
RESEARCH Open Access

Real-time myoelectric control of a multi-fingered
hand prosthesis using principal components
analysis
Giulia C Matrone1*†, Christian Cipriani2†, Maria Chiara Carrozza2 and Giovanni Magenes1

Abstract

Background: In spite of the advances made in the design of dexterous anthropomorphic hand prostheses, these

sophisticated devices still lack adequate control interfaces which could allow amputees to operate them in an

intuitive and close-to-natural way. In this study, an anthropomorphic five-fingered robotic hand, actuated by six

motors, was used as a prosthetic hand emulator to assess the feasibility of a control approach based on Principal

Components Analysis (PCA), specifically conceived to address this problem. Since it was demonstrated elsewhere

that the first two principal components (PCs) can describe the whole hand configuration space sufficiently well, the

controller here employed reverted the PCA algorithm and allowed to drive a multi-DoF hand by combining a two-

differential channels EMG input with these two PCs. Hence, the novelty of this approach stood in the PCA

application for solving the challenging problem of best mapping the EMG inputs into the degrees of freedom

(DoFs) of the prosthesis.

Methods: A clinically viable two DoFs myoelectric controller, exploiting two differential channels, was developed

and twelve able-bodied participants, divided in two groups, volunteered to control the hand in simple grasp trials,

using forearm myoelectric signals. Task completion rates and times were measured. The first objective (assessed

through one group of subjects) was to understand the effectiveness of the approach; i.e., whether it is possible to

drive the hand in real-time, with reasonable performance, in different grasps, also taking advantage of the direct

visual feedback of the moving hand. The second objective (assessed through a different group) was to investigate

the intuitiveness, and therefore to assess statistical differences in the performance throughout three consecutive

days.

Results: Subjects performed several grasp, transport and release trials with differently shaped objects, by operating

the hand with the myoelectric PCA-based controller. Experimental trials showed that the simultaneous use of the

two differential channels paradigm was successful.

Conclusions: This work demonstrates that the proposed two-DoFs myoelectric controller based on PCA allows to

drive in real-time a prosthetic hand emulator into different prehensile patterns with excellent performance. These

results open up promising possibilities for the development of intuitive, effective myoelectric hand controllers.

* Correspondence: giulia.matrone@unipv.it
†Equal contributors
1Dipartimento di Ingegneria Industriale e dell’Informazione, Università degli

Studi di Pavia, Via Ferrata 1, 27100, Pavia, Italy

Full list of author information is available at the end of the article

J N E R
JOURNAL OF NEUROENGINEERING
AND REHABILITATION

© 2012 Matrone et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

Matrone et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:40

http://www.jneuroengrehab.com/content/9/1/40

mailto:giulia.matrone@unipv.it
http://creativecommons.org/licenses/by/2.0


Background

A successful replacement of the natural hand with an

artificial prosthesis may be achieved through the use of a

dexterous anthropomorphic hand, controlled and per-

ceived in a close-to-natural way by means of an intuitive

human–machine interface. One of the conditions

required for a satisfactory and usable prosthesis is that

the interface effectively decodes the efferent motor com-

mands dispatched by the amputee’s brain to perform

the desired actions with accuracy and acceptable cogni-

tive effort.

Traditional myoelectric prostheses (e.g. Otto Bock

SensorHand, Motion Control hand) have just one or two

degrees of freedom (DoFs), sequentially operated

through electromyographic (EMG) signals picked-up by

surface electrodes from the residual limb muscles. Al-

though these devices are extremely robust and require

low burden for the user in learning their operation, they

offer poor cosmetic appearance and limited functional-

ities. Similarly, the recently marketed multi-fingered pro-

totypes (like the Touch Bionics i-Limb and RSL Steeper

BeBionic) are still based on a traditional two-input EMG

controller used to open and close all the fingers of the

hand together. This drawback is due to the difficulties of

reliably using—in the practice—more than two EMG

channels simultaneously [1]. Indeed, despite the recent

achievements reached by researchers in developing

multi-DoF prostheses (e.g. the SmartHand [2], the VU

hand [3], the DARPA RP 2009 Intrinsic Hand [4]), these

are not yet used in the clinical practice due to the lack

of adequate interfaces with the user.

