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Real-Time Multitarget Tracking by a Cooperative

Distributed Vision System

TAKASHI MATSUYAMA AND NORIMICHI UKITA

Invited Paper

Target detection and tracking is one of the most important and
fundamental technologies to develop real-world computer vision
systems such as security and traffic monitoring systems. This paper
first categorizes target tracking systems based on characteristics of

scenes, tasks, and system architectures. Then we present a real-time
cooperative multitarget tracking system. The system consists of a
group of active vision agents (AVAs), where an AVA is a logical
model of a network-connected computer with an active camera. All
AVAs cooperatively track their target objects by dynamically ex-
changing object information with each other. With this cooperative
tracking capability, the system as a whole can track multiple moving
objects persistently even under complicated dynamic environments
in the real world. In this paper, we address the technologies em-
ployed in the system and demonstrate their effectiveness.

Keywords—Cooperative distributed vision, cooperative
tracking, fixed-viewpoint camera, multi-camera sensing, multi-
target tracking, real-time cooperation by multiple agents, real-time
tracking.

I. INTRODUCTION

Target detection and tracking is one of the most impor-
tant and fundamental technologies to develop real-world
computer vision systems, e.g., visual surveillance systems
and intelligent transport systems (ITSs). (See [1] and [2] for
modern visual/video surveillance methods and systems.)

To realize real-time flexible tracking in a wide-spread
area, we proposed the idea of cooperative distributed vision

(CDV) [3]. The goal of CDV is summarized as follows
(Fig. 1).

Embed in the real world a group of active vision agents

(AVA: a network-connected computer with an active
camera), and realize:

1) wide-area dynamic scene understanding;
2) versatile scene visualization.
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Applications of CDV include real-time wide-area
surveillance and traffic monitoring, remote conference and
lecturing, 3–D video [4] and intelligent TV studio, and
navigation of mobile robots and disabled people.

While the idea of CDV shares much with those of
distributed vehicle monitoring testbed (DVMT) [5] and
the video surveillance and monitoring (VSAM) project by
DARPA [6], our primary interest rests in how we can realize
intelligent systems which work adaptively in the real world.
Also, we put our focus upon dynamic interactions among

perception, action, and communication. That is, we believe
that intelligence does not dwell solely in the brain but
emerges from active interactions with environments through
perception, action, and communication.

With this scientific motivation in mind, we designed a
real-time cooperative multitarget tracking system, where we
developed the following.

Visual Sensor: a fixed-viewpoint pan-tilt-zoom camera

[7] for wide-area active imaging.
Visual Perception: active background subtraction for
target detection and tracking [3].
Dynamic Integration of Visual Perception and

Camera Action: dynamic memory architecture [8] for
real-time reactive tracking.
Network Communication for Cooperation: a three-
layered dynamic interaction architecture for real-time
communication among AVAs.

In this paper, following a categorization of target tracking
systems, we address the key ideas of the above mentioned
technologies and demonstrate their effectiveness in real-time
multitarget tracking. As for technical details of the system,
refer to [9].

II. CATEGORIZATION OF TARGET TRACKING SYSTEMS

First of all, target tracking systems can be classified into
online real-time and off-line batch systems. While the former
focus on real-time observation and reactive sensor control, a
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Fig. 1. Cooperative distributed vision.

major interest of the latter rests in computational algorithms
to estimate optimal target motion trajectories from a set of
recorded sensor data [10]–[12].

Real-time target tracking systems, which are the major
topic of this paper, can be classified into several different
types. For their categorization, the following four character-
istics can be used. The first is an assumption about the scene,
while the second specifies the task given to a tracking system.
The latter two are concerned with system architectures and
functions.

1) How Many Objects in the Scene?: If we can assume
that just a single object appears in the scene, the task of
the system becomes just to detect the object and track it.
Even for this simple task, however, the object detection and
tracking in real-world environments requires sophisticated
image processing methods and object models to discriminate
the foreground object from the background scene. In [13],
for example, a multiclass statistical model of color and
shape was employed to detect and track human heads and
hands. In general, flexible object models are required to
track articulated and/or deformable objects. The work in [14]
used a geometric cardboard model to locate human body
parts (head, torso, hands, legs, and feet). Active contour
models [15] are very effective to track an object whose
shape deforms dynamically (e.g., a beating heart).

When the scene includes multiple objects, the tracking
system has to explicitly establish the object identifica-
tion/discrimination over space and time, which increases
the processing complexity of the system significantly.
Moreover, the observation of an object is often interfered by
others due to occlusion.

2) How Many Target Objects to be Tracked?: Multitarget
tracking systems have to solve the above mentioned difficult
problems, which leads to the introduction of novel tracking
methods and/or the augmentation of system architectures.
The former approach includes probabilistic tracking methods
[16]–[18], where the object existence in the scene is rep-
resented by a probabilistic distribution being dynamically

modified based on estimated object motions and observed
images. We will discuss the latter approach below.

