
HAL Id: hal-03343238
https://hal.archives-ouvertes.fr/hal-03343238v2

Submitted on 7 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Real Time Multiscale Rendering of Dense Dynamic
Stackings

Elie Michel, Tamy Boubekeur

To cite this version:
Elie Michel, Tamy Boubekeur. Real Time Multiscale Rendering of Dense Dynamic Stackings. Com-
puter Graphics Forum, Wiley, 2020, 39 (7), pp.169-179. �10.1111/cgf.14135�. �hal-03343238v2�

https://hal.archives-ouvertes.fr/hal-03343238v2
https://hal.archives-ouvertes.fr

Authors’ draft Final version published in CGF Volume 39 (2020), Number 7,

Real Time Multiscale Rendering of Dense Dynamic Stackings

Élie Michel1 and Tamy Boubekeur2,1

1LTCI, Télécom Paris, Institut Polytechnique de Paris
2Adobe

Figure 1: Our level-of-detail method exploits quasi-spherical impostors to render, in real time, fully dynamic stackings made of millions of
similar objects, with variable materials and orientations, while seamlessly integrating into deferred shading.

Abstract
Dense dynamic aggregates of similar elements are frequent in natural phenomena and challenging to render under full real
time constraints. The optimal representation to render them changes drastically depending on the distance at which they are
observed, ranging from sets of detailed textured meshes for near views to point clouds for distant ones. Our multiscale represen-
tation use impostors to achieve the mid-range transition from mesh-based to point-based scales. To ensure a visual continuum,
the impostor model should match as closely as possible the mesh on one side, and reduce to a single pixel response that equals
point rendering on the other. In this paper, we propose a model based on rich spherical impostors, able to combine precomputed
as well as dynamic procedural data, and offering seamless transitions from close instanced meshes to distant points. Our ap-
proach is architectured around an on-the-fly discrimination mechanism and intensively exploits the rough spherical geometry
of the impostor proxy. In particular, we propose a new sampling mechanism to reconstruct novel views from the precomputed
ones, together with a new conservative occlusion culling method, coupled with a two-pass rendering pipeline leveraging early-Z
rejection. As a result, our system scales well and is even able to render sand, while supporting completely dynamic stackings.

CCS Concepts
• Computing methodologies → Rasterization; Visibility;

1. Introduction

Fruits in a market-place, coffee beans in a roaster or bolts at
the hardware store are typical examples of stackings found in
3D scenes. They challenge level-of-details (LoD) mechanisms to
achieve both high speed rendering and detail preservation. At each
extremity of the LoD chain, existing methods are well covered
by the literature. Closer views are better handled using a mesh-
based model that can be progressively simplified [Hop96] while
further views leverage point-based rendering [GP07]. But none of
these models fits well the transition phase, when stacked elements

– which we call grains in the reminder of this paper – cover tens to
hundreds of pixels. Under this regime, mesh-based simplification
makes whole elements vanish when pushed too far, while point-
based rendering lacks high frequency details that should still be
clearly visible.

Indeed, the self-similarity of the stacking naturally leads to per-
grain impostors for this transition scale. When the number of vis-
ible grains is very large compared to the number of possible view
angles, it becomes worth precomputing a few views and then, at
runtime, picking for each grain the closest one. There are two ways

https://orcid.org/0000-0002-2147-3427
https://orcid.org/0000-0001-5985-0921

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

to describe an impostor, either as a projection of the geometry of a
grain or as a rich splat. The former relates to mesh-based models
while the latter relates it to point-based graphics, which suggests
this is a good candidate as a transition model.

Impostors come with their own limitations e.g., memory con-
sumption, hardware support or overdraw, that we propose to over-
come making three assumptions that stem from the typical proper-
ties of stacked grains:

• quasi-spherical shape: the grain’s surface is bounded between
two co-centered spheres, namely an inner sphere of radius r and
an outer sphere of radius R; the closer these radii, the more effi-
cient our approach is,
• moderate shape diversity: all grains share the same (or only a

few) silhouette, which prevents memory consumption and im-
proves caching,
• density: occlusion culling becomes more impactful as density

increases, even if approximate, as long as grains don’t intersect
each others.

Fortunately, the loss of generality induced by these hypothe-
ses is in practice largely mitigated as noticed by [MWM07] and
[MPH*15]. The diversity of shape can be masked by arbitrary
scale/rotation of each grain together with procedural variations of
its material attribute maps. Our approach is oblivious to the grain
material model: in practice, we exemplify our method on standard
microfacet models rendered using deferred shading. Moreover, re-
laxing the quasi-spherical or density hypothesis only leads to pro-
gressively degraded performances, but not to any gap in visual ap-
pearance. Based on these assumptions, we make the following con-
tributions:

• a real time splitting process of the input grain set into per-
scale/drawing model buffers, leveraging an analysis of when to
split (Section 6) and how to do it (Section 7),
• a sampling scheme for the impostors suited to our quasi-

spherical proxy (Section 5) and improving their visual appear-
ance w.r.t. ground truth,
• a novel occlusion culling mechanism tailored for dense stack-

ings of quasi-spherical objects (Section 8), that helps alleviating
rendering prior to determining the exact grain shape,
• an efficient rendering pipeline for a cloud of many impostors

based on early-Z rejection (Section 9) – a hardware mechanism
not natively suitable for impostors, whose actual shape remains
unknown up to the sampling of their maps.

As a result, our approach is versatile enough to model various use
cases and scales well up to extreme amounts of grains such as in
sand rendering.

2. Related works and background

Level-of-Detail LoD methods intend to generate simplified ver-
sions of a complex object that are visually equivalent at a given
distance while computationally lighter. Surfacic mesh simplifica-
tion methods, either based on repeated contractions of edges guided
by some cost function [HDD*93; Hop96; GH97] or by spatial clus-
tering [RB93], have become standard LoD methods and can even
be applied to very large meshes [Lin00]. However, as pointed out

by Cook et al. [CHPR07], such methods fail when the geometry is
an aggregation of already simple elements, which vanish if simpli-
fied further – such as our grains. We can simplify the geometry of
the grain itself, but not beyond.