The most successful and common method employed

for prostheses control is based on EMG processing [5];

in order to myo-electrically control a dexterous pros-

thesis it is necessary to map EMG signals (corresponding

to different muscle contractions) to the different existing

DoFs, using a suitable control algorithm [6]. This is a

multiple input, multiple output (MIMO) problem where

the goal is to best map the EMG inputs to the outputs

in the prosthesis (i.e. the number of actuators). EMG

control techniques can be divided in two categories:

pattern recognition and non-pattern recognition based

[7]. In research, sophisticated algorithms (usually run-

ning off-line) implement pattern recognition: features

extracted from the EMG signals (e.g. mean absolute

value (MAV), root mean square (RMS), zero crossing, or

frequency domain features; for a review of the features

see [7] and [8]) are used to decode different muscular

contractions, using various classification algorithms (e.g.

multilayer perceptrons, fuzzy techniques, wavelets, linear

discriminant analysis) [9-16]. Non-pattern recognition

control, traditionally used in the clinical practice [17],

includes proportional control, threshold control, onset

analysis and finite state machines. The number of

functions that can be controlled by non-pattern recogni-

tion techniques is limited in comparison to pattern

recognition based ones but, in general, non-pattern rec-

ognition controllers offer greater reliability. They have a

simpler structure and have been mostly deployed in

ON/OFF or proportional control. In particular, in pro-

portional control the strength of muscle contractions

controls the prosthesis speed or force [7].

In order to achieve tangible improvements in this field,

the fundamental issues to be tackled are: (1) how to in-

crease the voluntary controlled dexterity (i.e. the number

of controllable DoFs) and, at the same time, (2) how to

provide the amputee with an intuitive and effective way

for controlling his/her artificial limb. With the aim to

address such problems, this study presents a control

method suitable for multi-fingered prostheses, based on

surface EMG and bio-inspired to muscle synergies

involved in natural motor coordination.

A functional muscle synergy represents the elementary

unit of motor behaviour and is defined as a pattern of

co-activation of muscles recruited by a single neural

command signal [18]. Back in the 1960s, Nikolai Bern-

stein proposed the existence of muscle synergies as a

neural strategy for simplifying the control of multiple

DoFs [19]. More recently, Santello et al. [20] demon-

strated that this same strategy is effective also in the case

of hand control and that, during grasps, some DoFs of

the hand are tightly correlated. In particular, in that ex-

periment, subjects were asked to shape the hand as if to

grasp and use a large number of familiar objects, while

static finger postures were measured by means of a data-

glove; Principal Components Analysis (PCA) showed

that the first two components could account for 80% of

the variance, implying a substantial reduction from the

15 DoFs that were recorded. Hence, they demonstrated

that only few synergies are involved in the control of

hand posture (even though this mechanism is coupled

with a finer control mechanism providing for small, sub-

tle adjustments) [20]. Drawing inspiration from this bio-

mechanical/neuromuscular behaviour, in our previous

work we developed a control algorithm based on PCA

able to map two continuous control inputs into continu-

ous multiple outputs (motors) of a robotic hand [21]. In

addition we demonstrated the ability of the system to

achieve stable grasps when the two control inputs were

virtually generated. If extended to upper-limb prosthe-

tics, such an approach could allow amputees to control

multi-DoF hands using an extremely reduced number of

myoelectric channels. Remarkably, the approach holds

the potential to overcome the MIMO problem (i.e. how

to map a reduced number of inputs into a large number

of outputs), as it could allow successful control of

hands—if mechanically capable—into 80% of the natural

hand postures by just modulating two input channels.
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Previous works, aimed to control dexterous hands or

robotic grippers, exploited the concept of synergies in

order to reduce the dimension of the problem. Particu-

larly, the PCA technique, usually employed in prostheses

control algorithms to preprocess (decorrelate) EMG sig-

nals [22] or to reduce features dimensionality [10,23],

has also been exploited in robotics to implement auto-

matic grasp planners [24,25] or even to design

the mechanical architecture of an anthropomorphic

hand [26].