3) Fixed Camera or Active Camera?: By employing an
active camera, the sensing capability of a system is greatly
increased.

a) The system can observe a wider area by changing the
gazing direction and the position of the camera.

b) The system can dynamically adjust the visual field and
the resolution of images by zooming.

The complexity of the system, on the other hand, increases
considerably.

a) We have to design real-time and reactive camera con-
trol methods taking into account object motion char-
acteristics and mechanical camera dynamics. These
topics have been studied in Active Vision [19] and
Visual Servo [20], [21].

b) Since camera actions often incur significant changes in
observed object appearances, the system has to reason
about and/or compensate for such appearance changes
to identify and track the object(s). [22], for example,
employed a well-calibrated 3-D geometric model of a
pan-tilt camera to rectify images taken with different
pan-tilt parameters.

4) How Many Cameras?: Employing multiple cameras
is one of the most effective methods to solve various prob-
lems in target tracking;

a) Continuous wide-area observation: by switching the
cameras, the system can continuously track a focused
target object even if it moves around the wide area [3].

b) Simultaneous multi-view observation: since multiple
different views of the scene can be observed simulta-
neously, the system can discriminate multiple target
objects even if they are occluded in a single view
[23]–[25].

c) Reconstruction of 3-D information: when the 3-D
positions of all cameras are calibrated, 3-D shape
and location of a target object can be reconstructed
from 2-D multi-view images. [26]–[28], for example,
measured dynamic 3-D human body actions with
multiple cameras.

To make full use of these advantages of the multi-camera
systems, we have to solve the following camera coordination
problems.

• To keep tracking a moving target without a break, a
camera needs to request another camera to take over
tracking of the target.

• To simultaneously track multiple objects, the system
has to discriminate and identify objects detected from
multi-view images.

• To robustly reconstruct 3-D information of an object,
2-D multi-view object appearances should be inte-
grated by such computer vision algorithms as stereo
matching and volume intersection [26]–[28].

Since each of the above four basic characteristics has
two classes, we have classes of target tracking
systems in total. A large number of studies have been done
on single-target tracking and the current research focus
is shifting toward the development of multitarget tracking
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systems. Among others, it is a good challenge to develop a
multitarget tracking system with multiple active cameras,
since it includes all properties of the other classes and
is the most powerful way to cope with various tasks and
complicated situations in the real world.

For such system development, however, we have to
solve all problems discussed before. Moreover, we have to
additionally solve the dynamic resource allocation problem.
That is, since multiple objects move freely in the scene, the
system has to adaptively determine which cameras should
track which objects depending on dynamic object behaviors.
This real-time dynamic resource allocation problem has
rarely been studied in computer vision.

In what follows, we present a multitarget tracking system
with multiple active cameras we developed, where each
active camera is controlled by its corresponding PC and the
dynamic resource allocation problem is solved by real-time
cooperative network communications among PCs.

III. FIXED-VIEWPOINT PAN-TILT-ZOOM CAMERA FOR

WIDE-AREA ACTIVE IMAGING

To develop wide-area video surveillance systems, we first

of all should study methods of expanding the visual field of

a video camera:

1) omnidirectional cameras using fish-eye lenses or

curved mirrors [29]–[31];

2) active cameras mounted on computer controlled

camera heads [7]–[32].

In the former optical methods, while omnidirectional im-

ages can be acquired at video rate, their resolution is limited.

In the latter mechanical methods, on the other hand, high-res-

olution image acquisition is attained at the cost of limited

instantaneous visual field.

In our tracking system, we took the active camera method

for the following reasons.

1) High-resolution images are of the first importance for

object identification and scene visualization.

2) Dynamic visual field and image resolution control can

be realized by active zooming.

3) The limited instantaneous visual field problem can

be solved by incorporating a group of distributed

cameras.

The next problem is how to design an active camera.

Suppose we design a pan-tilt camera. This active camera

system includes a pair of geometric singularities: 1) the

projection center of the imaging system and 2) the pan and

tilt rotation axes. In ordinary pan-tilt camera systems, no

deliberate design about these singularities is incorporated,

which introduces difficult problems in image analysis. That

is, the discordance of the singularities causes photometric

and geometric appearance variations during the camera ro-

tation: varying highlights and motion parallax. To cope with

these appearance variations, consequently, sophisticated

image processing should be employed [22].

Our idea to solve this appearance variation problem is very

simple but effective [7], [32]:

Fig. 2. Fixed-viewpoint pan-tilt camera.

1) Make pan and tilt axes intersect with each other.

2) Place the projection center at the intersecting point.

We call the above designed active camera the fixed view-

point pan-tilt camera. With this camera, all images taken with

different pan-tilt angles can be mapped seamlessly onto a

common virtual screen (appearance sphere in Fig. 2) to gen-

erate a wide panoramic image. Note that, once the panoramic

image is obtained, images taken with arbitrary combinations

of pan-tilt parameters can be generated by back-projecting

the panoramic image onto the corresponding image planes.