Volumetric models also have their LoD mechanisms. On voxel-
based models, the SGGX distribution [HDCD15] and follow ups
[ZWDR16; LN18] have enabled techniques for downsampling a
volume without altering its visual appearance. Hierarchical struc-
tures can be used to organize data in a tree whose traversal is dy-
namically adapted to the view point, either with voxels [CNLE09;
KSA13] or with points [RL00; GM05]. Most of these techniques
assume static geometry though. All these LoD methods are de-
signed for a single class of model. Sequential point trees [DVS03]
are an interesting evolution of QSplat [RL00] using an hybrid
model, but it makes the same assumption that the point cloud
is static. The inter-model transition was recently successfully
addressed in the surface-to-volumetric context by Loubet et al.
[LN17]. Their setting is more general than ours but designed for
off-line rendering and not tacking advantage – because not assum-
ing – of self-similarity.

In this paper, we focus on dynamic element positions. This pre-
vents us from using techniques that precompute clusters of ge-
ometry to merge, like Occluder Fusion [WWS00] or CellVIEW
[LAPV15]. The latter is a case of molecular visualization, which
generally involves LoD of dense aggregates of spheres that moti-
vated dedicated research, as surveyed by Miao et al. [MKK*19].
Although such visualization techniques deal with static perfect
spheres, usually uniformly colored, setting them aside from many
issues we intend to tackle here, they need to handle very large
amounts of atoms for which they develop inspiring advanced draw-
ing strategies.

Impostors One of the most extreme simplification consists in us-
ing billboards. A billboard, or planar impostor, is made of one sin-
gle plane, and its whole appearance is encapsulated in (the maps
of) its material, with its perceived shape being expressed by its sil-
houette, reproduced using transparency. The extreme simplicity of
a billboard’s geometry allows to invest more resources in shading,
with its associated material containing information about the nor-
mal field of the original geometry, and even the depth component
leveraged by relief mapping techniques [POC05].

The limits of a single billboard are quickly reached, usually be-
cause of the limited range of directions for which it is valid, but
they are at the root of many lightweight approximation models in
computer graphics. Aggregated billboards are often called multi-
view impostors since they address the view dependency of planar
billboards. Maciel and Shirley [MS95] build a LoD hierarchy in
which billboards are precomputed for some key directions. Bill-
board clouds [DDSD02] extract several billboards using a Hough
transform to approximate a high definition mesh model. A typical
use case of billboards, and hence multi-view impostors, is tree ren-
dering, like Meyer et al. [MN00] and more recently Bruneton et
al [BN12] whose method is related to ours, though their model re-
mains surfacic at all scales and they use impostor for the different
goal of accounting for foliage’s semi-transparency.

Todt et al. [TRKK07] provide a good overview of the possi-

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

Figure 2: Anatomy of a dense stacking rendering sequence. A first step splits the stacking into several element arrays used to feed subsequent
draw calls (Section 7), also applying culling to early discard hidden points (Section 8). Impostors are drawn in two passes (Section 9).
Point-based drawing typically discard all points beyond a limit distance. Our contributions concern steps 1© and 3© .

ble parametrizations of a spherical impostor, however they focus
on a different use case where a single complex model is rendered,
leading them to different design choices. In particular, their selec-
tion of precomputed directions, and advanced compression, projec-
tions and intersection refinement schemes, while saving memory,
quickly becomes too prohibitive to apply for each grain in our sce-
nario. Some of these limitations are addressed by Brucks [Bru18]
who, similarly to our approach, also make the impostors dynami-
cally relightable by storing maps that represent the attribute field
(like the G-Buffer) rather than a static grain light field. However,
Brucks renders order of magnitude less impostors than in our use
case, so they can still afford storing depth maps and computing
relief mapping. Since they use it for trees, they also deal with sig-
nificantly smaller inter-impostor occlusion.

Filtering Filtering attribute-encoding images, as mandatory with
mipmapping, is not trivial for attribute with non-linear response,
such as normal and roughness maps. This issue has been addressed
by Tan et al. [TLQ*08], LEAN mapping [OB10] and then LEADR
mapping [DHI*13], which are compatible with our method. More
recent works even try to adapt the concept of mip-maps to the
BSDF itself rather than to its attribute maps [XWZB17].

Granular materials For off-line rendering, representing granular
media has been the subject of specialized models that rely on sim-
ilar hypotheses about the rendered scene. Moon et al. [MWM07]
propose a method called Shell Tracing, using light paths whose
precision depends on their depth within the sand volume. Meng
et al. [MPH*15] developed a multiscale volumetric path tracing
method designed for production pipelines, later extended by Muller
et al. [MPG*16] to dynamic scenes. Unfortunately, these methods
are deeply grounded in the offline rendering world. For instance
Muller’s GSDF are precomputed for a random orientation of the
grain, building upon core ideas of Monte Carlo path tracing which
we precisely cannot leverage in forward real time rendering. To the
best of our knowledge, little work has been carried out on the spe-
cific task of rendering dense dynamic stackings e.g., sand, in real
time.

3. Pipeline overview

Figure 2 describes the sequence of draw events involved in render-
ing our aggregate of grains. The splitting step 1© orchestrates ren-
dering by routing each grain toward one model or another depend-
ing on its location. It discards some of them based on an occlusion
map which is also further reused at step 3© to speed up drawing.
Additionally, it early rejects grains out of the view frustum. Models

Figure 3: A spherical impostor is a set of concentric planar impos-
tors Ii precomputed for different directions ωi, as well as an inner
radius r and outer radius R. At render time, we use only the most
relevant ones. They can be sampled as planes (bottom left) or as
hemispheres (bottom right), or using our mixed sampling scheme
(Section 5).

for close 2© , mid 3© and far 4© grains are then rendered individ-
ually using the element buffers resulting from the splitting. We re-
call that, as a general rule of thumb, modern hardware-accelerated
rasterization pipelines require closer elements to be rendered first
to limit unnecessary fragment processing. Steps 2© and 4© are
the two models that we intend to bridge, respectively mesh-based
and point-based, so we focus on the splitting process 1© , which
involves when (Section 6) and how (Section 7) to split the input
point cloud, as well as on the impostor rendering 3© .

