring commu-
nication. This process is equivalent to receiving
broadcast data, which can lead to significant energy
saving compared with multiple unicasts between the
sender and the receivers. The detailed description of
the single-hop communication scheduling algorithm
is presented below.
Input: Communication task: vi; sender of vi: ms;
receiver of vi: mr

Output: Schedule of duplicating vi from ms to mr

OneHopCommTaskSchedule(vi,ms,mr):

1.
 Find a copy of vi: vc

i 2 TðCÞ, Sðvc
i Þ ¼ ms
2.
 IF vc
i does not exist
3.
 Find vi 2 TðmsÞ
4.
 Find time interval ½st; ft�:

5.
 costðvi; st; ftÞ ¼ min

6.
 stXf vi ;ms

, ft� stXtvi ;C
7.
 Schedule a copy of vi to C:

8.
 svc

i
;C st,TðmkÞ  TðmkÞ [ fv

c
i g
9.
 Schedule a copy of vc
i to mr:
10.
 s
vk
i
;mk
 f vc

i
;C, TðmkÞ  TðmkÞ [ fv

k
i g
11.
 ELSE
12.
 st svc
i
;C, ft f vc

i
;C
13.
 IF )g 2 T
ft
stðCÞ : SðgÞ 2 NðmrÞ
14.
 Schedule a copy of vc
i to mr:
15.
 s
vk
i
;mk
 f vc

i
;C, TðmkÞ  TðmkÞ [ fv

k
i g
16.
 Rðvc
i Þ  Rðvc

i Þ [ fmrg
17.
 ELSE
18.
 Goto Step 3
Steps 2–10 stand for originating a new commu-
nication from ms to mr, and Steps 13–16 represent
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reception of a broadcast data without interference.
Compared with originating a new communication,
the broadcast reception method leads to energy
saving of one data transmission for each additional
data reception.

In our multi-hop communication scheduling
algorithm, the low complexity stateless geographic
routing algorithm, GPSR [10] algorithm is used to
obtain the path ¼ ðm1; . . . ;mnÞ from sender ms to
receiver mr, where m1 ¼ ms and mn ¼ mr. After
obtaining the path, the communication task will
be iteratively duplicated from the source to
the destination. Similar to that of the one-hop
communication scheduling, the requested data
might have been scheduled from the source to
another node before. Thus, the requested commu-
nication task may have duplicate copies distri-
buted in the network. To shorten communication
latencies and to decrease communication energy
consumption, the communication task should
be forwarded starting from the location closest to
the destination. The detailed description of
the multi-hop communication scheduling is as
follows:
Input: Communication task: vi; receiver of vi: mr;
sensor set SS
Output: Schedule of duplicating vi to mr

CommTaskSchedule(vi,mr):

1.
 IF ) a copy of vi: vc

i 2 TðCÞ
2.
 Find the sensor node ms: vi 2 TðmsÞ
3.
 Calculate the path from ms to
mr:path ¼ ðm1; . . . ;mnÞ
4.
 For mk ¼ m2 to mn
5.
 OneHopCommTaskSchedule(vi;ms;mk)

6.
 ms mk
7.
 Return

8.
 ELSE
9.
 Find a copy of vi: v0i 2 TðCÞ, distðSðv0i Þ;
mrÞ ¼ min
10.
 Find ms 2 NðSðv0i ÞÞ: distðms;mrÞ ¼ min
11.
 IF vi does not have a copy on ms
12.
 OneHopCommTaskSchedule(vi;Sðv0i Þ;ms)
13.
 Goto Step 3
A data transmission may reach multiple destina-
tions under our communication scheduling. Effec-
tively, we achieve multicast distribution of data,
which has been proved to be energy efficient. The
communication scheduling algorithm is used in
conjunction with the task scheduling algorithm as
described in Section 3.3.

3.3. Scheduling with DCTMS algorithm

In the task mapping and scheduling phase, tasks of
a Hyper-DAG are assigned to sensors nodes and C.
During task mapping, several constraints must be
satisfied. These constraints together with the com-

munication dependency constraint are represented
as follows:
�
 A computation task can be assigned only on
sensor nodes.