Usually, zooming can be modeled by the shift of the pro-

jection center along the optical axis [33]. Thus, to realize the

fixed viewpoint pan-tilt-zoom (FV-PTZ) camera, either of

the following additional mechanisms should be employed.

1) Design such a zoom lens system whose projection

center is fixed irrespectively of zooming.

2) Introduce a slide stage to align the projection center

depending on zooming.

The above mentioned omnidirectional image representa-

tion is equivalent to those proposed in [34] and [35] in com-

puter graphics and virtual reality. Our objective, however, is

not to synthesize panoramic images natural to human viewers

but to develop an active camera system that facilitates the

image analysis for wide-area surveillance. That is, the co-

ordinate system used in the image projection should match

accurately with physical camera positioning. To attain such

accurate matching, we have to develop sophisticated camera

calibration methods [7], [32].

We found that the SONY EVI G20, an off-the-shelf ac-

tive video camera, is a good approximation of an FV-PTZ

camera ( with zoom

). Then, we devel-

oped a sophisticated internal-camera-parameter calibration

method for this camera, with which we can use the camera as

an FV-PTZ camera [3]. Fig. 3(a) illustrates a set of observed

images taken by changing pan-tilt angles with the smallest

zooming factor. Fig. 3(b) shows the panoramic image gener-

ated from the observed images.
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(a) (b) (c)

(d) (e) (f)

(g)

Fig. 3. Panoramic image taken by the developed FV-PTZ camera. (a)–(f) Observed
images taken by changing (pan, tilt) angles. (a) (�30 ; 10 ). (b) (0 ; 10 ).
(c) (30 ; 10 ). (d) (�30 ; �10 ). (e) (0 ; �10 ). (f) (30 ; �10 ).
(g) Generated panoramic image.

Fig. 4. Active background subtraction with an FV-PTZ camera.

IV. ACTIVE BACKGROUND SUBTRACTION FOR TARGET

DETECTION AND TRACKING

With an FV-PTZ camera, we can easily realize an active

target tracking system. Fig. 4 illustrates the basic scheme of

the active background subtraction for target detection and

tracking we developed [3].

Step 1) Generate the panoramic image of the scene

without any objects: Appearance Plane in the

figure.

Step 2) Extract a window image from the appearance

plane according to the current pan-tilt-zoom pa-

rameters and regard it as the current background

image.

Step 3) Compute difference between the generated back-

ground image and the observed image.

Step 4) If anomalous regions are detected in the differ-

ence image, select one and control the camera

parameters to track the selected target.

Step 5) Go back to Step 2.

To cope with dynamically changing situations in the real

world, we have to augment the above scheme at the following

three points:

1) robust background subtraction which can work stably

under nonstationary environments;

2) flexible system dynamics to control the camera reac-

tively to unpredictable object behaviors;

3) multitarget tracking in cluttered environments.

We do not address the first problem here, since various

robust background subtraction methods have been developed

[36]–[38]. As for the system dynamics, we will present a

novel real-time system architecture in the next section and

then, propose a cooperative multitarget tracking system in

Section VI.
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(a)

(b)

Fig. 5. Dynamic interaction between visual perception and
camera action modules. (a) Information flow between visual
perception and camera action modules. (b) Dynamics in a
sequential target tracking system.

V. DYNAMIC INTEGRATION OF VISUAL PERCEPTION AND

CAMERA ACTION FOR REAL-TIME REACTIVE TARGET

DETECTION AND TRACKING

The active tracking system described in Fig. 4 can be
decomposed into visual perception and camera action
modules. The former includes image capturing, background
image generation, image subtraction, and object region
detection. The latter performs camera control and camera
state (i.e., pan-tilt angles and zooming factor) monitoring.

Here we discuss the dynamics of this system. Fig. 5(a)
illustrates the information flow between the perception and
action modules: the former obtains the current camera
parameters from the latter to generate the background image
and the latter the current target location from the former
to control the camera. Fig. 5(b) shows the dynamics of the
system, where the two modules are activated sequentially.

While this system worked stably [3], the camera motion
was not so smooth nor could follow abrupt changes of target
motion for the following reasons.

1) The frequency of image observations is limited due to
the sequential system dynamics. That is, the perception
module should wait for the termination of the slow

mechanical camera motion.
2) Due to delays involved in image processing, camera

state monitoring, and mechanical camera motion, the
perception and action modules cannot obtain accurate
current camera state or target location respectively.

To solve these problems and realize real-time reactive
target tracking, we proposed a novel dynamic system archi-
tecture named dynamic memory architecture [8], where the
visual perception and camera action modules run in parallel
and dynamically exchange information via a specialized
shared memory named the dynamic memory (Fig. 6).

