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Abstract—In this work, a multiple sound source localization

and counting method is presented, that imposes relaxed sparsity

constraints on the source signals. A uniform circular microphone

array is used to overcome the ambiguities of linear arrays, however

the underlying concepts (sparse component analysis and matching

pursuit-based operation on the histogram of estimates) are appli-

cable to any microphone array topology. Our method is based on

detecting time-frequency (TF) zones where one source is dominant

over the others. Using appropriately selected TF components in

these “single-source” zones, the proposed method jointly estimates

the number of active sources and their corresponding directions

of arrival (DOAs) by applying a matching pursuit-based approach

to the histogram of DOA estimates. The method is shown to have

excellent performance for DOA estimation and source counting,

and to be highly suitable for real-time applications due to its low

complexity. Through simulations (in various signal-to-noise ratio

conditions and reverberant environments) and real environment

experiments, we indicate that our method outperforms other

state-of-the-art DOA and source counting methods in terms of

accuracy, while being significantly more efficient in terms of

computational complexity.

Index Terms—Direction of arrival estimation, matching pursuit,

microphone array signal processing, multiple source localization,

real-time localization, source counting, sparse component analysis.

I. INTRODUCTION

D IRECTION OF ARRIVAL (DOA) estimation of audio

sources is a natural area of research for array signal pro-

cessing, and one that has had a lot of interest over recent decades

[1]. Accurate estimation of the DOA of an audio source is a
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key element in many applications. One of the most common is

in teleconferencing, where the knowledge of the location of a

speaker can be used to steer a camera, or to enhance the capture

of the desired source with beamforming, thus avoiding the need

for lapel microphones. Other applications include event detec-

tion and tracking, robot movement in an unknown environment,

and next generation hearing aids [2]–[5].

The focus in the early years of research in the field of DOA

estimation was mainly on scenarios where a single audio source

was active. Most of the proposed methods were based on the

time difference of arrival (TDOA) at different microphone

pairs, with the Generalized Cross-Correlation PHAse Trans-

form (GCC-PHAT) being the most popular [6]. Improvements

to the TDOA estimation problem—where both the multipath

and the so-far unexploited information among multiple micro-

phone pairs were taken into account—were proposed in [7]. An

overview of TDOA estimation techniques can be found in [8].

Localizing multiple, simultaneously active sources is a

more difficult problem. Indeed, even the smallest overlap of

sources—caused by a brief interjection, for example—can

disrupt the localization of the original source. A system that

is designed to handle the localization of multiple sources sees

the interjection as another source that can be simultaneously

captured or rejected as desired. An extension to the GCC-PHAT

algorithm was proposed in [9] that considers the second peak

as an indicator of the DOA of a possible second source. One

of the first methods capable of estimating DOAs of multiple

sources is the well-known MUSIC algorithm and its wideband

variations [2], [10]–[14]. MUSIC belongs to the classic family

of subspace approaches, which depend on the eigen-decompo-

sition of the covariance matrix of the observation vectors.

Derived as a solution to the Blind Source Separation (BSS)

problem, Independent Component Analysis (ICA) methods

achieve source separation—enabling multiple source localiza-

tion—by minimizing some dependency measure between the

estimated source signals [15]–[17]. The work of [18] proposed

performing ICA in regions of the time-frequency representa-

tion of the observation signals under the assumption that the

number of dominant sources did not exceed the number of

microphones in each time-frequency region. This last approach

is similar in philosophy to Sparse Component Analysis (SCA)

methods [19, ch. 10]. These methods assume that one source is

dominant over the others in some time-frequency windows or

“zones.” Using this assumption, themultiple source propagation

estimation problem may be rewritten as a single-source one

in these windows or zones, and the above methods estimate a

mixing/propagation matrix, and then try to recover the sources.

By estimating this mixing matrix and knowing the geometry of

1558-7916/$31.00 © 2013 IEEE
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the microphone array, we may localize the sources, as proposed

in [20]–[22], for example. Most of the SCA approaches require

the sources to be W-disjoint orthogonal (WDO) [23]—meaning

that in each time-frequency component, at most one source is

active—which is approximately satisfied by speech in anechoic

environments, but not in reverberant conditions. On the con-

trary, other methods assume that the sources may overlap in the

time-frequency domain, except in some tiny “time-frequency

analysis zones” where only one of them is active (e.g., [19,

p. 395], [24]). Unfortunately, most of the SCAmethods and their

DOA extensions are computationally intensive and therefore

off-line methods (e.g., [21] and the references within). The work

of [20] is a frame-based method, but requires WDO sources.

Other than accurate and efficient DOA estimation, an ex-

tremely important issue in soundsource localization is estimating

thenumberofactive sourcesat each time instant, knownassource

counting. Many methods in the literature propose estimating the

intrinsic dimension of the recorded data, i.e., for an acoustic

problem, they perform source counting at each time instant.Most

of them are based on information theoretic criteria (see [25] and

the references within). In other methods, the estimation of the

number of sources is derived from a large set of DOA estimates

that need to be clustered. In classification, some approaches to

estimatingboth the clusters and their number havebeenproposed

(e.g. [26]), while several solutions specially dedicated to DOAs

have been tackled in [19, p. 388], [27] and [28].