4. Impostors for dense stackings

Our mid-scale representation of the stacking is a cloud of impos-
tors. The concept of spherical impostor is not new per se, but it can
come with many flavors so we discuss which one is the best suited
for real-time rendering of dense aggregates.

4.1. General rendering pipeline

We base our work on a spherical impostor model made of co-
centered planar impostors facing different directions. Prior to ren-

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

dering, the impostors are precomputed and then at render time, the
only planes to be sampled are those whose normal vector is close
enough to the view direction (Figure 3).

Precomputation The impostor depends on the set of N view direc-
tions (ωi)i=1...N for which the grain’s response is precomputed. For
each view index i, a p× p sprite of the grain is rendered from a view
point in direction ωi, storing for each pixel the material attributes
(albedo, roughness, normal, etc) through an atlas of maps (Ii)i=1...N
where Ii is the response at different positions of the sphere in direc-
tion ωi.

Runtime In order to reduce as much as possible the geometric
footprint of the impostors, we use simple sprites, e.g. OpenGL’s
GL_POINTS, as our drawing primitive. The sprite size is computed
in the vertex shader to ensure that it covers the whole outer sphere
of the grain. When drawing the impostor, we fetch the object’s ap-
pearance attributes at a given point in a given direction. The main
steps of impostor sampling are (i) to seek for the indices of the
appropriate precomputed views (planar impostors) given the ori-
entation and position of the grain in camera space, (ii) to sample
the right texel from the impostor maps and (iii) to interpolate the
responses of different planes. The interpolation weights ensure the
visual continuity by progressively fading out the contribution of a
plane when the view point changes. In the design of such a sam-
pling, two choices can have a major impact : the parametrization,
and the definition, i.e. the density of the sampling. The latter is
discussed in Section 6 when analyzing the bias introduced by the
impostors.

4.2. Parametrization

In order to still benefit from hardware texture filtering (mipmaps),
especially to reduce aliasing when grains become very small on
screen, we use the parametrization that Todt et al. [TRKK07] calls
Sphere-Plane. When sampling the atlas of precomputed views, the
view index represents a direction and the texel coordinate a posi-
tion offset, not the other way around. In practice, this means that
precomputed views are rendered using orthographic cameras.

There remains to decide on the directions to precompute. The list
(ωi) of such directions must verify:

• coverage: there must always be a billboard close enough to the
viewing direction among the precomputed atlas,
• compactness: each precomputed view has a video memory foot-

print which must be small especially if there are many different
types of grain,
• speed: to sample a given viewing direction, we need to effi-

ciently determine the index of the closest view in (ωi).

Coverage and compactness suggest an as regular as possible
sampling of the unit sphere such as the distribution of Fibonnacci
points [KISS15] or a statically optimized mesh [TRKK07]. But
speed is crucial in our scenario so we opt for a distribution based
on a subdivided octahedron (see Figure 4) as in [Bru18]. Not only
finding the index i of the closest view in this distribution is done in
O(1) with a little constant, but moreover it is easy to get the four
closest views with their coefficients, which is important for inter-
polation.

Figure 4: We precompute view directions using vertices of a subdi-
vided octahedron (the L1 sphere) since mapping them to integer in-
dices is computationally efficient; here with n = 8 vertices by edge
boils down to N = 128 views.

At runtime, we compute the sampled directions at the extent of
a whole grain, and not once for each fragment i.e., we assume that
camera rays are almost parallel for each fragments covered by a
grain. Though this is inexact in general, it does not introduce strong
distortion for grains whose extent on screen is limited to 100 pixels
– our use case – and provides a significant speed-up.

void DirectionToViewIndices(
vec3 d, uint n, out uvec4 i, out vec2 alpha

) {
d = d / dot(vec3(1,1,1), abs(d));
vec2 uv =

(vec2(1, -1) * d.y + d.x + 1) * (n - 1) ←↩
/ 2;

uvec2 fuv = uvec2(floor(uv)) * uvec2(n, 1);
uvec2 cuv = uvec2(ceil(uv)) * uvec2(n, 1);
i.x = fuv.x + fuv.y;
i.y = cuv.x + fuv.y;
i.z = fuv.x + cuv.y;
i.w = cuv.x + cuv.y;
if (d.z > 0) {

i += n * n;
}
alpha = fract(uv);

}

Listing 1: Return in i the indices of the four closest precomputed
views to the sampling direction d, assuming that the number
of precomputed views is N = 2n2, and in α the coefficients for
interpolating between respectively (i0, i2)↔ (i1, i3) and (i0, i1)↔
(i2, i3). Note that instead of using the total number of views N, our
procedure handles the number n of subdivisions along the edge of
the octahedron.

In practice, one can refer to the Listing 1 for a GLSL imple-
mentation (more listings can be found in supplemental material).
The input direction d is normalized using the L1 norm L1(d) =
|dx|+ |dy|+ |dz| and then converted to integer indices.

Note that in the atlas of a rich impostor, an index stores multiple
maps, for the multiple attributes of the G-buffer. But they all con-
ceptually share the same alpha transparency. Special care must be

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

taken to account for alpha premultiplication when computing the
mipmaps.

5. Sampling quasi-spherical impostors

Once a precomputed map Ii has been selected for sampling, dif-
ferent strategies may be adopted to decide which texel to read. We
propose a sampling scheme that improves the visual appearance of
under-defined impostors while remaining lightweight.

The most common choice is to assume that the the view direction
is perfectly aligned with precomputed direction ωi and compute
the offset using intersection of the camera ray with the precom-
puted view plane. We call this planar sampling (Figure 3, bottom
left) and note P the texel it selects. In practice the camera and pre-
computed directions are not always well aligned, because we can
store only a limited number of views. This results in ghosting ar-
tifacts, which particularly impact sharp visual features (Figure 12)
and stems from the distance between the plane and the actual ge-
ometry of the grain.

A second strategy consists in computing the intersection of the
camera ray with an spherical proxy and then project this point along
the precomputed view direction onto the precomputed plane (Fig-
ure 3, bottom right). This spherical sampling gives another texel S.
When using the average of r and R as radius of the sphere proxy,
this greatly reduces ghosting, but cuts out parts of the object.