A. Access Methods for the Dynamic Memory

While the system architecture consisting of multiple
parallel processes with a common shared memory looks
similar to the “whiteboard architecture” [39] and the “smart
buffer” [40], the critical difference rests in that each variable
in the dynamic memory stores a discrete temporal sequence
of values and is associated with the following temporal
interpolation and prediction functions (Fig. 7).

The write and read operations to/from the dynamic
memory are defined as follows.

1) Write Operation: When a process computes a value
val of a variable at a certain moment , it writes
into the dynamic memory. Since such computation is done
repeatedly according to the dynamics of the process, a dis-
crete temporal sequence of values is recorded for each vari-
able in the dynamic memory (a sequence of black dots in
Fig. 7).

2) Read Operation:

a) Temporal interpolation: A reader process runs

in parallel to the writer process and tries to read from the

dynamic memory the value of the variable at a certain

moment, e.g., the value at in Fig. 7. When no value is

recorded at the specified moment, the dynamic memory

interpolates it from recorded data. With this function, the

reader process can read a value at any temporal moment

along the continuous temporal axis without making any

synchronization with the writer process.

b) Future prediction: A reader process may run fast

and require data which are not written yet by the writer

process (for example, the value at in Fig. 7). In such a

case, the dynamic memory predicts an expected value in the

future based on those data recorded so far and returns it to

the reader process.

3) Specification and Modification of Dynamics: Since a

variable in the dynamic memory represents a state of some

dynamic object (e.g., pan-tilt-zoom parameters of an active

camera), the interpolation and prediction functions associated

with the variable should be designed to model well the

dynamics of the object. When a writer process declares

a variable in the dynamic memory, the process specifies

the dynamics of the variable in terms of interpolation and

prediction functions, which may be acquired by off-line

calibrations or updated online by adaptive modeling methods

such as Kalman filtering. Dynamics (i.e., interpolation and

prediction functions) of some variable may be changed during

processing by the writer process. For example, when the

camera action module issues a speed control command to

a pan-tilt camera, dynamics of variables representing pan

and tilt angles should be changed accordingly.

With the above described functions, each process can

get any data along the temporal axis freely without waiting

(i.e., wasting time) for synchronization with others. This

no-wait asynchronous module interaction capability greatly

facilitates the implementation of real-time reactive systems.

As will be shown later in Section VI–B3, moreover, the

dynamic memory supports the virtual synchronization be-

tween multiple network-connected systems (i.e., AVAs),

which facilitates the real-time dynamic cooperation among

the systems.

B. Effectiveness of the Dynamic Memory

To verify the effectiveness of the dynamic memory, we
developed a real-time single-target tracking system and
conducted experiments of tracking a radio-controlled car in
a computer room. The system employed the parallel active
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Fig. 6. Real-time reactive target tracking system with the dynamic memory.

Fig. 7. Representation of a time-varying variable in the dynamic
memory.

background subtraction method with the FV-PTZ camera,
where the perception and action modules were implemented
as UNIX processes sharing the dynamic memory. Fig. 8 il-
lustrates a partial sequence of observed images and detected
object regions. Note that the accurate calibration of the
FV-PTZ camera enabled the stable background subtraction
even while changing pan, tilt, and zooming.

Table 1 compares the performance between System A (se-
quential dynamics) and System B (parallel dynamics with the
dynamic memory). Both systems tracked a computer-con-
trolled toy car under the same experimental settings and per-

(a) (b) (c) (d)

Fig. 8. Observed image sequence taken by the system. Upper:
input images. Lower: detected object regions. (a) Frame 0.
(b) Frame 50. (c) Frame 100. (d) Frame 150.

formance factors were averaged over about 30 s. The left
column of the table shows that the dynamic memory greatly
improved the rate of image observations owing to the no-wait
asynchronous execution of the perception module. The other
two columns verify the improvements in the camera control.
That is, with the dynamic memory, the camera was directed
toward the target more accurately (the middle column) and
hence could observe the target in higher resolution (the right
column). Note that our system controls pan-tilt angles to ob-
serve the target at the image center and adjusts the zooming
factor depending on deviations of the former from the latter:
smaller deviations lead to zooming in to capture higher reso-
lution target images, while larger deviations to zooming out
not to miss the target [3].
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Table 1

Performance Evaluation

Fig. 9 illustrates target and camera motion trajectory data
written into and read from the dynamic memory, where:

• graph 1 (upper right) represents pan-tilt camera posi-
tions measured from the camera by the action module;

• graph 2 (upper left) represents pan-tilt camera posi-
tions read from the dynamic memory by the perception
module;

• graph 3 (lower left) represents target locations com-
puted from observed images by the perception module;

• graph 4 (lower right) represents target locations read
from the dynamic memory by the action module.

Each graph includes a pair of trajectories: the larger am-
plitude denotes the pan angle and the smaller the tilt. Note
that the target locations as well as the camera positions are
described in terms of (pan, tilt).

We make the following observations.