In this work, we present a novel method for multiple sound

source localization using a circular microphone array. The

method belongs in the family of SCA approaches, but it is of

low computational complexity, it can operate in real-time and

imposes relaxed sparsity constraints on the source signals com-

pared toWDO. The methodology is not specific to the geometry

of the array, and is based on the following steps: (a) finding

single-source zones in the time-frequency domain [24] (i.e.,

zones where one source is clearly dominant over the others); (b)

performing single-source DOA estimation on these zones using

the method of [29]; (c) collecting these DOA estimations into

a histogram to enable the localization of the multiple sources;

and (d) jointly performing multiple DOA estimation and source

counting through the post-processing of the histogram using a

method based on matching pursuit [30]. Parts of this work have

been recently presented in [22], [31], [32]. This current work

presents a more detailed and improved methodology compared

to our recently published results, especially in the following

respects: (i) we provide a way of combining the tasks of source

counting andDOAestimation usingmatching pursuit in a natural

and efficientmanner; and (ii)weprovide a thoroughperformance

investigation of our proposed approach in numerous simulation

and real-environment scenarios, both for the DOA estimation

and the source counting tasks. Among these results, we provide

performance comparisons of our algorithm regarding the DOA

estimation and the source counting performance with the main

relevant state-of-art approachesmentioned earlier.More specifi-

cally,DOAestimation performance is compared toWDO-based,

MUSIC-based, and frequency domain ICA-based DOA esti-

mation methods, and source counting performance is compared

to an information-theoretic method. Overall, we show that our

proposed method is accurate, robust and of low computational

complexity.

Fig. 1. Circular sensor array configuration. The microphones are numbered 1
to and the sound sources are to .

The remainder of the paper then reads as follows. We

describe the considered localization and source counting

problem in Section II. We then present our proposed method

for joint DOA estimation and counting in Section III. In this

section we also discuss additional proposed methods for source

counting. We revise alternative methods for DOA estimation

in Section IV. Section V provides an experimental validation

of our approaches along with discussion on performance and

complexity issues. Finally, we conclude in Section VI.

II. PROBLEM STATEMENT

We consider a uniform circular array of microphones, with

active sound sources located in the far-field of themicrophone

array. Assuming the free-field model, the signal received at each

microphone is

(1)

where is one of the sound sources at distance from the

centre of the microphone array, is the attenuation factor and

is the propagation delay from the source to the mi-

crophone. is the DOA of the source observed with respect

to the -axis (Fig. 1), and is an additive white Gaussian

noise signal at microphone that is uncorrelated with the

source signals and all other noise signals.

For one given source, the relative delay between signals re-

ceived at adjacent microphones—hereafter referred to as micro-

phone pair , with the last pair being —is

given by [29]

(2)

where and are the angle and distance between

respectively, is the obtuse angle formed by the chord

and the -axis, and is the speed of sound. Since themicrophone

array is uniform, , and are given by:

(3)

where is the array radius. We note here that in (2) the DOA

is observedwith respect to the -axis, while in [29] it is observed

with respect to a line perpendicular to the chord defined by the
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microphone pair . We also note that all angles in (2)

and (3) are in radians.

We aim to estimate the number of the active sound sources,

and corresponding DOAs by processing the mixtures of

source signals, , and taking into account the known array

geometry. It should be noted that even though we assume the

free-field model, our method is shown to work robustly in both

simulated and real reverberant environments.

III. PROPOSED METHOD

A. Definitions and Assumptions

We follow the framework of [24] that we recall here for the

sake of clarity. We partition the incoming data in overlapping

time frames on which we compute a Fourier transform, pro-

viding a time-frequency (TF) representation of observations.

We then define a “constant-time analysis zone,” , as a se-

ries of frequency-adjacent TF points . A “constant-time

analysis zone,” is thus referred to a specific time frame

and is comprised by adjacent frequency components. In the

remainder of the paper, we omit in the for simplicity.

We assume the existence, for each source, of (at least)

one constant-time analysis zone—said to be “single-

source”—where one source is “isolated,” i.e., it is dominant

over the others. This assumption is much weaker than the WDO

assumption [23] since sources can overlap in the TF domain

except in these few single-source analysis zones. Our system

performs DOA estimation and source counting assuming there

is always at least one active source. This assumption is only

needed for theoretical reasons and can be removed in practice,

as shown in [33] for example. Additionally, any recent voice

activity detection (VAD) algorithm could be used as a prior

block to our system.

The core stages of the proposed method are:

1) The application of a joint-sparsifying transform to the ob-

servations, using the above TF transform.

2) The single-source constant-time analysis zones detection

(Section III-B).

3) The DOA estimation in the single-source zones

(Section III-C).

4) The generation and smoothing of the histogram of a block

of DOA estimates (Section III-D).

5) The joint estimation of the number of active sources

and the corresponding DOAs with matching pursuit

(Section III-E).

B. Single-Source Analysis Zones Detection

For any pair of signals , we define the cross-correla-

tion of the magnitude of the TF transform over an analysis zone

as:

(4)

We then derive the correlation coefficient, associated with the

pair , as:

(5)

Our approach for detecting single-source analysis zones is based

on the following theorem [24]:

Theorem 1: A necessary and sufficient condition for a source

to be isolated in an analysis zone is

(6)

We detect all constant-time analysis zones that satisfy the fol-

lowing inequality as single-source analysis zones:

(7)

where is the average correlation coefficient between pairs

of observations of adjacent microphones and is a small user-

defined threshold.