Therefore, we introduce a mixed sampling for quasi-spherical
proxies. More precisely, we combine P and S depending on the
relative distance d of the grain center to the camera ray normalized
by the sphere’s radius:

M =
d
R

P+(1− d
R
)S

This sampling succeeds at combining the benefits of both pla-
nar and spherical samplings, namely preserving silhouettes and
sharp visual features. For a fixed memory budget and visual loss,
this translates into more grains rendered as impostors and less as
meshes, improving the overall performances.

6. Impostors’ validity range

We are not simply looking for a model that works at a given mid-
scale, we also need to be able to smoothly transition from one
model to another. In order to identify view conditions under which
both mesh-based and impostor-based rending match, enabling us
to substitute them, we must be able to quantify the range of va-
lidity of the impostor. This range of validity depends on the p× p
amounts of spatial samples per view and the number N = 2n2 of
views precomputed for a mapping based on an octahedron with n
subdivisions.

At the limit mesh-impostor distance L, the apparent grain diam-
eter in pixels must match the size of the precomputed view, which
gives us p proportional to R/L. The proportionality factor depends
on the camera field of view and the screen resolution (see supple-
mental material for details). So from now on we assume that p is
known and seek for N.

To do so, we need to know the maximum angle θ between a

A A
B B

A' B' Impostor

C

C'
1

2

A

A'

Figure 5: A simple planar impostor replaces original geometry
(left) with a plane (middle). At baking time 1© attributes are pro-
jected, then used at render time 2© . This is valid up to a limit value
of θ (right).

planar impostor’s normal and the view direction for the impostor to
return the right value. With the notations of Figure 5, we look for
the limit view angle beyond which A’C’ exceeds the world space
size t = R/p of a texel, i.e. beyond which our model will sample
the wrong texel. This constraint writes as follows:

A′C′ ≤ t (1)

On another hand, the maximum distance between a point on the
true surface of the grain and its projection onto the impostor is the
outer radius R:

CC′ ≤ R (2)

This can be written using the angle θ between the impostor’s nor-
mal and the view direction:

A′C′ ≤ R

√
1

cos2 θ
−1 (3)

To verify inequality (1), we can therefore look for:

R

√
1

cos2 θ
−1≤ R/p =⇒ |θ| ≤ arccos

√
1

1+1/p2 (4)

So each precomputed view is valid in a cone of angle
2arccos

√
1

1+1/p2 . This value has to be compared with the maxi-
mum angle between two neighbor points of the octahedron. Fig-
ure 6 shows the evolution of this angle depending on the angular

Figure 6: Mean angle error for different trade-offs of the two pa-
rameters n (subdivisions of the octahedron) and p (pixels per side)
of a spherical impostor. Grey lines are iso-weight i.e., two dots on
the same line correspond to impostors occupying the same amount
of video memory. See supplemental material for exhaustive data.

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

definition n and spatial definition p. More detailed tables can be
found in supplemental material. In practice, we use less views than
the theoretical threshold since our mixed sampling scheme (Sec-
tion 5) largely helps reducing artifacts for under-resolved impos-
tors.

7. Model discrimination

Now that we know the range of validity of the impostor, we can dy-
namically discriminate the grain cloud into three subparts, namely
the grains rendered using mesh instances, those rendered as impos-
tors and the further ones rendered as points. We assume that all
models are compatible with indexed rendering, which means that
rather than when rendering K points, an element buffer of K indices
can be provided to tell which grains to render.

The splitting process consists in building those elements buffers
from the array of all stacked elements. The number of elements
being by hypothesis very large, it is not possible to pay for the
round trip to the CPU, hence we perform this splitting entirely on
the GPU, in compute shaders. It is also not even possible to sort the
whole buffer by the distance of the grains to the view point.

Even if the splitting apparently distinguishes between only three
models, it is more convenient to see it as operating on an arbitrary
m number of models because next sections will add an extra state
for culled points (Section 8) and then split the impostors into two
arrays for more efficient rendering (Section 9).

Figure 7: Grain splitting. Given the position of the grains, we first
render a map of the most likely occluder grains and then distin-
guishes which model to use for each grain, building contiguous
element buffers for each subsequent draw call. Impostor render-
ing requires two element buffers to render occluder candidates first
(Section 9).

We assume that we have a function uint getRender-

Model(uint element) that returns for an element index the
index from 0 to m− 1 of the model that must be used to draw it.
This basically fetches the position buffer to check the distance to
the grain against the thresholds, and will later on include culling.
The output element arrays are written next to each other in a buffer
allocated with the same size as the input element array. Besides this
output, the methods returns a list of m offsets within the buffer to
tell at which index each element array starts (Figure 7).

Global atomic splitting We adopt a simple and effective method
made of two steps. First, we atomically count the number of el-
ements per model, in order to determine the output offsets. In a
second step, we insert element indices in the output using for each
model a second counter besides the offset to keep track of where
is the next available index. This counter is atomically incremented
each time an element is written. This process requires calling ge-
tRenderModel twice for each grain. Although this function gets
more complex when culling is added, caching its output between
the first and the second steps saves only a few tenths of millisecond
on a stacking of 1.6M elements which is not worth the overhead
of allocating a cache buffer. Once the element buffers are ready,
the offsets can be used to build a command buffer adapted to each
model in a simple compute buffer.

Scalability At this point, we have a pipeline able to render stack-
ings of which grains can smoothly turn from meshes to points. But,
as we intend to draw a large number of grains, we need to improve
the scalability of the pipeline. Indeed, the use of impostors make
the fragment processing even heavier than it usually tends to be in
modern engines, so in the next sections we make use of the relative
density of the stacking to (i) reduce the number of points emitting
fragments (Section 8) and (ii) reduce the number of emitted frag-
ments that reach the fragment shader (Section 9).

8. Occlusion Culling

In a dense stacking, a large proportion of the elements is totally in-
visible. We propose in this section a novel occlusion culling that is
conservative i.e. it does not cull visible objects, and based on the
quasi-spherical proxy assumption. The occluder map it computes
is further reused to improve per-fragment occlusion culling (Sec-
tion 9).