1) Comparing graph 1 with graph 2, the data density of
the latter is higher than that of the former. This is
because the perception module runs about two times
faster and hence reads pan-tilt camera position data
more frequently. This holds also for graphs 3 and 4.

2) The camera control is well synchronized with the
target motion; by overlaying graphs 1 and 3, they
match very well. That is, the camera follows the target
motion without delay. This is because the action
module employed precise prediction-based camera
control to cope with various delays involved in image
processing and camera motion.

VI. COOPERATIVE MULTI-TARGET TRACKING

Now we address cooperative multitarget tracking by com-
municating active vision agents (AVAs), where an AVA
denotes an augmented target tracking system described in
the previous section. The augmentation means that an AVA
consists of visual perception, camera action, and network
communication modules, which run in parallel exchanging
information via the dynamic memory.

A. Basic Scheme for Cooperative Tracking

Our multitarget tracking system consists of a group of
AVAs embedded in the real world (Fig. 1). The system as-
sumes that the cameras are calibrated and densely distributed
over the scene so that their visual fields are well overlapping
with each other.

Followings are the basic tasks of the system.

1) Initially, each AVA independently searches for a target
that comes into its observable area. Such AVA that is
searching for a target is called a freelancer.

2) If an AVA detects a target, it navigates the gazes of the
other AVAs toward that target [Fig. 10(a)].

3) A group of AVAs which gaze at the same target form
what we call an Agency and keep measuring the 3-D
information of the target from multi-view images
[Fig. 10(b)].

4) Depending on target locations in the scene, each AVA
dynamically changes its target [Fig. 10(c)].

To realize the above cooperative tracking, we have to solve
the following problems.

• Multitarget identification: to gaze at each target, the
system has to distinguish multiple targets.

• Real-time and reactive processing: to adapt itself to
dynamic changes in the scene, the system has to ex-
ecute processing in real-time and quickly react to the
changes.

• Adaptive resource allocation: we have to implement
two types of dynamic resource (i.e., AVA) allocation:
(1) to perform both target search and tracking simulta-
neously, the system has to preserve AVAs that search
for new targets even while tracking targets and 2) to
track each moving target persistently, the system has to
adaptively determine which AVAs should track which
targets.

In what follows, we address how these problems can be
solved by real-time cooperative communications among
AVAs.

B. Three-Layered Dynamic Interactions for Cooperative

Tracking

We designed and implemented the three-layered dynamic
interaction architecture illustrated in Fig. 11 to realize
real-time cooperative multitarget tracking.

1) Intra-AVA Layer: In the lowest layer in Fig. 11, per-
ception, action, and communication modules that compose
an AVA interact with each other via the dynamic memory.

An AVA is an augmented target tracking system described
in Section 5, where the augmentation is threefold.

a) Multitarget detection while single-target

tracking: When the perception module detects ob-
jects at , it computes and records into the dynamic
memory the 3-D view lines toward the objects (i.e.,

).1 Then, the module compares
them with the 3-D view line toward its currently tracking
target at . Note that can be read
from the dynamic memory whatever temporal moment
specifies. Suppose is closest to , where

. Then, the module regards as
denoting the newest target view line and records it into the
dynamic memory.

b) Gaze control based on the 3-D target posi-

tion: When the FV-PTZ camera is ready to accept a control
command, the action module reads the 3-D view line toward
the target (i.e., ) from the dynamic memory and
controls the camera to gaze at the target. As will be described
later, when an agency with multiple AVAs tracks the target,
it measures the 3-D position of the target (denoted by )
and sends it to all member AVAs, which then is written into

1The 3-D line determined by the projection center of the camera and an
object region centroid.
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Fig. 9. Dynamic data exchanged between the perception and action modules.

(a) (b) (c)

Fig. 10. Basic scheme for cooperative tracking. (a) Gaze navigation.
(b) Cooperative gazing. (c) Adaptive target switching.

the dynamic memory by the communication module. If
such information is available, the action module controls the
camera based on instead of .

c) Incorporation of the communication module: Data
exchanged by the communication module over the network
can be classified into two types: detected object data and
messages for cooperations among AVAs. The former include
3-D view lines toward detected objects: AVA other AVAs

and agencies, and 3-D target position: agency member
AVAs. The latter realize various communication protocols,
which will be described later.

2) Intra-Agency Layer: As defined before, a group of
AVAs which track the same target form an agency. The
agency formation means the generation of an agency man-

ager, which is an independent parallel process to coordinate
interactions among its member AVAs. The middle layer in
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Fig. 11. Three-layered dynamic interaction architecture.

Fig. 11 specifies dynamic interactions between an agency
manager and its member AVAs.