This paper presents the first work on the real-time

prehension control of a robotic hand employing a two

differential channels (four electrodes) EMG acquisition

system and a PCA-based controller, operated by 12 able-

bodied subjects. Participants volunteered in experimen-

tal tasks consisting in (i) grasping, (ii) transporting and

(iii) releasing different kinds of objects, by employing a

five-fingered (and six motors) robotic hand, mounted

onto an orthopaedic splint designed for able-bodied

users (hereafter, prosthetic hand emulator). The pro-

posed experiments were aimed at addressing two key

objectives. The first objective was to understand the

effectiveness of the approach, i.e., whether it is possible

to drive the hand in real-time, with reasonable perform-

ance, in different grasps. The second objective was to

investigate the intuitiveness, indirectly, by using quantifi-

able performance metrics and therefore to assess

statistical differences among these ones throughout con-

secutive experiments.

In the following pages the experimental setup, com-

posed of the prosthetic hand emulator, the two degrees

of freedom EMG controller and the PCA-based algo-

rithm, is described. Finally, a description of the per-

formed experiments is provided and the collected results

are presented and discussed to be useful for future

developments.

Methods

The system here employed consisted of 3 modules: the

robotic hand (RH), mounted onto an orthopaedic splint

designed for able-bodied users, the EMG signals acquisi-

tion module (AM) and the software control system (CS)

(cf. Figure 1).

Prosthetic hand emulator

The robotic hand used for assessing the feasibility of the

approach was a modified and simpler version of the

CyberHand [27], assembled onto an orthopaedic splint

which allowed any reaching movement not involving the

wrist, as in Panarese et al. [28] (cf. Figure 2). The hand

is anthropomorphic, right-handed, human-sized, with

five independent underactuated fingers able to mechan-

ically adapt on objects. Hand actuation is achieved by

means of six electrical motors: five are employed for

independent flexion/extension of each finger, and the

sixth one for thumb abduction/adduction. The hand is

able to perform the three main functional grasps defined

in Iberall & Arbib’s grasp taxonomy: power, precision

and lateral grasps [29]. However, as mentioned in our

previous work [21], grasp stability for precision grasps is

only allowed within a certain force/position workspace

of the fingers due to instability problems; therefore, to

perform a stable precision grasp (i) accurate positioning

of the fingers and (ii) accurate force level on the object

are required. A microcontroller-based hierarchical archi-

tecture implementing fingers position control is embed-

ded in the hand and is activated by external commands

from a standard RS-232 communication bus. A detailed

description of the hand can be found in [27].

EMG signals acquisition module

EMG signals were acquired by means of active surface

electrodes, regularly used in myoelectric prostheses and

commercially available (Myobock electrodes 13E200=50,

Otto Bock Healthcare Products GmbH, Wien, Austria):

signals conditioning (adjustable amplification—in this

case set to 6—and low-pass filtering B = 90–450 Hz) is

performed on-site by the electrode hardware itself, and

for this reason in prosthetics they are generally referred

as EMG sensors (instead of simple electrodes). Two pairs

were individually adjusted and placed on the subjects’

forearm in order to pick-up independent myoelectric

signal pairs generated by the activity of the following an-

tagonist muscles: the flexor (FCR) and extensor carpi

radialis (ECR), the extensor pollicis longus (EPL) and the

flexor carpi ulnaris (FCU) (cf. Figure 2). It is known that

wrist flexion and extension are demanded to FCR and

ECR, while the other two muscles are involved respect-

ively in wrist abduction (EPL) and adduction (FCU)

movements [30]. The mutual interference between the

activity of the four muscles did not represent a signifi-

cant problem, due to accurate individual positioning of

the EMG sensors [31]. The underlying objective was in-

deed to develop a myoelectric joystick (Figure 3), i.e. a

two differential channels controller using EMG signals

from muscles that move the wrist (similarly to [31-33]).