Occlusion culling operates before the actual shape of grains is
known, but can use the quasi-spherical proxy to early detect occlu-
sions. If the inner sphere of a grain totally hides the outer sphere of
another one, then no matter their actual shapes the second one will
never be visible and can hence be safely culled out. As illustrated in
Figure 8, the inner sphere of a grain close to the view point creates a
cone of occluded positions (dashed lines). This cone is eroded with
the outer sphere to give a set of grain centers that can be culled
(occlusion cone). Yet, it is far too expensive to test every pair of
grains for occlusion. And while in theory this could be executed
using hardware occlusion queries [Sek04], with the inner sphere
being the occluder and the outer sphere the proxy, it is not practical
as it would require to render grains sequentially.

Occluder map Instead, we test each grain – the occludee – against
exactly one other grain that we chose carefully – the occluder can-

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

R
r
R

occlusion
cone

α
C

E

G

G

G

Figure 8: Since a grain is bounded by two spheres of radius r and
R, when the center of a grain G1 lies in the occlusion cone, it is fully
occluded by G0. On the contrary, the grain G2 might not be totally
hidden and cannot culled out.

didate. A grain can hide another one if it is at the same time closer
to the view point, and projects around the same pixel on screen.
So, prior to the occlusion test, we render the whole point cloud a
first time. The z-test ensures that we keep the closest grain for each
pixel i.e. the most likely to hide other grains. At this stage, no at-
tribute fetching or computation is executed, instead the framebuffer
is filled with the occluder candidate parameters – one occluder per
pixel. These parameters are the position and radius of the occluder’s
inner sphere, fitting in a standard four-component color attachment.

To fill this occluder map, one must compute the point sizes:
drawing points of exactly one pixel each would mean that the oc-
cluder candidate of a point is always the grain that projects on the
same pixel but is closer to the camera. This has perfect chances
of picking the right occluder candidate when it finds one, but will
most of the time not find any other occluder candidate than the
grain itself. On the other side, drawing the points using their inner
radius is not the best choice either, because it will too often suggest
an occluder candidate that is actually not occluding the point. Our
trade-off is to render points large enough for all pixels to be cov-
ered by a few fragments while remaining as small as possible. In
practice, for as dense as possible stackings viewed at distance for
which impostors are used, we found experimentally that optimal
values are located between 0.15 to 0.20 times the inner radius r.

Splitting Once this occluder map has been generated, the discrim-
ination function getRenderModel in the splitting shader com-
putes the screen pixel onto which a grain’s center gets projected,
and samples the occluder map at this coordinate. This gives the pa-
rameters of an occluder to test the current point against using the
procedure detailed in Listing 2. If the point is inside the occlusion
cone, the function returns an index corresponding to no model.

bool IsOccluded(vec3 g1, mat4 proj, sampler2D ←↩
occMap){

vec4 clip = proj * vec4(g1, 1.0);
vec4 occ = texture(occMap,clip.xy/clip.w←↩

*.5+.5);
if (occ == NONE) return false;
vec3 g0 = occ.xyz;
float r = occ.a;
float cosBeta

= dot(normalize(g0), normalize(g1 - g0 * R←↩
/ r));

if (cosBeta < 0) return false;
float sinAlpha = r / length(g0);
float sin2Beta = 1. - cosBeta * cosBeta;
float sin2Alpha = sinAlpha * sinAlpha;
return sin2Beta < sin2Alpha;

}

Listing 2: Returns true if the grain at position g1 is occluded, given
an occluder map rendered using the same projection matrix as the
current view. This map contains the position g0 and inner radius
r of another grain or a mock value NONE (used to clear the buffer
before rendering the map). Coordinates are in camera space.

9. Efficient drawing

Sampling an impostor’s maps is a costly operation, both in terms of
memory bandwidth and computing power. There are two ways to
reject a fragment before it reaches the fragment shader. One rather
drastic is to discard the whole point, this was the goal of Section 8.
But this is not enough. For many grains beyond the first layer, only
a couple of fragments are visible out of the tens or hundreds that it
may cover. We still end up with hundreds of millions of fragments
to shade, so we leverage another mechanism: Early-Z Rejection.

Visibility These hundreds of millions of fragments outnumber by
several orders of magnitude the pixel count of a typical HD render
(2M pixels) or even a 4K render (8M pixels), so there is mechan-
ically a large proportion of wasted fragments, i.e. fragments that
reach the fragment shader but are ultimately not visible on screen.
This phenomenon is commonly referred as overdraw .

Over-shading is not specific to impostors, it is actually the prior
motivation of deferred shading. But the core difficulty that impostor
rendering introduces is the impossibility to determine the visibility
of a fragment before sampling the maps. This deferred shape eval-
uation prevents us from using strategies such as visibility buffer-
ing [BH13].

Early-Z Rejection The early-Z rejection is automatically per-
formed by modern GPU’s rendering pipelines [Sek04]. If a frag-
ment lies behind the one already stored in the output buffer, then it
can be rejected without being processed, provided that the shader
does not override fragment’s depth. Thus the benefits of early-Z
rejection depend on the order in which points are rendered, and
we have too many points to sort them front to back. Nevertheless,
what early-Z rejection tells us is that the visibility does not need
to be perfectly solved in order to gain in efficiency. We can split
the grains into the likely visible ones and the likely hidden ones,
and render the former first. This first draw call fills almost all pix-
els with their final value, so the second one sees most of its frag-
ments early rejected. This is referred to below as the double draw
scheme.

Implementation Fortunately, the question of determining likely
visible grains has already been answered: those are the occluder
candidates of the occlusion culling step. They represent a thin shell

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

Figure 9: Breakdown of several frames’ draw sequence during a reference shot from tight to large view over a stack of 1.6M coffee beans. On
the left-hand side are (top-down): first frame, middle frame and last frame. These results focus on the transition from meshes to impostors.

of closer grains for which most of the fragments are visible. In prac-
tice, we make the splitter distinguish separate elements buffers for
occluder candidates and remaining points. When rendering impos-
tor, the same draw call is repeated twice with these different ele-
ment arrays. This simple change brings a significant speed-up to
the overall impostor rendering.