In our system, an agency should correspond one-to-one
to a target. To make this correspondence dynamically
established and persistently maintained, the following two
kinds of object identification are required in the intra-agency
layer.

a) Spatial object identification: The agency manager
has to establish the object identification between the groups
of the 3-D view lines detected and transmitted by its member
AVAs. The agency manager checks distances between those
3-D view lines detected by different member AVAs and com-
putes the 3-D target position from a set of nearly intersecting
3-D view lines. The manager employs what we call the vir-

tual synchronization to virtually adjust observation timings
of the 3-D view lines (see Section VI–B3 for details). Note
that the manager may find none or multiple sets of such
nearly intersecting 3-D view lines. To cope with these sit-
uations, the manager conducts the following temporal object
identification.

b) Temporal object identification: The manager
records the 3-D trajectory of its target, with which the 3-D
object position(s) computed by the spatial object identifica-
tion is compared. That is, when multiple 3-D locations are
obtained by the spatial object identification, the manager
selects the one closest to the target trajectory. When the
spatial object identification failed and no 3-D object location
was obtained, on the other hand, the manager selects the
3-D view line that is closest to the latest recorded target 3-D
position. Then the manager projects the target 3-D position
onto the selected view line to estimate the new 3-D target
position. Note that, when an agency contains only a single
AVA, neither spatial nor temporal object identifications
succeed and hence the member AVA just conducts appear-
ance-based 2-D tracking by itself.

Fig. 12. Virtual synchronization for spatial object identification.

3) Virtual Synchronization: Here we discuss dynamic
aspects of the above identification processes.

a) Spatial object identification: Since AVAs capture
images autonomously, member AVAs in an agency observe
the target at different moments. Furthermore, the message
transmission over the network introduces unpredictable
delay between the observation timing by a member AVA
and the object identification timing by the agency manager.
These asynchronous activities can significantly damage the
reliability of the spatial object identification.

To solve this problem, we introduce the dynamic memory
into an agency manager, which enables the manager to vir-
tually synchronize any asynchronously observed/transmitted
data. We call this function virtual synchronization by the
dynamic memory.

Fig. 12 shows the mechanism of the virtual synchro-
nization. All 3-D view lines computed by each member

1144 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 7, JULY 2002

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



(a) (b) (c)

Fig. 13. Agency formation (see text).

(a) (b) (c)

Fig. 14. Agency maintenance (see text).

AVA are transmitted to the agency manager, which then
records them into its internal dynamic memory. Fig. 12,
for example, shows a pair of temporal sequences of 3-D
view line data transmitted from member and member

, respectively. When the manager wants to establish
the spatial object identification at , it can read the pair of
the synchronized 3-D view line data at from the dynamic
memory (i.e., and in Fig. 12). That is, the
values of the 3-D view lines used for the identification
are completely synchronized with that identification timing
even if their measurements are conducted asynchronously.

b) Temporal object identification: The virtual
synchronization is also effective in the temporal object iden-
tification. Let denote the 3-D target trajectory recorded
in the dynamic memory and the
3-D positions of the objects identified at . Then the
manager: 1) reads (i.e., the estimated target position
at ) from the dynamic memory; 2) selects the one among

closest to ; and 3) records it
into the dynamic memory as the new target position.

4) Communications at the Intra-Agency Layer: The
above mentioned temporal object identification fails if
the closest distance between the estimated and observed
3-D target locations exceeds a threshold. The following
three communication protocols are activated depending
on the success or failure of the object identification. They
materialize dynamic interactions at the intra-agency layer.

a) Agency formation protocol: This protocol defines:
1) the new agency generation procedure by a freelancer AVA
and 2) the participation procedure of a freelancer AVA into
an existing agency.

When a freelancer AVA detects an object, it requests the
existing agency managers to examine the identification be-
tween the detected object and the target object of each agency

[Fig. 13(a)]. Depending on the result of this object identifi-
cation, the freelancer AVA works as follows.

No agency established the object identification:

The freelancer AVA generates a new agency manager
to track the newly detected object and joins into that
agency as its member AVA [Fig. 13(b)].
An agency established the object identification: The
freelancer-AVA joins into the agency that has made suc-
cessful object identification, if requested [Fig. 13(c)].

b) Agency maintenance protocol: This protocol
defines procedures for the continuous maintenance of an
agency and the elimination of an agency.

After an agency is generated, the agency manager repeats
the spatial and temporal object identifications for cooperative
tracking [Fig. 14(a)]. Following the spatial object identifica-
tion, the manager transmits the newest 3-D target location to
each member AVA [Fig. 14(b)], which then is recorded into
the dynamic memory of the member AVA.

Suppose a member cannot detect the target object
due to an obstacle or processing errors [Fig. 14(c)]. Even in
this case, the manager informs the 3-D position of
the target observed by the other member AVAs. This infor-
mation navigates the gaze of toward the (invisible)
target. However, if such misdetection continues for a long
time, the agency manager forces out of the agency to
be a freelancer.

If all member AVAs cannot observe the target being
tracked so far, the agency manager destroys the agency and
makes all its member AVAs become freelancers.

c) Agency spawning protocol: This protocol defines a
new agency generation procedure from an existing agency.