EMG sensors were connected to an acquisition board

(NI-DAQ USB-6211, National Instruments Corp., Aus-

tin, TX, USA) which communicated with the laptop that

run the decoding algorithms.

Software control system

A C-written application was developed using LabWindows-

CVI (National Instruments) and run on the laptop con-

nected to both the EMG acquisition module and to the

hand. The control system decoded and converted the

subjects’ 2-DoF wrist contractions (flexion/extension

and adduction/abduction) into hand posture control
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commands, implementing the algorithm based on PCA

previously presented by the authors in [21]. At a glance

this algorithm reverted the PCA concept and allowed to

drive the dexterous 6-motor hand in a pre-defined

hand-posture workspace with just two independent

control inputs (in this case the 2-DoF wrist move-

ments); the pre-defined hand-posture workspace is illu-

strated in Figure 4 [21]. The picture shows a discrete

grid representing the two inputs and a sample of the

postures assumed by the hand (corresponding to such

inputs), i.e., the two-to-six mapping. The map denotes

that some areas (i.e. some input combinations) are more

functional for certain grasp types rather than others. The

pre-defined workspace of the hand was actually the result

of the analysis of postural data directly collected from the

six position sensors in the hand, while performing a

multitude of grasps (cf. Appendix A and [21]).

In this study the two control inputs were obtained

from effective myoelectric signals picked-up in real-time

on the forearm of able-bodied subjects wearing the pros-

thetic hand emulator, so that they could control (moving

their wrists as shown in Figure 3) the posture of the

hand in the workspace (in Figure 4), and hence grasp

objects. As shown in our previous work, the first input

Ch1 (wrist flexion/extension) mostly influenced fingers

flexion/extension (horizontal axis in Figure 4) whereas

the second input Ch2 (wrist adduction/abduction) influ-

enced thumb rotation (vertical axis in Figure 4). For the

sake of clarity, the mathematical description of the myo-

electric joystick, of the hand-posture workspace and of

the PCA-based controller are described in Appendix A.

Figure 1 System overview. The experimental setup included the EMG acquisition module (AM, with four active electrodes placed on the user’s

forearm and an acquisition board) and the software control system (CS), which ran on a laptop and was interfaced with the hand (RH) via serial

port. The CS acquired and decoded the four EMG signals to generate two independent input signals; these were fed into the PCA-based

algorithm that generated and sent the six motor control commands to the robotic hand.

Figure 2 Prosthetic hand emulator and electrodes positioning.

Experimental set-up showing the prosthetic hand emulator and the

four EMG sensors on the targeted muscles: the flexor (FCR) and

extensor carpi radialis (ECR), the extensor pollicis longus (EPL) and the

flexor carpi ulnaris (FCU).

Figure 3 Two DoFs control signal generation. Wrist movements

re-mapped into Ch1 and Ch2 signals variations, used to generate

input commands for the PCA-based algorithm. Extending (ext) or

flexing (flex) the wrist affected the input control signal Ch1.

Adduction (add) and abduction (abd) movements influenced Ch2.
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Experimental setup and protocol

Two groups of volunteers composed of six able-bodied

subjects each (3 males and 3 females each, whose aver-

age age was 25.5 ± 1.8 years old), all with dominant right

hand (same as the artificial hand) and naïve to EMG

control, were enrolled in this study. Subjects in both

groups (G1 and G2) were asked to execute the simple

task of grasp, lift, transport and release an object operat-

ing in real-time the CyberHand through the myoelectric

PCA-based controller introduced above. Twenty differ-

ent objects were chosen (cf. Table 1), proportionally

representing the percentages of power, precision and lat-

eral grasps used in activities of daily living (ADLs) [34].

Each subject was seated on a chair in front of the ob-

ject to be grasped, which was placed (always in this same

position) on a desk. The prosthetic hand emulator was

fastened to the right forearm of the subject as shown in

Figure 2.