10. Results

Figure 10: Impostor clouds built from diverse grain models. Impos-
tors use 128 precomputed views (n = 8) of 128×128 pixels each.

The performance of our C++/OpenGL implementation has been
measured on an Nvidia GeFroce GTX 1070 graphics chip with
8GB of VRAM, on frames of 1920×1080 pixels. We focus the per-
formance tests on the transition from impostors to meshes, where
it is the most critical. We compare our impostor cloud at differ-

Figure 11: Render time on a scene made of 1.6M grains. Thumb-
nails of the test sequence can be found bellow the horizontal axis.
Impostors use 128 views of 128 pixels. Both instances and impos-
tors use our occlusion culling method.

ent angular resolutions to instances of the original grain mesh or a
simplified mesh.

Breakdown The overall render time of a frame is subject to vari-
ous factors. First, it varies significantly with the view point. In or-
der to grasp the benefits of our method on real case scenarios, we
evaluated performances during a backward dolly shot, from tight
to large. Left-hand side of Figure 9 shows first, middle and last
frames of this test shot and breakdowns of these key frames. This
qualitative evaluation already highlight a few points. First, although
it is not negligible, the splitting process is not the bottleneck. Sec-
ond, occluder map render time increases as point size grows on
screen. Third, the Z-prepass does not have a significant impact as
this draw call involves almost no fragment processing. Fourth, the
core element splitting is rather constant, until most grains get frus-
tum culled in closer views. Last, despite being unbalanced in num-
ber of points, the first and second draw calls of impostor rendering
takes similar times. This is satisfactory as it suggests that we found
a reasonable trade-off between rendering a few costly points first
and then more points but which are less visible.

Performances This high variability of draw mixture within a sin-
gle frame makes it hard to draw proper conclusions, so in Figure 11
we compare scenarios without splitting, where only one of meshes
or impostor models is used. The timings for impostor rendering do
not depend on the original complexity of the grain, so we compare
them to several meshes. A first thing to notice is that we indeed

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

need a hybrid model since when the number of grains within the
view frustum is low (close viewpoint) instanced meshes are more
efficient than impostors while as it increases impostors eventually
outperform instances.

The shape of instance and impostor curves are different because
the former is more affected by the number of vertices to draw (ver-
tex bounded) while the latter is related to the number of pixels
(pixel bounded). In case of a perfectly pixel bounded rendering,
our test shot should take a constant render time. The results of Fig-
ure 11 show that it is not the case when naively drawing all the
impostors at once (single draw). This is because of the large num-
ber of overdrawn fragments. Our double draw scheme on the other
hand succeeds at reducing overdraw, as shown by its more constant
render time. It thus makes our mixed sampling competitive despite
its overhead.

As discussed in Section 6, visual accuracy sets a minimal dis-
tance at which transitioning from meshes to impostors. These re-
sults show that when the grains have shapes requiring a low amount
of vertices, pushing this threshold distance further can increase per-
formances. For more complex grains, the threshold is already be-
yond the cross point between green and red lines so there is no
interest in increasing it. Even when combining our approach with
usual mesh LoD, the vertex count does not reduce beyond a few
tens, so an eventual switch to impostors is beneficial.

Figure 12: Impostors rendered using mixed (M), spherical (S) or
planar (P) samplings with various number of precomputed views,
along with ground truth (GT).

Visual loss Figures 10 shows impostor clouds of twenty thousand
points at different scales and in different scenarios, illustrating the

Figure 13: SSIM measures using different sampling schemes on
the coffee bean : planar, spherical and mixed (ours).

variety of possible grain shapes. Figure 1 is a more extreme exam-
ple featuring two million grains.

To evaluate the visual loss of our model, we measured the struc-
tural similarity (SSIM) between animations rendered using differ-
ent impostors on one hand and a reference render using meshes on
another hand. Figure 13 compares variations of the choice of sam-
pling scheme at fixed memory use with variations of the number of
stored precomputed views. The stacked grain used for this exam-
ple is the coffee bean of Figure 12, left. We see that for equivalent
memory requirements, our mixed sampling gives better visual ac-
curacy.

Figure 14: View frustum with (left) and without (right) our grain
occlusion culling. Some of the remaining points may actually be
hidden, but it is ensured that no visible point is removed.

Occlusion culling Figure 14 illustrates the effect of our occlusion
culling on a dense volume of grains. As shown by the graph of
Figure 15, the ability of our method to cull grains decreases pro-
gressively as we relax the hypothesis of a non null inner radius r.
The effect of the culling varies with the frame. The green curve
was measured with a narrower field of view. The camera rays are in
that case more parallel, hence there is less occlusion detected with
our method. The blue curve was measured on a more favorable sce-
nario, where grains in the foreground hide significant parts of the
whole set.

11. Discussion

Properties Our methods can render stackings of millions of dy-
namic objects in real time, leveraging the similarity of dense quasi-
spherical grains using impostors to design a transition LoD which
provides an efficient trade off – both in terms of accuracy and speed
– when individual grains only cover a few pixels on the screen.
This is tracktable thanks to our new sampling scheme that reduces

0 1

100%

67%

33% r
R
_

Figure 15: Proportion of grains still rendered after the occlusion
culling step, depending on the inner over outer radius ratio on three
different shots. Variations among shots are due for instance to a
larger foreground for the blue curve.

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

Figure 16: Impostor cloud where precomputed attributes such as
normal vectors are used along with dynamic procedural attributes
such as albedo values, which is drawn from the color ramp under-
neath each image.

memory usage for a given visual loss, together with a coupled per-
grain/fragment occlusion mechanism. Contrary to instancing, the
complexity of the impostors is independent on the original model.
Thanks to our occluder map and splitting scheme, it is mostly de-
pendent on the output resolution. Our method is compatible with
arbitrary animation of the grain positions, as shown in the supple-
mental video, and scales to large stackings (Figure 17).

Being designed to feed the G-pass of a deferred shading engine,
dynamic procedural variations of the grain can be coupled with the
precomputed data at render time (Figure 16), reducing further po-
tential repetition effects while expanding visual diversity. More-
over, our method degrades gracefully regarding all of its hypotheses
(quasi-spherical grains, density, moderate shape diversity), either in
accuracy or in efficiency depending on the application context.