After the spatial and temporal object identifications, the
agency manager may find such a 3-D view line(s) that does

MATSUYAMA AND UKITA: REAL-TIME MULTITARGET TRACKING 1145

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



(a) (b) (c)

Fig. 15. Agency spawning (see text).

(a) (b) (c)

Fig. 16. Agency unification (see text).

not correspond to the target. This means the detection of a
new object by its member AVA. Let denote such 3-D
view line detected by [Fig. 15(a)]. Then, the manager
broadcasts to other agency managers to examine the iden-
tification between and their tracking targets.

If none of the identification is successful, the agency man-
ager makes quit from the current agency and generate
a new agency [Fig. 15(b)]. then joins into the new
agency [Fig. 15(c)].

5) Inter-Agency Layer: In multitarget tracking, the
system should adaptively allocate resources: the system has
to adaptively determine which AVAs should track which
targets. To realize this adaptive resource allocation, the
information about targets and member AVAs is exchanged
between agency managers (the top layer in Fig. 11).

The dynamic interactions between agency managers are
triggered based on the object identification across agencies.
That is, when a new target 3-D location is obtained, agency
manager broadcasts it to the others. Agency manager

, which receives this information, compares it with the
3-D position of its own target to check the object identifica-
tion. Note that here also the virtual synchronization between
a pair of 3-D target locations is employed to increase the re-
liability of the object identification.

Depending on the result of this inter-agency object identi-
fication, either of the following two protocols are activated.

a) Agency unification protocol: This protocol is
activated when the inter-agency object identification is
successful and defines a merging procedure of the agencies
which happen to track the same object.

In principle, the system should keep the one-to-one cor-
respondence between agencies and target objects. However,
this correspondence sometimes is violated due to failures of
object identification and discrimination:

1) asynchronous observations and/or errors in object de-
tection by individual AVAs;

2) multiple targets which come too close to separate.
Fig. 16 shows an example. When agency manager of

establishes the identification between its own target
and the one tracked by , asks to be merged
into [Fig. 16(a)]. Then, asks its member AVAs
to join into [Fig. 16(b)]. After copying the target
information recorded in the dynamic memory into the object
trajectory database, eliminates itself [Fig. 16(c)].

As noted above, agencies corresponding to multiple dif-
ferent targets may be unified if they are very close. How-
ever, this heterogeneously unified agency can be separated
back by the agency spawning protocol when the distance be-
tween the targets get larger. In such case, characteristics of
the newly detected target are compared with those recorded
in the object trajectory database to check if the new target
corresponds to a target that had been tracked before. If so,
the corresponding target trajectory data is moved from the
database into the dynamic memory of the newly generated
agency.

b) Agency restructuring protocol: When the
inter-agency object identification fails, agency man-
ager checks if it can activate the agency restructuring
protocol taking into account the numbers of member AVAs
in and and their target locations.

Fig. 17 illustrates an example. Agency manager of
sends its target information to , which fails in

the object identification. Then, asks to trade its
member AVA into [Fig. 17(a)]. When requested,
selects its member AVA and asks it to move to
[Fig. 17(b) and (c)].

6) Communication With Freelancer AVAs: An agency
manager communicates with freelancer AVAs as well as with
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(a) (b) (c)

Fig. 17. Agency restructuring (see text).

Fig. 18. Experimental results.

other managers (the top row of Fig. 11). As described in the
agency formation protocol in Section VI–B4, a freelancer
activates the communication with agency managers when it
detects an object. An agency manager, on the other hand,
sends to freelancers its target position when the new data are
obtained. Then, each freelancer decides whether it continues
to be a freelancer or joins into the agency depending on
the target position and the current number of freelancers in
the system. Note that in our system a user can specify the
number of freelancers to be preserved while tracking targets.

VII. EXPERIMENTS

To verify the effectiveness of the proposed system, we

conducted experiments on multiple human tracking in a

room (about 5 m 5 m). The system consists of ten AVAs.

Each AVA is implemented on a network-connected PC (Pen-

tium III 600-MHz 2) with an FV-PTZ camera (SONY

EVI-G20), where the perception, action, and communication

modules as well as agency managers are realized as UNIX

processes. Fig. 19(a) illustrates the camera layout:

and are on the walls, while the others on the

ceiling. The external camera parameters are calibrated. Note

that the internal clocks of all the PCs are synchronized by the

Network Time Protocol to realize the virtual synchroniza-

tion. With this architecture, the perception module of each

AVA can capture images (320 240 8-b black-and-white

images) and detect objects at about 10 frames per second on

average.

In the experiment, the system tracked two people.

first came into the scene, and after a while came into

the scene. Both targets then moved freely. The upper part

of Fig. 18 shows the partial image sequences observed by

, , and . The images on the same row were

taken by the same AVA. The images on the same column

were taken at almost the same time. The regions enclosed by

black and gray lines in the images show the detected regions

corresponding to and , respectively. Note that

the image sequences in Fig. 18 are not recorded ones but are

captured real-time according to target motion.