C. DOA Estimation in a Single-Source Zone

Since we have detected all single-source constant time anal-

ysis zones, we can apply any known single source DOA algo-

rithm over these zones. We propose a modified version of the

algorithm in [29] and we choose this algorithm because it is

computationally efficient and robust in noisy and reverberant

environments [22], [29].

We consider the circular array geometry (Fig. 1) introduced

in Section II. The phase of the cross-power spectrum of a mi-

crophone pair is evaluated over the frequency range of a single-

source zone as:

(8)

where the cross-power spectrum is

(9)

and stands for complex conjugate.

We then calculate the Phase Rotation Factors [29],

(10)

where is the differ-

ence in the relative delay between the signals received at pairs

and , is evaluated according to

(2), in radians, and .

We proceed with the estimation of the Circular Integrated

Cross Spectrum (CICS), defined in [29] as

(11)

The DOA associated with the frequency component in the

single-source zone with frequency range is estimated as,

(12)

In each single-source zone we focus only on “strong” fre-

quency components in order to improve the accuracy of the

DOA estimation. In our previous work [22], [31], [32], we

used only the frequency, corresponding to the strongest

component of the cross-power spectrum of the microphone pair



2196 IEEE TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 21, NO. 10, OCTOBER 2013

Fig. 2. DOA estimation error vs SNR in a simulated environment. Each curve
corresponds to a different number of frequency components used in a single-
source zone.

in a single-source zone, giving us a single DOA for

each single-source zone. In this work we propose the use of

frequency components in each single-source zone, i.e., the

use of those frequencies that correspond to the indices of the

highest peaks of the magnitude of the cross-power spectrum

over all microphone pairs. This way we get estimated DOAs

from each single-source zone, improving the accuracy of the

overall system.

This is illustrated in Fig. 2, where we plot the DOA estimation

error versus signal to noise ratio (SNR) for various choices of .

It is clear that using more frequency bins (the terms frequency

bin and frequency component are used interchangeably) leads

in general to a lower estimation error. We have to keep in mind,

though, that our aim is a real-time system, and increasing in-

creases the computational complexity.

D. Improved Block-Based Decision

In the previous sections we described how we determine

whether a constant time analysis zone is single-source and how

we estimate the DOAs associated with the strongest frequency

components in a single-source zone. Once we have estimated

all the local DOAs in the single-source zones (Sections III-B

& III-C), a natural approach is to form a histogram from the

set of estimations in a block of consecutive time frames.

Additionally, any erroneous estimates of low cardinality, due

to noise and/or reverberation do not severely affect the final

decision since they only add a noise floor to the histogram. We

smooth the histogram by applying an averaging filter with a

window of length . If we denote each bin of the smoothed

histogram as , its cardinality, , is given by:

(13)

where is the number of bins in the histogram, is the es-

timate (in degrees) out of estimates in a block, and is the

rectangular window of length . An example of a smoothed

histogram of four sources at 60 , 105 , 165 , and 240 at 20 dB

SNR of additive white Gaussian noise is shown in Fig. 3.

Fig. 3. Example of a smoothed histogram of four sources (speakers) in a sim-
ulated reverberant environment at 20 dB SNR.

Fig. 4. A wide source atom (dashed line) and a narrow source atom (solid line)
applied on the smoothed histogram of four sources (speakers).

E. DOA Estimation and Counting of Multiple Sources With

Matching Pursuit

In each time frame we form a smoothed histogram from the

estimates of the current frame and the previous frames.

Once we have the histogram in the time frame (the length-

vector, ), our goal is to count the number of active sources

and to estimate their DOAs. In our previous work, [31], [32]

we performed these tasks separately, but here we combine them

into a single process.

Let us go back to the example histogram of four active

sources at 20 dB SNR, shown in Fig. 3. The four sources

are clearly visible and similarly shaped, which inspired us to

approach the source counting and DOA estimation problem

as one of sparse approximation using source atoms. Thus the

idea—proceeding along similar lines to matching pursuit—is to

find the DOA of a possible source by correlation with a source

atom, estimate its contribution and remove it. The process is

then repeated until the contribution of a source is insignificant,

according to some criteria. This way we can jointly estimate

the number of sources and their DOAs.

We chose to model each source atom as a smooth pulse,

such as that of a Blackman window, although the choice of the

window did not prove to be critical. The choice of the width is

key, and reasoning and experiments showed that a high accu-

racy of the method requires wide source atoms at lower SNRs

and narrow source atoms at higher SNRs. Furthermore, the

resolution of the method—the ability to discriminate between

two closely spaced sources—is adversely affected as the width

of the source atom increases. This suggests making the width a

parameter in the estimation process, however this would come

at the cost of an increase in computational complexity—some-

thing we wish to avoid—so we chose to use fixed-width source

atoms.

Further investigation revealed that a two-width method pro-

vided a good compromise between these constraints, where a

narrower width is used to accurately pick the location of each

peak, but a wider width is used to account for its contribution to

the overall histogram and provide better performance at lower

SNRs. This dual-width approach is illustrated in Fig. 4. Note
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that the wider width source mask is centered on the same index

as the narrow one.

The correlation of the source pulse with the histogram must

be done in a circular manner, as the histogram “wraps” from

359 to 0 . An efficient way to do this is to form a matrix whose

rows (or columns) contain wrapped and shifted versions of the

source pulse, as we now describe.

Let be a length- row vector containing a length-

Blackman window, then let be a length- row vector whose

first values are populated with and then padded with

zeros. Let denote a version of that has been “circularly”

shifted to the right by elements, the circular shift means that

the elements at either end wrap around, and a negative value of

implies a circular shift to the left.