Limitations For non quasi-spherical enough grains, visual loss
must be balanced with more precomputed views. At some point,
the hypothesis of quasi-spherical shape made by our mixed sam-
pling scheme becomes as invalid as using planar sampling. An ex-
treme example that breaks our hypothesis is a tubular element, e.g.
a threaded nut. Also, grains must not intersect each other. We do
not change the fragment depth when rendering them, so they are
sorted by the depth of their center, provoking popping artifacts in
case of intersection. Writing a precomputed depth in the Z-buffer
when rendering the impostor is possible, but at the expense of im-
portant performance reduction because this would turn off early-Z
rejection. Another consequence of this per-grain depth is that the
standard shadow maps cannot render grains’ self-shadows. The
rendering model that we used to render far grains beyond the va-
lidity range of our impostor is subject to aliasing. To improve the
transition from impostors to pure point based rendering, more ad-
vanced existing point-based models could be used. Note that we
did not chose to switch to a surface-based representation, such as
Bruneton et al. [BN12] do, because we did not want to give up on
the ability to animate grains. A grain being bounded by a sphere,
the corners of precomputed views are always left unused. Todt et
al. [TRKK07] use a distorted mapping to address this issue, but this
prevents us from using standard mipmaps.

Future work Our method can be further developed along several
diretions. First, we do not use any form of texture compression and
use heavy 32-bit color attachments. We could also defer the sam-
pling of attributes in a separate pass to save memory bandwidth.

Figure 17: A large dynamic scene made of 20M sand grains and
rendered with our method in 56ms on a GeForce 1070 GPU.

Impostor rendering would query only the alpha channel, to build a
visibility buffer [BH13]. Second, the attribute field captured by our
rich impostors have a lower dimensionality than the light field cap-
tured by radiance impostors. Hence, there is more redundancy in
our representation, that could be compressed better, storing only
the mapping from position on the bounding sphere and ray ori-
entation to UV space, which yields interesting filtering issues to
address. Last, we could accumulate fragments during the first of
the two draw calls. This would enable cross grain alpha blending
and hence reduce aliasing when grains come very close to being
points. Accumulation disables the benefits of early-Z rejection but
it is mostly the second pass that benefits from it.

References
[BH13] BURNS, CHRISTOPHER A. and HUNT, WARREN A. “The Visibil-

ity Buffer: A Cache-Friendly Approach to Deferred Shading”. Journal of
Computer Graphics Techniques 2.2 (2013), 55–69 7, 10.

[BN12] BRUNETON, ERIC and NEYRET, FABRICE. “Real-time Realistic
Rendering and Lighting of Forests”. Computer Graphics Forum 31.2pt1
(2012), 373–382 2, 10.

[Bru18] BRUCKS, RYAN. Octahedral Impostors. 2018. URL: https://
shaderbits.com/blog/octahedral-impostors (visited on
03/18/2018) 3, 4.

[CHPR07] COOK, ROBERT L., HALSTEAD, JOHN, PLANCK, MAXWELL,
and RYU, DAVID. “Stochastic Simplification of Aggregate Detail”. ACM
Trans. Graph. 26.3 (2007) 2.

[CNLE09] CRASSIN, CYRIL, NEYRET, FABRICE, LEFEBVRE, SYLVAIN,
and EISEMANN, ELMAR. “GigaVoxels: Ray-guided Streaming for Effi-
cient and Detailed Voxel Rendering”. Proc. I3D. 2009, 15–22 2.

[DDSD02] DÉCORET, XAVIER, DURAND, FRÉDO, SILLION, FRANCOIS
X, and DORSEY, JULIE. “Billboard clouds”. PhD thesis. INRIA, 2002 2.

[DHI*13] DUPUY, JONATHAN, HEITZ, ERIC, IEHL, JEAN-CLAUDE, et
al. “Linear efficient antialiased displacement and reflectance mapping”.
ACM Transactions on Graphics (TOG) 32.6 (2013), 211 3.

[DVS03] DACHSBACHER, CARSTEN, VOGELGSANG, CHRISTIAN, and
STAMMINGER, MARC. “Sequential Point Trees”. ACM Trans. Graph.
22.3 (July 2003), 657–662. ISSN: 0730-0301. DOI: 10 . 1145 /
882262 . 882321. URL: https : / / doi . org / 10 . 1145 /
882262.882321 2.

[GH97] GARLAND, MICHAEL and HECKBERT, PAUL S. “Surface sim-
plification using quadric error metrics”. Proc. SIGGRAPH. 1997, 209–
216 2.

[GM05] GOBBETTI, ENRICO and MARTON, FABIO. “Far Voxels: A Mul-
tiresolution Framework for Interactive Rendering of Huge Complex
3D Models on Commodity Graphics Platforms”. ACM SIGGRAPH.
2005, 878–885 2.

[GP07] GROSS, MARKUS and PFISTER, HANSPETER. Point-Based
Graphics. Morgan Kaufmann Publishers Inc., 2007 1.

https://shaderbits.com/blog/octahedral-impostors
https://shaderbits.com/blog/octahedral-impostors
https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/882262.882321
https://doi.org/10.1145/882262.882321

É. Michel & T. Boubekeur / Real Time Multiscale Rendering of Dense Dynamic Stackings

[HDCD15] HEITZ, ERIC, DUPUY, JONATHAN, CRASSIN, CYRIL, and
DACHSBACHER, CARSTEN. “The SGGX Microflake Distribution”.
ACM Transactions on Graphics (Proceedings of SIGGRAPH) 34.4
(2015), 48:1–48:11 2.

[HDD*93] HOPPE, HUGUES, DEROSE, TONY, DUCHAMP, TOM, et al.
“Mesh optimization”. Proc. SIGGRAPH. 1993, 19–26 2.

[Hop96] HOPPE, HUGUES. “Progressive meshes”. Proc. SIGGRAPH.
1996, 99–108 1, 2.

[KISS15] KEINERT, BENJAMIN, INNMANN, MATTHIAS, SÄNGER,
MICHAEL, and STAMMINGER, MARC. “Spherical fibonacci mapping”.
ACM Transactions on Graphics (TOG) 34.6 (2015), 193 4.