�
 A communication task can be assigned both on

sensors and C. If a communication task has its
immediate predecessor and immediate successors
assigned on the same node, it has zero execution
length and energy cost.

�
 If vi 2 V and predðviÞa;, then predðviÞ �

TðmðviÞÞ and svi ;mðviÞ
Xmax f predðviÞ;mðviÞ

.

With the Hyper-DAG representation, multi-hop

channel model, communication scheduling algorithm,
and the task mapping constraints presented above,
task mapping and scheduling in multi-hop wireless
networks can be tackled as a generic task mapping
and scheduling problem with additional constraints.
This problem is NP-complete in general [4] and
heuristic algorithms are needed to obtain practical
solutions. Dynamic critical-path scheduling is
known for its relatively low complexity with
satisfying schedule length performance. We propose
our DCTMS algorithm composed by the following
procedures:
�
 Dynamic critical-path evaluation and optimal
task selection (DCOS).

�
 Optimal sensor searching and task assignment

(OSTA).

The DCOS procedure calculates the critical-path of
Hyper-DAGs, and finds the next task to be assigned
accordingly. The selected task will then be indepen-
dently assigned on ‘‘active sensors’’ one by one to
find the optimal sensor giving the shortest schedule
length in OSTA. Here, an ‘‘active sensor’’ is a sensor
that either runs computation tasks or participates
communication activities by sending, receiving or
routing communication tasks. These procedures
are iteratively executed until all tasks are assigned.
In both the procedures, network topology and
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communication scheduling are embedded into the
decision making procedure to reflect the multi-hop
wireless network features. The details of DCTMS
are described below.

3.3.1. DCOS procedure

The core of the DCTMS scheduling algorithm is
the DCOS procedure that dynamically evaluates
critical-paths, along which tasks potentially have the
largest execution time and may determine schedule
lengths. Unlike traditional dynamic critical-path
scheduling algorithms that have full connections
between processors with fixed communi-
cation latency, DCTMS is executed on Hyper-DAG
for wireless communication in multi-hop VSNs.
Thus, the execution time of a communication task
is not only determined by the communication data
volume but the assignment of the communication
task: depending on locations of senders and receivers,
communication tasks may travel various number of
hops. Since the selected task will be experimentally
assigned on each active sensor, we estimate the
communication latency with the average hop-distance
AVGhop between active sensors, where AVGhop is
dynamically updated in the OSTA procedure.

The DCOS procedure dynamically calculates
critical-paths as follows: similar to the E-CNPT
algorithm in [17], DCOS first iteratively calculates
the earliest start time ESTðviÞ of task vi by traveling
downward Hyper-DAGs. For tasks that have
already been assigned, their EST equals their
scheduled start time; otherwise, their EST is given by

ESTðviÞ ¼ max
v2predðviÞ

fESTðvÞ þ tvg, (3.2)

tv ¼
Cv=f max

CPU; v 2 R;

AVGhop � Rv=BW; v 2 R;

(
(3.3)

where Cv, Rv, and BW are the computation load,
communication data volume, and channel band-
width, respectively.

Similar to EST, the latest start time (LST) is
calculated by traveling upward Hyper-DAGs from the
exit-task. For exit-tasks and assigned tasks, their LST
equals to their EST. Otherwise, their LST is given by

LSTðviÞ ¼ min
v2succðviÞ

fLSTðvÞg � tvi
, (3.4)

where tvi
has the same definition as tv in Eq. (3.2).
Starting from the exit-task, the path along which
tasks have the same value of EST and LST is the
critical-path. A dynamic critical-path ends at as-
signed tasks, and the unassigned ‘‘top’’ task closest
to assigned tasks is called a primary critical-node
(PC). A ‘‘mappable’’ PC with all immediate pre-
decessors already assigned will be passed to OSTA
for further process; Otherwise, a secondary critical-

path will be recursively found: starting from the PC,
a task’s immediate predecessor with the minimum
LST is added to the path until an assigned task is
reached. The unassigned ‘‘top’’ task closest to
assigned tasks is called a secondary critical-node
(SC), and is passed to OSTA for further process.