Choose where is a positive integer. The

maximum value of (or equivalently ) will occur at

-th position. Define . The maximum value of the

length- row vector occurs at its first element. Let the ele-

ments of be denoted , and its energy be given by .

Now form the matrix C, which consists of circularly shifted ver-

sions of . Specifically, the -th row of C is given by .

As previously discussed, we need two widths of source

atoms, so let and be matrices for the peak detec-

tion (denoted by “N” for narrow) and the masking operation

(denoted by “W” for wide), respectively, with corresponding

source atom widths and .

In order to estimate the number of active sources, , we

create , a length- vector whose elements are some

predetermined thresholds, representing the relative energy of

the -th source. Our joint source counting and DOA estimation

algorithm then proceeds as follows:

1) Set the loop index

2) Form the product

3) Let the elements of be given by , find

such that is further than from all formerly

located maximum indices, where denotes a minimum

offset between neighboring sources

4) The DOA of this source is given by

5) Calculate the contribution of this source as

6) If go to step 10

7) Remove the contribution of this source as

8) Increment

9) If go to step 2

10) and the corresponding DOAs are those

estimated in step 4

It should be noted that this method was developed with

the goal of being computationally-efficient so that the source

counting and DOA estimation could be done in real-time. By

real-time we refer to the response of our system within the

strict time constraint defined by the duration of a time frame. It

should be clear that and are circulant matrices and will

contain and zeros on each row, respectively,

and both of these properties may be exploited to provide a

reduced computational load.

F. Additional Proposed Source Counting Methods

In Section III-E we presented a matching pursuit-based

method for source counting and described how this method

can be combined in a single step with the DOA estimation of

the sources. In this section we propose two alternative source

counting methods, namely a Peak Search approach and a Linear

Predictive Coding (LPC) approach.

1) Peak Search: In order to estimate the number of sources

we perform a peak search of the smoothed histogram in the

frame (see Section III-D) in the following manner:

a) We assume that there is always at least one active source

in a block of estimates. So we set , where cor-

responds to a counter of the peaks assigned to sources

so far. We also set , i.e.,

the histogram bin which corresponds to the highest peak

of the smoothed histogram. Finally, we set the threshold

, where is a user-

defined static threshold.

b) We locate the next highest peak in the smoothed his-

togram, . If the following three conditions are si-

multaneously satisfied:

(14)

(15)

(16)

then and .

is the minimum offset between neighboring sources. (14)

guaranties that the next located histogram peak is higher

than the updated threshold . (15) and (16) guarantee

that the next located peak is not in the close neighborhood

of an already located peak with and all

the previously identified source peaks.

c) We stop when a peak in the histogram fails to satisfy the

threshold or if the upper threshold is reached.

The estimated number of sources is .

We note that peak-search approaches on histograms of estimates

have been proposed in literature [27]. Here, we present another

perspective on these approaches by processing a smoothed his-

togram and by using a non-static peak threshold. In Fig. 5 we

can see how the Peak Search method is applied to a smoothed

histogram where four sources are active. The black areas indi-

cate the bins around a tracked peak of the histogram that are

excluded as candidate source indicators as explained in step b).

2) Linear Predictive Coding: Linear Predictive Coding

(LPC) coefficients are widely used to provide an all-pole

smoothed spectral envelope of speech and audio signals [34].

This inspired us to apply LPC to the smoothed histogram

of estimates to emphasize the peaks and suppress any noisy

areas. Thus, the estimated LPC envelope coincides with the

envelope of the histogram. We get our estimate of sources

by counting the local maxima in the LPC envelope with the

constraint that . In our estimation, we exclude

peaks that are closer than , as a minimum offset between

neighboring sources.
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Fig. 5. Peak Search for source counting. The black areas indicate the bins
around a tracked peak of the histogram that are excluded as candidate source
indicators.

Fig. 6. LPC for source counting. The black curve corresponds to the LPC es-
timated envelope of the histogram.

A key parameter of this approach is the order of LPC. We

want to avoid a very high order that will over-fit our histogram

of estimates, in turn leading to an over-estimation of the true

number of sources. On the other hand, the use of a very low

order risks the detection of less dominant sources (i.e., sources

with less estimates in the histogram, thus lower peaks). In order

to decide on an optimum LPC order, we tested a wide range of

values and chose the one that gave the best results in all our con-

sidered simulation scenarios (details can be found in Section V).

In Fig. 6 we plot an example LPC envelope with order 16, along

with the smoothed histogram.

IV. STATE OF THE ARTMETHODS FOR DOA ESTIMATION

In order to compare our proposed method with other algo-

rithms, we implemented three well-studied methods, a WDO-

approach [23], a wideband implementation of MUSIC [2] and

the Independent Component Analysis-Generalised State Coher-

ence Transform (ICA-GSCT) algorithm [18]. The WDO-based

and the ICA-GSCT approaches were chosen since they origi-

nate from the BSS research field as does our proposed method,

therefore they are similar in philosophy. The MUSIC algorithm

is an extensively studied and tested algorithm for DOA estima-

tion of multiple sources, thus it is also a well suited algorithm for

comparative tests. We now provide a brief description of these

methods.