Each figure in the bottom of Fig. 18 shows the role of each

AVA and the agency organization at such a moment when

the same column of images in the upper part were observed.

White circles denote freelancer AVAs, while black and gray

circles indicate member AVAs belonging to and

, respectively. Black and gray squares indicate com-

puted locations of and , respectively.

The system worked as follows.

1) Initially, each AVA searched for an object

independently.

2) first detected , and was formed.
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(a) (b)

Fig. 19. Experimental results. (a) Trajectories of the targets.
(b) The number of AVAs that performed each role.

3) All AVAs except for were tracking ,

while was searching for a new object as a

freelancer.

4) Then, detected and generated .

5) The agency restructuring protocol balanced the num-

bers of member AVAs in and . Note

that and were working as freelancers.

6) Since two targets came very close to each other and

no AVA could distinguish them, the agency unification

protocol merged into .

7) When the targets moved apart, detected a

“new” target. Then, it activated the agency spawning

protocol to generate again for .

8) was going out of the scene.

9) After was eliminated, all the AVAs except

tracked .

Fig. 19(a) shows the trajectories of the targets computed

by the agency managers. Fig. 19(b) shows the dynamic pop-

ulation changes of freelancer AVAs, AVAs tracking

and those tracking .

As we can see, the dynamic cooperations among AVAs and

agency managers worked very well and enabled the system

to persistently track multiple targets. In [9], we discussed the

soundness (i.e., deadlock-free interaction) and the complete-

ness (i.e., the number of trackable objects) of the system.

VIII. CONCLUDING REMARKS

This paper presented a real-time active multitarget

tracking system, which is the most powerful and flexible but

difficult to realize among various types of target tracking

systems.

To implement the system, we developed: 1) a fixed-view-

point pan-tilt-zoom camera for wide area active imaging;

2) active background subtraction for target detection and

tracking; 3) dynamic memory architecture for real-time

reactive tracking; and 4) a three-layered dynamic interaction

architecture for real-time communication among active

vision agents.

While many visual/video surveillance systems have been

developed [1], [2], most of them put their focus onto ob-

ject detection and tracking methods and little studies have

been done on how visual perception and camera action mod-

ules are integrated dynamically. In this sense, we believe the

dynamic memory architecture is one of distinguishing char-

acteristics of our system. In fact, with this architecture, our

system can track targets reactively even if they are very close

to a camera (i.e., even if apparent object motion on the image

is large).

The most distinguishing characteristics of our system

rests in the introduction of real-time network communica-

tions among multiple distributed AVAs. While some systems

incorporated distributed sensors for surveillance [23]–[25],

[41], [42], their communication protocols are not so sophis-

ticated nor integrated real-time with perception or camera

action processes. In our system, the dynamic memory ar-

chitecture enables distributed AVAs to virtually synchronize

their activities over the network. That is, in our system, all

parallel processes (i.e., AVAs and its constituent perception,

action, and communication modules) cooperatively work

interacting with each other. As a result, the system as a

whole works as a very flexible real-time reactive multitarget

tracking system. We believe that this cooperative distributed

processing greatly increases the flexibility and adaptability

of the system, which has been verified by experiments of

multiple human tracking.

One of the most frequently asked questions about our

system is how many targets the system with AVAs can

track. The answer is at most but for stable tracking at

most . This limitation comes from the communication

protocol employed in the current system. That is, while each

AVA can detect multiple objects simultaneously, only one

of them is identified as the target by the agency manager

to which it belongs. In other words, the current system

employs a rather strict constraint to coordinate a group of

AVAs: each AVA can belong to only one agency, which has

one-to-one correspondence to a target. This constraint limits

the maximum number of trackable targets. For stable target
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tracking, moreover, the system needs 3-D location of each

target, for which at least two AVAs should track a target. To

increase the number of trackable targets, we should modify

the communication protocol so that each AVA can belong to

multiple agencies at the same time. While this modification

introduces some complications into the protocol, it is not

hard to implement.

As shown in Fig. 19(a), the system is installed in a

rather small room. This means the system can observe very

high-resolution multiview images of a target. To make full

use of this characteristics, we developed a real-time dynamic

3-D shape reconstruction system by adding an ultra high

speed network for parallel processing [26]. This system

tracks a moving (e.g., dancing) human and reconstructs

its dynamic 3-D shape from multiview video data. While

the implemented system can reconstruct about 12 human

volumes per second in 2 cm 2 cm 2 cm spatial resolution

with fixed cameras, the processing speed slows down to

about 1 volume per second with active cameras. Currently

we are studying how we can integrate the cooperative

multitarget tracking capability described in this paper with

parallel processing for real-time 3-D shape reconstruction.

With this new integrated system, we will be able to capture

full 3-D video of various dancing and sports activities played

by multiple people in rather wide areas.
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