3.3.2. OSTA procedure

In the OSTA procedure, the to-be-assigned task
from DCOS will be scheduled on all active sensors,
then the schedule with the minimum schedule length
will be chosen. During the scheduling, sensors are
scheduled with full speed f max

cpu .
Input: Hyper-DAG; sensor set: SS

Output: Schedule of v0

OSTA Procedure:
1.
 Assign entry-tasks according to Entry-task

Assignment Constraint
2.
 Initialize AVGhop
3.
 WHILE not all tasks assigned

4.
 Find the next PC or SC v0 with the DCOS

procedure

5.
 IF v0 2 R
6.
 Assign v0 to mðpredðv0ÞÞ

7.
 ELSE
8.
 FOR all active sensors mk
9.
 IF predðv0ÞD/ TðmkÞ
10.
 FOR vn 2 predðv0Þ � TðmkÞ
11.
 CommTaskSchedule(vn,mðv
0Þ,mk)
12.
 Assign v0 to mk
13.
 Keep the schedule with m0: f v0;m0 ¼ min
14.
 Update AVGhop if new active sensors

involved
3.4. The DVS algorithm

Due to the discrete nature of task mapping and
scheduling, a schedule that meets a deadline may do
so with some more slack time until the deadline. The
unbalanced load of sensors and the communication
scheduling also result in CPU idle time. In the DVS

phase, the CPU idle time is exploited by decreasing
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the CPU speed to reduce computation energy
consumption.

Before introducing the DVS algorithm, a concept
of CPU utility Z during a time interval ½st; ft� is first
defined as

Z ¼ e
ft
st=ðft� stÞ, (3.5)

where e
ft
st is the CPU execution time during ½st; ft�.

To exploit the CPU slack time, the strategy of the
CPU adjustment algorithm is to slow down the
CPU in proportion to the CPU utility. After
adjustment, the CPU utility will approach 1 (but
smaller than or equal to 1).

Our DVS algorithm has two stages: schedule
length extension (SLE) stage and further energy
optimization (FEO) stage. In the SLE stage, the
slack time between schedule length lengthðHÞ and
application deadline DL is eliminated if any: assume
b ¼ lengthðHÞ=DLo1, we define the re-scale factor
as g ¼ db � f max

cpu e=f max
cpu . Here, the function df e is a

ceiling function that returns the minimum available
CPU speed larger than or equal to f. Then, the
schedule is extended in proportion to g: all
processors are slowed down to g � f max

cpu with less
energy consumption; computation tasks’ start time,
execution time, and finish time are multiplied by
factor g�1. To satisfy dependency constraints, a
communication task vi finish time f vi

is multiplied
by factor g�1, while its execution time is unchanged
and the start time svi

¼ g � f vi
� tvi

.
After the SLE stage, slack times before application

deadlines are decreased. However, the CPU idle time
caused by the unbalanced load of sensors and the
communication scheduling still exists, and is actually
even larger. Thus, the adjusted schedule from the
SLE stage needs to be further optimized in the FEO
stage. We first present the procedure to adjust the
CPU speed of a single sensor in a given time interval:
Input: sensor mk; time interval ½st; ft�; original CPU
speed f cpu

Output: Adjusted CPU speed f 0
cpu and task

scheduling during ½st; ft�
SpeedAdjust Algorithm(mk,st,ft,f cpu):
1. e

ft
st  0, tt st
2. F
OR vi 2 T
ft
stðmkÞ and vi 2 V
3.
 e
ft
st  e

ft
st þ tvi ;mk
4. Z
 e
ft
st=ðft� stÞ
5. f
 0
cpu df cpu � Ze
6. F
OR vi 2 T
ft
stðmkÞ and vi 2 V
7.
 svi ;mk
 tt
8.
 tvi ;mk
 tvi ;mk

�
f cpu

f 0cpu
, f vi ;mk

 svi ;mk
þ tvi ;mk
9.
 tt f vi ;mk
10. F
OR vi 2 T
ft
stðmkÞ and vi 2 R
11.
 IF predðviÞ 2 TðmkÞ
12.
 svi ;mk
 f predðviÞ;mk