A. WDO-Based Approach

Considering the source signals as W-disjoint orthogonal, the

time-frequency representations of the signals are assumed to not

overlap. So, if and are the TF supports of the

signals and , according to the W-disjoint orthogo-

nality assumption [23]:

(17)

In that sense at each TF point, , at most one source is active

and we can apply the method described in Section III-C for all

. We then form a smoothed histogram of the estimates of

consecutive frames (see Section III-D) and we apply matching

pursuit (see Section III-E) to it the same way we did for the

proposed method.

B. Broadband MUSIC

The MUSIC algorithm was originally proposed as a localiza-

tion algorithm for narrowband signals. It is based on the covari-

ance matrix of the observations, . The sorted eigenvalues of

define the signal subspace, and the noise subspace,

and the DOAs of the sources are derived from the maxima of

the narrowband pseudospectrum:

(18)

where is the

steering vector, angle is in radians, is the frequency of

the narrowband signals and is the time difference of ar-

rival of a source emitting from DOA between the micro-

phone and a reference point. Among the various wideband ex-

tensions that have appeared in the literature, the most popular

one is comprised of estimating the narrow pseudospectrum at

each frequency component of the wideband signals and deriving

its wideband counterpart as the average over all frequencies [2]:

(19)

where is the number of frequency bins. Then, the DOA esti-

mation is performed by looking for maxima in the final

average pseudospectrum.

C. ICA-GSCT

The ICA-GSCT method can be divided into two main parts,

the estimation of the mixing matrices at each frequency compo-

nent and the extraction of the DOAs from the estimated mixing

matrices. For the first step in our implementation we have

used the Joint Approximate Diagonalization of Eigenmatrices

(JADE) method [35] which exploits the fourth-order cumulants

relying on the statistical independence of the sources. The code

is provided by the authors and can be found in [36], where as

input we provide the STFT of the observations of B consecutive

time frames. Given the mixing matrices, we then estimate the

GSCT [18] which is a multivariate likelihood measure between

the acoustic propagation model and the observed propagation

vectors, obtained by row-wise ratios between the elements of

each mixing matrix. The GSCT is given by:

(20)

where is the model vector of time differences of arrival

between adjacent microphones, is the error measure

between the model and the observation vectors and

is a non-linear monotonic function which decreases as the error

measure increases. The summation in (20) takes place over

all frequency components and ratios in all the columns of the
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TABLE I
COMPUTATIONAL COMPLEXITY

mixing matrices. For non-linear function , we use the

kernel-based one recommended by the authors of [18]

(21)

where is a resolution factor.

By associating each time delay vector, of the propagation

model to its corresponding DOA, we estimate the DOAs of

sources by looking for local maxima of the GSCT function.

D. Computational Complexity

In order to study the computational complexity of our pro-

posed method for DOA estimation and the above methods, we

estimated the total number of operations that each method per-

forms to derive a curve whose local maxima act as DOA in-

dicators. More specifically, we estimated the total number of

the following operations: for our proposed method and WDO,

to obtain the smoothed version of the histogram of the esti-

mates; for MUSIC, to estimate the average pseudospectrum;

and for ICA-GST, to estimate the GSCT-kernel density function

at each time instant. By the term “operation,” we refer to any

multiplication, addition or comparison, as many dedicated pro-

cessors—such as DSPs—only take one cycle for each of these

operations.

We present the results for a scenario with six sources in

Table I. Note that for the implementation of the methods we

used the same parameter values as the proposed method in

order to compare them fairly. The only change was the range of

frequencies of interest used for the ICA-GSCT, where instead

of using frequencies up to 4000 Hz, we were constrained in the

range 300–4000 Hz as recommended in [18], since ICA does

not behave well in terms of convergence for frequencies lower

than 200 Hz. Furthermore, the resolution factor for the kernel

density estimation was set to , which gave the best

results for the specific simulation set-up (for more details about

the parameters and their values see Section V, Table II).

Our proposed method clearly has the lowest computational

complexity. MUSIC requires almost one and a half times

as many operations, while WDO needs almost three times as

many operations. The complexity of ICA-GSCT is much higher

than all the other methods. These results were expected, since

WDO follows the same procedure as the proposed method,

but for all the frequency components whereas we work with

components in single-source zones only. On the other hand,

MUSIC performs eigenvalue decomposition for each frequency

component and averages the information from all frequency

components, contributing significantly to its high complexity.

However, we note that there are wideband MUSIC approaches

TABLE II
EXPERIMENTAL PARAMETERS

with significantly lower complexity than the one used in this

study (e.g., Section IV in [2]). These are mainly based on spher-

ical harmonics beampattern synthesis which is still an open

research problem for circular array topologies [37], [38], [39].

For frequency domain ICA-based methods, the estimation of

the demixing matrix at each frequency bin is a cost-demanding

operation. Furthermore the estimation of the GSCT function

requires averaging over all frequency bins, all sources and all

time frames in a block of estimates.

Note that the matching pursuit method applied to the

smoothed histogram, as well as the search for maxima in the

MUSIC average pseudospectrum and in the ICA-GSCT func-

tion, require an insignificant number of operations compared to

the overall complexity of the methods.

V. RESULTS AND DISCUSSION

We investigated the performance of our proposed method in

simulated and real environments. In both cases we used a uni-

form circular array placed in the centre of each environment.

All the parameters and their corresponding values can be found

in Table II, unless otherwise stated.

Since the radius of the circular array is , the

highest frequency of interest is set to Hz in order

to avoid spatial aliasing [21], [40]. Note that the final values

chosen for the source atom widths (i.e., and

) correspond to 40 and 80 respectively. However, due to

the shape of the Blackman window, the effective widths are

closer to 20 and 40 .