[KSA13] KÄMPE, VIKTOR, SINTORN, ERIK, and ASSARSSON, ULF.
“High Resolution Sparse Voxel DAGs”. ACM Trans. Graph. 32.4 (2013),
101:1–101:13 2.

[LAPV15] LE MUZIC, MATHIEU, AUTIN, LUDOVIC, PARULEK, JULIUS,
and VIOLA, IVAN. “cellVIEW: a tool for illustrative and multi-scale
rendering of large biomolecular datasets”. Eurographics Workshop on
Visual Computing for Biomedicine. Vol. 2015. NIH Public Access.
2015, 61 2.

[Lin00] LINDSTROM, PETER. “Out-of-core simplification of large polyg-
onal models”. Proc. SIGGRAPH. 2000, 259–262 2.

[LN17] LOUBET, GUILLAUME and NEYRET, FABRICE. “Hybrid mesh-
volume LoDs for all-scale pre-filtering of complex 3D assets”. Proc. Eu-
rographics. Vol. 36. 2017 2.

[LN18] LOUBET, GUILLAUME and NEYRET, FABRICE. “A new mi-
croflake model with microscopic self-shadowing for accurate volume
downsampling”. Computer Graphics Forum 37.2 (2018), 111–121 2.

[MKK*19] MIAO, HAICHAO, KLEIN, TOBIAS, KOUŘIL, DAVID, et al.
“Multiscale Molecular Visualization”. Journal of Molecular Biology
431.6 (2019), 1049–1070. ISSN: 0022-2836. DOI: https://doi.
org / 10 . 1016 / j . jmb . 2018 . 09 . 004. URL: http :
/ / www . sciencedirect . com / science / article / pii /
S0022283618310490 2.

[MN00] MEYER, ALEXANDRE and NEYRET, FABRICE. “Multiscale
shaders for the efficient realistic rendering of pine-trees”. Graphics In-
terface. 2000, 137–144 2.

[MPG*16] MÜLLER, THOMAS, PAPAS, MARIOS, GROSS, MARKUS, et
al. “Efficient rendering of heterogeneous polydisperse granular media”.
ACM Transactions on Graphics (TOG) 35.6 (2016), 168 3.

[MPH*15] MENG, JOHANNES, PAPAS, MARIOS, HABEL, RALF, et al.
“Multi-scale modeling and rendering of granular materials.” ACM Trans.
Graph. 34.4 (2015), 49 2, 3.

[MS95] MACIEL, PAULO W. C. and SHIRLEY, PETER. “Visual Naviga-
tion of Large Environments Using Textured Clusters”. Proc. I3D. 1995,
95–ff. 2.

[MWM07] MOON, JONATHAN T, WALTER, BRUCE, and MARSCHNER,
STEPHEN R. “Rendering discrete random media using precomputed
scattering solutions”. Proceedings of the 18th Eurographics conference
on Rendering Techniques. Eurographics Association. 2007, 231–242 2,
3.

[OB10] OLANO, MARC and BAKER, DAN. “LEAN mapping”. Proc. I3D.
2010, 181–188 3.

[POC05] POLICARPO, FÁBIO, OLIVEIRA, MANUEL M., and COMBA,
JOÃO L. D. “Real-time Relief Mapping on Arbitrary Polygonal Sur-
faces”. Proc. I3D. 2005, 155–162 2.

[RB93] ROSSIGNAC, JAREK and BORREL, PAUL. “Multi-resolution 3D
approximations for rendering complex scenes”. Modeling in Computer
Graphics. 1993, 455–465 2.

[RL00] RUSINKIEWICZ, SZYMON and LEVOY, MARC. “QSplat: A mul-
tiresolution point rendering system for large meshes”. Proc. SIGGRAPH.
2000, 343–352 2.

[Sek04] SEKULIC, DEAN. “Efficient Occlusion Culling”. GPU gems.
Vol. 1. Addison-Wesley Professional, 2004. Chap. 29 6, 7.

[TLQ*08] TAN, PING, LIN, STEPHEN, QUAN, LONG, et al. “Filtering and
rendering of resolution-dependent reflectance models”. IEEE Transac-
tions on Visualization and Computer Graphics 14.2 (2008), 412–425 3.

[TRKK07] TODT, SEVERIN, REZK-SALAMA, CHRISTOF, KOLB, AN-
DREAS, and KUHNERT, KD. Fast (spherical) light field rendering with
per-pixel depth. Tech. rep. Univ. of Siegen, Germany, 2007 2, 4, 10.

[WWS00] WONKA, PETER, WIMMER, MICHAEL, and SCHMALSTIEG,
DIETER. “Visibility Preprocessing with Occluder Fusion for Urban
Walkthroughs”. Rendering Techniques 2000 (Proceedings Eurograph-
ics Workshop on Rendering). Ed. by PÉROCHE, BERNARD and RUSH-
MEIER, HOLLY. Eurographics. held in Brno, Czech Republic, June 26-
28, 2000: Springer-Verlag Wien New York, June 2000, 71–82. ISBN: 3-
211-83535-0. URL: /research/publications/2000/wonka-
2000-VisP/ 2.

[XWZB17] XU, CHAO, WANG, RUI, ZHAO, SHUANG, and BAO, HUJUN.
“Real-Time Linear BRDF MIP-Mapping”. Eurographics Symposium on
Rendering. 2017 3.

[ZWDR16] ZHAO, SHUANG, WU, LIFAN, DURAND, FRÉDO, and RA-
MAMOORTHI, RAVI. “Downsampling Scattering Parameters for Render-
ing Anisotropic Media”. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia) 35.6 (2016), 166:1–166:11 2.

https://doi.org/https://doi.org/10.1016/j.jmb.2018.09.004
https://doi.org/https://doi.org/10.1016/j.jmb.2018.09.004
http://www.sciencedirect.com/science/article/pii/S0022283618310490
http://www.sciencedirect.com/science/article/pii/S0022283618310490
http://www.sciencedirect.com/science/article/pii/S0022283618310490
/research/publications/2000/wonka-2000-VisP/
/research/publications/2000/wonka-2000-VisP/