, f vi ;mk
 f predðviÞ;mk
13. U
pdate the energy consumption of mk
In the FEO algorithm, the communication tasks
on C are kept unchanged, and their start time and
finish time are taken as the upper and lower bound
to adjust the corresponding sensors’ speed with the
SpeedAdjust procedure. The FEO algorithm is
described in details as follows:
Input: schedule H from the Mapping and Scheduling

Phase, sensor set SS, application deadline DL

Output: Adjusted schedule H0

FEO Algorithm:

1.
 FOR sensor mk 2 SS

2.
 st 0, ft 1
3.
 FOR tasks vi 2 T1st ðmkÞ
4.
 IF There is a copy of vi: vc
i 2 TðCÞ
5.
 Find the computation task vj

following vi
6.
 IFmk is the sender of vc
i

7.
 ft minðsvc
i
;C; svj ;mk

Þ

8.
 SpeedAdjust(mk,st,ft,g � f max
cpu )
9.
 st ft
10.
 ELSE /*mk is the receiver of vc
i */
11.
 st maxðf vc
i
;mk
; svj ;mk

Þ

12.
 ELSE IF vi is exit-task and f vi
oDL
13.
 SpeedAdjust(mk,st,DL,g � f max
cpu )
4. Simulation results

The performance of the DCTMS algorithm with
DVS adjustment is evaluated and compared with
the DCA algorithm [13,19]. To provide persuasive
results, DCA is extended using our multi-hop
communication model. It is also implemented with
DVS adjustment using the same algorithm as
DCTMS. We first run simulations on a real-life
application model as a proof of concept. Then
simulations are run on randomly generated DAGs
to investigate the following aspects:
�
 Effect of the application deadline constraints.

�
 Effect of the cluster size.

�
 Effect of the number of tasks in applications.
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Fig. 3. DAG for distributed feature extraction application.
Comparison with EbTA [21] in single-hop
clusters.

In these simulations, the metrics are schedule
length, energy consumption, and deadline missing
ratio (DMR). DMR is defined as the ratio of the
schedules that miss the deadlines.

4.1. Simulation parameters

In our simulation study, the bandwidth of the
channel is set to 1MB/s and the transmission range
r ¼ 10m. Energy consumption model adopts sen-
sors equipped with the StrongARM SA-1100
microprocessor, whose speed ranges from 59 to
206MHz with 30 discrete levels. The parameters of
Eqs. (2.1)–(2.4) are the same as in [7,13,19] as
follows: Eelec ¼ 50 nJ=b, �amp ¼ 10 pJ=b=m2, VT ¼

26mV, C ¼ 0:67 nF, I0 ¼ 1:196mA, n ¼ 21:26, K ¼

239:28MHz=V and c ¼ 0:5V.
Simulations are first run on a real-life application

model as a proof of concept. Then they are run on
randomly generated DAGs which are scheduled on
randomly created multi-hop clusters. Random
DAGs are created based on three parameters: the
number of tasks numTask, the number of entry-
tasks numEntry, and the maximum number of
immediate predecessors maxPred. The number of
immediate predecessors, the computation load
(in units of kilo-clock-cycle, KCC), and the com-
munication data volume (in units of byte) of a task
are uniformly distributed over [1, maxPred],
[300KCC �10%], and [800 bits �10%], respec-
tively. The sensors are uniformly distributed in a
disc area with radius of k � r and form a k-hop

connected cluster. We assume that there are n ¼ 5
sensors in a single-hop cluster and 5k2 sensors in a
k-hop cluster. During simulations, the entry-tasks
are randomly assigned to sensors. The simulation
results are the average of 100 runs with different
randomly (DAG, cluster) combinations.

4.2. Simulation with a real-life application example

A practical visual data processing application in
VSNs is considered in this section. Camera sensor
nodes work collaboratively to monitor various
objects in a given area. The conventional methods
transmit all data through multi-hop communication
to base stations and process information centrally.
Information from neighboring sensor nodes is
highly correlated, which implies that if data can be
processed in the network exploiting correlations,
smaller data volume will be sent through VSNs.
Due to the limited communication bandwidth, it is
plausible to extract features of interests and send the
data with critical importance back to base stations
in VSNs.