A. Simulated Environment

We conducted various simulations in a reverberant room

using speech recordings. We used the fast image-source method

(ISM) [41], [42] to simulate a room of meters, char-

acterized by reverberation time ms. The uniform

circular array was placed in the centre of the room, coinciding

with the origin of the and -axis. The speed of sound was

m/s. In each simulation the sound sources had equal

power and the signal-to-noise ratio at each microphone was
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Fig. 7. DOA estimation error vs SNR for pairs of simultaneously active
speakers in a simulated reverberant environment.

estimated as the ratio of the power of each source signal to the

power of the noise signal.

It must be noted that we simulated each orientation of sources

in 10 steps around the array in order to more accurately mea-

sure the performance all around the array.

The performance of our system was measured by the mean

absolute estimated error (MAEE)whichmeasures the difference

between the true DOA and the estimated DOA over all speakers,

all orientations and all the frames of the source signals, unless

otherwise stated.

(22)

where is the true DOA of the speaker in the

orientation around the array in the frame and is the

estimated DOA. is the total number of different orientations

of the speakers around the array, i.e., the speakers move in steps

of 10 in each simulation, which leads to different

runs. is the total number of frames after subtracting

frames of the initialization period. We remind the reader that

is the number of active speakers in the frame.

1) DOA Estimation: We present and discuss our results for

DOA estimation assuming known number of active sources. In

our first set of simulations we investigated the spatial resolu-

tion of our proposed method, i.e., how close two sources can be

in terms of angular distance while accurately estimating their

DOA. Fig. 7 shows the MAEE against SNR of additive white

Gaussian noise, for pairs of static, continuously active speakers

for angular separations from 180 down to 20 . The duration

of the speech signals was approximately three seconds. Our

method performswell formost separations, but the effective res-

olution with the chosen parameters is apparently around 30 .

In Fig. 8 we plot an example DOA estimation of four intermit-

tent speakers across time with the speakers at 60 , 105 , 165 ,

and 240 . Note that the estimation of each source is prolonged

for some period of time after he/she stops talking or respectively

is delayed when he/she starts talking. This is due to the fact that

the DOA estimation at each time instant is based on a block of

estimates of length seconds ( second in this example).

Fig. 8. Estimation of DOA of four intermittent speakers at 60 , 105 , 165 ,
and 240 in a simulated reverberant environment with 20 dB SNR and a one-
second block size. The gray-shaded area denotes an example “transition period.”

Fig. 9. DOA estimation error vs SNR for four intermittant speakers in a simu-
lated reverberant environment.

We refer to these periods as “transition periods,” which we de-

fine as the time interval starting when a new or existing speaker

starts or stops talking and ending seconds later. An example

of a transition period is also shown in Fig. 8 as the gray-shaded

area.

We demonstrate how the size of a block of estimates affects

the DOA estimation in Fig. 9. We plot the MAEE versus SNR

for the four intermittent speakers scenario for block sizes—also

referred to as history lengths—equal to 0.25 s, 0.5 s and 1 s.

The speakers were originally located at 0 , 45 , 105 and 180

and even though they were intermittent, there was a signifi-

cant part of the signals where all four speakers were active si-

multaneously. There is an obvious performance improvement

as the history length increases, as the algorithm has more data

to work with in the histogram. However increasing the his-

tory also increases the latency of the system, in turn decreasing

responsiveness.

Aiming to highlight the consistent behavior of our proposed

method no matter where the sources are located around the

array, in Fig. 10 we plot the absolute error as an average over

time, separately for each of six static, simultaneously active
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Fig. 10. DOA estimation error of six static sources versus the true DOA. Dif-
ferent markers correspond to different speakers.

speakers and each of 36 different orientations around the

array. For the first simulation the sources were located at 0 ,

60 , 105 , 180 , 250 , and 315 in a simulated reverberant

environment with 20 dB SNR and a one-second history. They

were shifted by 10 for each next simulation preserving their

angular separations. The duration of the speech signals was

approximately 10 seconds and, as already stated, the MAEE

was evaluated as the average absolute error in the estimation

over time. The MAEE is always below 3 for any positioning

of the sources around the array for all the sources.

We investigate the robustness to reverberation in Fig. 11,

which shows the MAEE versus SNR for three static, con-

tinuously active speakers originally located at 0 , 160 , and

240 for reverberation time ms. For

low reverberation conditions— ms—the proposed

method performs very well for all SNR conditions as was

expected and shown in the preceding results. For medium

reverberation with ms and source atom widths

and the MAEE is low for

high SNR but increases rapidly for lower signal-to-noise ratios.

However, by using wider pulses—i.e., and

—we can mitigate erroneous estimates due

to reverberation and keep the error lower than 10 for all SNR

values. For ms—which could characterize a highly

reverberant environment—the DOA estimation is effective for

SNR values above 5 dB, exhibiting an MAEE lower than 7 ,

when using and . Note that

increasing the source atomwidths improves theDOA estimation

accuracy, but also decreases the resolution of themethod.

In order to investigate the tracking potential of our proposed

method, we ran simulations that included moving sources. In

Fig. 12 one speaker is static at 90 and the other is moving clock-

wise. Both speakers were males. In Fig. 13 two male speakers

are moving in a circular fashion around the array. One of them is

moving anticlockwise while the other is moving clockwise. We

observe a consistent DOA estimation in both scenarios, even

though we do not use any source labeling techniques. This pre-

liminary simulation results, along with their real-environment

experiments counterparts, indicate that the proposed method

Fig. 11. DOA estimation error vs SNR for three static, continuously active
speakers in a simulated environment for ms.