In a distributed visual object recognition scenario,
neighboring sensor nodes pair up to exchange
information for object recognition. The algorithm
proposed in [15,20] for real-time object recognition
is exploited. With this approach, features are
extracted locally, followed by the voting operation
[20]. The local feature selection procedure applies an
edge detector to each input image, and extracts
interest points. Then for each interest point, all
captured features from different images are fused
and votes are made according to interest points
relative positions. Finally, features and their votes
are aggregated at a single node in the cluster. After
this collection, messages with object information are
sent back to base stations. Fig. 3 shows the DAG
representing this application. Tasks v1–v4 are entry-
tasks which convert original images to binary
images using edge detection and interest point
detection [20]. Image size, hence, communicated
information volume is significantly reduced here.
Tasks v5–v8 extract features and fuse the image data
from neighboring sensor pairs to improve the
feature recognition ratio [22]. The object recogni-
tion in each image is done by ‘‘comparing the
extraction of feature points and the interest points
over edge detectors’’ [20]. The Hausdorff distances
[9] are used as the criteria for image matching and
voting. Object information from different cameras
are fused to eliminate redundancy in v9–v11.
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We assume that data size generated at each
camera sensor is 128� 128 bytes. We further
assume the task computation load of v1–v4 to be
1000KCC, the computation load of v5–v8 is
40 000KCC, the computation load for matching in
v9–v11 is 1KCC. We also assume the communica-
tion task for E1;5–E4;8 are 500 bytes, communication
volumes of E5;9–E8;10 are 40 bytes. We compare the
performance of our proposed DCTMP algorithm
with the DCA and EbTA algorithm in Table 1.
Since, EbTA is a scheduling algorithm for single-
hop cluster only, these algorithms are evaluated in
single-hop environment for fair comparison. The
investigated metrics are the energy consumption
and schedule length.

We compare the energy consumption and sche-
dule length for all three algorithm under two
different deadline conditions: deadline ¼ 0:4 and
0.8 s. In both scenario, according to the simulation
results, DCTMP schedule provides less energy
consumption compared with DCA and EbTA to
guarantee schedule deadlines. It should be noted
that the simplified example is just for the proof of
concept purposes. Real applications may have more
complicated algorithms with larger image size and
higher computation load. In the example above,
sending these four 16KB-images will consume
about 51mJ per hop. According to Table 1, the
energy consumption of processing these images with
deadline ¼ 0:8 s is about 73mJ. After the in-net-
work processing, the resulting data volume is
reduced to 40 bytes, which consumes only
0.032mJ to delivery over one hop. Thus, the overall
energy consumption of processing information and
transmitting the results is saved compared with
directly delivering original images over more two
hops. This is satisfied in most large-scale VSNs,
where energy savings through in-network proces-
sing is significant.
Table 1

Simulation results for object recognition example

Deadline(s) Metrics DCA

0.4 Energy consumption (mJ) 218.4

Schedule length (s) 0.794

Meet deadline No

0.8 Energy consumption (mJ) 218.4

Schedule length (s) 0.794

Meet deadline Yes
4.3. Simulation with randomly generated DAG

4.3.1. Effect of the application deadlines

We investigate the effect of application deadlines
and DVS adjustment with randomly created
3-hop clusters and DAGs with numTask ¼ 40,
numEntry ¼ 10, and maxPred ¼ 10. To evaluate
the effect of DVS, the schedule length, energy
consumption and DMR of DCA and DCTMS
before the voltage adjustment (denoted as DCA*
and DCTMS*, respectively) are also investigated.

As shown in Fig. 4(a) and (c), DCTMS has a better
capability to meet deadlines compared with DCA.
When deadlines are very small, even though DMR of
DCTMS and DCA are both high, the average
schedule length of DCTMS is much smaller and
closer to deadlines compared with DCA. The reason
is that DCA has only one sensor for high-level data
processing while DCTMS can have more sensors
involved in parallel, which speeds up execution.