Fig. 12. Estimated DOA of one static and one moving speaker around the cir-
cular array in a simulated reverberant environment at 20 dB SNR.

could be extended to a multiple source tracking method. The

slight shift of the estimations to the right of the true DOA is due

to the one-second history length. Anomalies in the DOA estima-

tion are mainly present around the crossing points, which was

expected, since the effective resolution of the proposed method

is around 30 (see also Fig. 7).

2) Comparison With Alternative Methods: We also com-

pared the performance of the proposed method against WDO,

MUSIC, and ICA-GSCT (see Section IV). The performance

of the methods was evaluated by using the MAEE over those

estimates where the absolute error was found to be lower than

10 —where an estimate is considered to be successful. Along

with the MAEE, we provide “success scores,” i.e., percent-

ages of estimates where the absolute error was lower than

10 (Table III to be discussed later). Since the error was very

high for plenty of estimates especially at lower SNR values

for some of the methods, the MAEE over all estimates was

considerably affected, not allowing us to have a clear image of

the performance. Furthermore, in a real system, a stable consis-

tent behavior—which is reflected in the “success scores”— is
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Fig. 13. Estimated DOA of two moving speakers around the circular array in
a simulated reverberant environment at 20 dB SNR.

TABLE III
DOA ESTIMATION SUCCESS SCORES

equally important as accuracy and computational complexity.

We note that a similar method of performance evaluation was

adopted in [21]. In Fig. 14 we plot the MAEE versus the SNR

for six static, continuously active speakers, originally located at

0 , 60 , 105 , 180 , 250 , and 315 in a simulated reverberant

environment with a one-second block size. The simulation was

performed for each orientation of sources in 10 steps around

the array. All four methods exhibit very good results, with

an increasing performance from lower to higher SNR values.

Even though the differences are small between the methods, we

note that the proposed one exhibits the lowest MAEE for SNR

values below 15 dB (and the highest success scores, shown in

Table III to be discussed later).

Since the accuracy of the estimation of the demixing matrices

(and consequently of the corresponding mixing matrices) for

ICA-GSCT at each frequency bin depends on the sufficiency of

the observed data—i.e., the block size—we ran the preceding

simulation scenario using mixing matrices obtained with the

Recursively Regularized ICA (RR-ICA) algorithm [43]. The

RR-ICA algorithm exploits the consistency of demixing ma-

trices across frequencies and the continuity of the time activity

of the sources and recursively regularizes ICA. In this way,

it provides improved estimates of the demixing matrices even

when a short amount of data is used. We note that the code for

RR-ICA is provided by the authors of [43] and can be found

in [44]. The maximum number of ICA iterations was set to 20

and the natural gradient step-size to 0.1. The maximum order

of the least mean square (LMS) filter was set to 10 and the cor-

responding step size to 0.01. These values gave the best results

among various parametrizations and are in the range of values

Fig. 14. DOA estimation error vs SNR for six static speakers in a simulated
reverberant environment.

Fig. 15. DOA estimation error vs SNR for six static speakers in a simulated
reverberant environment.

recommended in [43]. In Fig. 15 we compare the performance of

ICA-GSCT using these two different methods for the estimation

of the mixing matrices, i.e., the JADE algorithm and RR-ICA

method. We observe that both methods exhibit good and sim-

ilar results for all SNR values. We note that RR-ICA performs

slightly better for SNR higher than 5 dB as was expected but

did not provide a significant improvement compared to JADE

for our particular simulation scenario.

In Table III we provide success scores (percentages of

frames with absolute error ) for the proposed and all

aforementioned methods. We observe that for an SNR of

20 dB, all methods successfully estimate the DOAs for more

than 90% out of a total amount of approximately 83,000 esti-

mates. Specifically, the proposed method along with WDO and

MUSIC almost achieve score of 100%, with the proposed one

being much more efficient in terms of complexity. When the

SNR gets lower, the performance of the methods deteriorates,

which can also be observed in Figs. 14 and 15. However, our

proposed method’s score is higher than the other methods for

SNR values below 15 dB.
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TABLE IV
CONFUSION MATRIX FOR THEMP PROPOSED SOURCE COUNTING METHOD

TABLE V
SOURCE COUNTING SUCCESS RATES EXCLUDING TRANSITION PERIODS

3) Source Counting Results: In order to evaluate our

matching pursuit-based (MP) source counting method (see

Section III-E), we provide source counting results for simula-

tion scenarios ranging from one to six static, simultaneously

active sound sources in a reverberant environment with an

SNR of 20 dB. In these six simulation scenarios, the smallest

angular distance between sound sources was 45 and the

highest was 180 while the sources were active for approxi-

mately 10 seconds, leading to roughly 14,000 source number

estimations for each scenario. The thresholds vector was set

to and the

minimum offset between neighboring located sources was set

to . We present these results in terms of a confusion

matrix in Table IV where the rows correspond to true numbers

of sources and the columns correspond to the estimated ones.

The method correctly estimates the number of sources more

than 87% of the time for all the cases. Overall the method

presents very good performance with a mean percentage of

success equal to 93.52%.

We compared our MP proposed source counting method

with our additional proposed source counting methods (see

Sections III-E and III-F) and the minimum description length

(MDL) information criterion [45] under the four intermittent

speakers scenario, an example of which can be seen in Fig. 8.

For the Peak Search method (PS),

and the LPC order used was 16. The thresholds for the MP

were . The minimum offset between

neighboring located sources was set to and was

common for all these histogram-based methods. The MDL

was estimated in the frequency domain from the STFT of the

observations in blocks of B frames. In Table V we give success

rates of the source counting (percentage of frames correctly

Fig. 16. DOA estimation error for two speakers separated by 45 versus the
true DOA in a real environment. Each different marker corresponds to a different
speaker.

counting the number of sources) for the four methods under

consideration with various history lengths and differing values

of SNR. The success rates were again calculated over all orien-

tations of the sources in 10 steps around the array (preserving

the angular separations) while the transition periods were not

taken into account.

We can observe similar behavior as in Fig. 9. Longer history

length leads to increased success rates for all four methods, af-

fecting however, the responsiveness of the system. The MDL

method is severely affected by noise and the amount of avail-

able data. While it achieves a high percentage of success for

one-second history length and 20 dB SNR, this percentage falls

dramatically as the history length is reduced and most obviously

as the SNR becomes lower. For SNRs equal to 0 and 5 dB the

criterion fails completely since it always responds as if there are

no active sources. The matching pursuit method is clearly the

best performing source counting method. Moreover, matching

pursuit can be used in a single step both for the DOA estimation

and the source counting (as explained in Section III-E), resulting

in computational efficiency.

B. Real Environment

We conducted experiments in a typical office room with

approximately the same dimensions and placement of the

microphone array as in the simulations and with reverberation

time approximately equal to 400 ms. The algorithm was imple-

mented in software executed on a standard PC (Intel 2.40 GHz

Core 2 CPU, 2 GB RAM). We used eight Shure SM93 micro-

phones (omnidirectional) with a TASCAM US2000 8-channel

USB soundcard. We measured the execution time and found it

to be 55% real time (i.e., 55% of the available processing time).

In the following results, some percentage of the estimated error

can be attributed to the inaccuracy of the source positions.

We demonstrate the performance of our system for two simul-

taneously active male speakers in Fig. 16. The speakers were

separated by 45 and they moved 10 in each experiment in

order to test the performance all around the array. The duration

of each experiment was approximately six seconds. The signal
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Fig. 17. Estimated DOA of 3 static speakers in a real environment.

Fig. 18. Estimated DOA of six static speakers in a real environment.

to noise ratio in the room was, on average, 15 dB. We plot the

MAEE versus each different DOA, where the MAEE is evalu-

ated as the mean absolute error in the estimation over time. The

mean absolute error is lower that 2.5 for every positioning of

the speakers around the array (among 36 different orientations)

while for about half of the orientations, the MAEE is below 1

for both speakers.

The next experiment involved three speakers sitting around

the microphone array at 0 , 160 , and 240 . The speakers at

0 and 240 were males, while the speaker at 160 was fe-

male. The signal to noise ratio in the room was also around

15 dB. In Fig. 17 we plot the estimated DOA in time. All three

speakers are accurately located through the whole duration of

the experiment.

In Fig. 18 we plot the estimated DOAs of six static speakers

versus time. This experiment is the only one that involved loud-

speakers instead of actual speakers. We used six Genelec 8050

loudspeakers that reproduced pre-recorded audio files of six

continuously active, actual speakers, three males and three fe-

males positioned alternately. The loudspeakers were approxi-

mately located at 0 , 60 , 105 , 180 , 250 , and 315 at a dis-

tance of 1.5 meters from the centre of the array. The signal to

Fig. 19. Estimated DOA of one static speaker and one moving speaker around
the circular array in a real environment.

Fig. 20. Estimated DOA of two moving speakers around the circular array in
a real environment.

noise ratio in the room was estimated at 25 dB. The DOA of all

six sources is in general accurately estimated. The DOA estima-

tion of the second speaker deviates slightly from the true DOA

for some periods of time (e.g., around the sixth second of the

experiment). This might be attributed to a lower energy of the

signal of the particular speaker over these periods in comparison

to the other speakers.

We also conducted experiments with moving sources. The

scenarios followed the simulations (see Figs. 12 and 13). For

these experiments, the signal to noise ratio in the room was, on

average, 20 dB. We plot the DOA estimation in Figs. 19 and 20.

The DOA estimation is in general effective except for the areas

around the crossing points. Nevertheless, as we stated for the

corresponding simulations, our method shows the potential of

localizing moving sources that cross each other.

VI. CONCLUSION

In this work, we presented a method for jointly counting

the number of active sound sources and estimating their

corresponding DOAs. Our method is based on the sparse

representation of the observation signals in the TF-domain
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with relaxed sparsity constraints. This fact—in combination

with the matching pursuit-based technique that we apply to

a histogram of a block of DOA estimations—improves accu-

racy and robustness in adverse environments. We performed

extensive simulations and real environment experiments for

various numbers of sources and separations, and in a wide

range of SNR conditions. In our tests, our method was shown

to outperform other localization and source counting methods,

both in accuracy and in computational complexity. Our pro-

posed method is suitable for real-time applications, requiring

only 55% of the available processing time of a standard PC.

We implemented our method using a uniform circular array of

microphones, in order to overcome the ambiguity constraints

of linear topologies. However, the philosophy of the method is

suitable for any microphone array topology.
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