Regarding energy consumption, DCA* has better
energy consumption performance than DCTMS*
for most scenarios according to Fig. 4(b). However,
by implementing DVS algorithm, this energy con-
sumption difference is significantly reduced. As
shown in Fig. 4(a) and (b), DCTMS even outper-
forms DCA in terms of energy consumption by
exploiting the much larger CPU slack time before
deadlines for scenarios with large deadlines. Even
when deadlines are relatively small and there is very
little slack time before application deadlines, the
DVS adjustment of DCTMS can still save about
22% energy compared with DCTMS*. This energy
saving stems from exploiting the slack time caused
by the unbalanced load of sensors and communica-
tion scheduling. Though the DVS adjustment may
increase schedule lengths (Fig. 4(a)), the DMR is
not affected (Fig. 4(c)) for any of the simulated
deadline values.
EbTA DCTMP

91 131.715 93.620

0.334 0.400

Yes Yes

91 92.644 72.738

0.702 0.751

Yes Yes
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Fig. 4. Effect of application deadlines. (a) Schedule length,
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4.3.2. Effect of the cluster size

In this section, the effect of the cluster size is
evaluated. In each simulation run, one random
DAG with numTask ¼ 40, numEntry ¼ 10,
maxPred ¼ ! 10, and one set of 2-hop, 3-hop, and
4-hop random clusters are generated.

As shown in Fig. 5, when the cluster size
increases, the performance of DCA degrades
correspondingly. Regarding DCTMS, the energy
consumption proportionally increases with increas-
ing cluster size. An interesting observation is that
when the cluster size increases from 3-hop to 4-hop,
the DMR slightly decreases around the deadline of
35ms. This DMR improvement stems from better
parallelism achieved with larger network size: there
can be more communication scheduled simulta-
neously with larger network sizes, which may lead
to more computation tasks executed in parallel.
Thus, DCTMS has a better capacity to adapt to
larger cluster sizes.
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4.3.3. Effect of the number of tasks

Simulations are run on randomly generated
DAGs with 40, 45, 50 tasks (numEntry ¼ 10,
maxPred ¼ 10) to investigate the effect of number
of tasks in applications, and each set of 40, 45, 50
task DAG are scheduled on one randomly created
3-hop cluster. According to the simulation results
in Fig. 6(a), energy consumptions are dominated
by the number of tasks. When the number of
tasks increases, the energy consumption of
DCA and DCTMS both increase proportionally,
and DCTMS has higher energy consumption.
However, when deadline is increasing, the
energy consumption of DCTMS decrease faster
than DCA by exploiting the available CPU slack
time due to its better capacity to meet deadlines.
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Fig. 6. Effect of number of tasks (40 tasks vs. 45 tasks vs. 50

tasks). (a) Energy consumption and, (b) deadline missing ratio.
Regarding DMR, DCA is dramatically affected
with task volume increment while DCTMS is less
affected (Fig. 6(b)). Thus, DCTMS has a better
scalability compared with DCA regarding schedule
length and DMR.

4.3.4. Comparison with EbTA

We compare the performance of DCTMS with
EbTA for single-hop, single-channel clusters. Due
to the small scale of a single-hop cluster (five sensors
as assumed), performances are evaluated with less
computation load: the presented results are the
average of 100 simulation runs of random DAGs
with numTask ¼ 25, numEntry ¼ 5 and maxPred ¼
5. As shown in Fig. 7, DCTMS outperforms EbTA
in terms of deadline guarantee and energy con-
sumption. The superior performance of DCTMS
mainly stems from the fact that DCTMS exploits
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Fig. 7. DCTMS vs. EbTA. (a) Energy consumption and, (b)

deadline missing ratio.
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the broadcast feature of the wireless channel when
scheduling communication, while a task in EbTA
must send information individually to its immediate
successors.

5. Conclusion

In this paper, we propose an energy-efficient
real-time multimedia processing solution to enhance
the in-network processing capability for multi-
hop VSNs, called dynamic critical-path task
mapping and scheduling (DCTMP) algorithm.
DCTMP aims to map and schedule the tasks of
an application with the minimum energy consump-
tion subject to delay constraints. The multi-hop
wireless channel is modeled as a virtual node to
execute communication tasks, and a penalty func-
tion is proposed to avoid communication interfer-
ence. Incorporating our communication scheduling
algorithm, DCTMP schedules tasks with minimum
energy consumption subject to deadline constraints.
Simulations show significant performance improve-
ments compared with DCA and EbTA in terms of
minimizing energy consumption subject to delay
constrains.
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