At the beginning of the experiments, each subject

wearing the system was asked to perform powerful

flexion/extension and abduction/adduction movements

of his/her right wrist (about 2 s for each contraction),

while the corresponding EMG signals were recorded.

This simple procedure was used to calibrate the CS with

the subject’s muscular activity: the maximum EMG amp-

litude value for each channel was identified and used to

set Ti,1 and Ti,2 noise thresholds (e.g., 1/4 of peak value)

(cf. Eq. 5, Appendix A).

Starting with the artificial hand completely opened,

after an initial audio cue, each task (i.e. moving the tar-

get object from its initial position on the desk to a final

one, fixed 50 cm far on the same desk) started. Comple-

tion and grasping times were measured using a standard

chronometer (activated after the starting cue and finally

stopped once the hand returned in the open posture,

after object release).

There were two sets of 20 objects for each subject and,

in both sets, the target objects were presented in ran-

dom order. The experimental task was the same for both

G1 and G2, whereas the protocol differed. Subjects in

G1 were given precise instructions on how to control

the hand (i.e., how the 2-DoFs EMG joystick worked,

how contractions were mapped into hand postures, how

to flex muscles to obtain a defined grasp) and a twenty

minutes training session (not recorded), in which they

were free to train and control the CyberHand with their

EMGs and to grasp different objects as they wished.

After that, the experimental trials began. Subjects in G2,

Figure 4 CyberHand postures distribution. CyberHand postures over the Ch1,Ch2 input signals plane, sampled using a 5×5 grid. Blue, red or

dark green backgrounds are used to denote areas corresponding to those hand configurations which are functional for achieving respectively a

power, precision or lateral grasp. Faded colours are used to indicate areas where more than one grasp type could be achieved. A black

background denotes the open-hand neutral position.

Matrone et al. Journal of NeuroEngineering and Rehabilitation 2012, 9:40 Page 5 of 13

http://www.jneuroengrehab.com/content/9/1/40



instead, were given only simple instructions (i.e., which

muscles to contract) with no time for initial practicing,

but were asked to perform the experiment on three con-

secutive days. The different experimental protocols for

the two groups were aimed at assessing two complemen-

tary hypotheses on the intuitiveness and effectiveness of

the system. The first hypothesis (assessed through G1

subjects) was that a short practice after detailed instruc-

tions would be sufficient to achieve good performance in

grasp tasks. The second hypothesis (assessed through

G2 subjects) was that the controller was intuitive

enough that, even with no precise instructions, perform-

ance would improve with practice anyway.

Three metrics were used to quantify the quality and

performance of grasp: (1) the task-completion rate (CR),

defined as the percentage of correctly executed tasks (i.e.

reach, grasp, transport and release the object without

slippage); (2) the object-grasp time (Tg), defined as the

time taken to correctly grasp (in subjects’ opinion) the

object, from audio cue to the achievement of a firm

grasp and confident object lift; (3) the task-completion

time (Tc), defined as the time spent to perform the

whole task (object grasp, transport and release, starting

from the audio cue). These metrics were based on simi-

lar studies [14,35].

Statistical differences among experimental task-

completion rates and times were evaluated using the

Friedman test [36]. Non parametric statistics was used

as the data set did not pass tests for normality. A level

of p< 0.05 was selected as the threshold for statistical

significance. In addition, in this study we assumed that

results achieved in two consecutive sets on the same day

were not statistically different. Statistical analyses were

performed using MatLab (The MathWorks, Natick, MA,

USA) scripts.

Results

The six subjects enrolled in G1 performed 40 grasps

each (20 objects, 2 repetitions) on a single day, for a

total of 240 trials. The six subjects in G2 performed 120

grasps each in three days, for a total of 720 trials.

1) The percentage of completed tasks and 2) time

spent to grasp and complete the task were used to evalu-

ate the control system usability and how easy to learn

was the re-mapping of muscular contractions into hand

movements by subjects naïve to EMG control. There-

fore, the evolution throughout the three days of these

metrics for subjects in G2 and their comparison with

group G1 performance were analyzed.

Each experimental session (two sets of grasps, includ-

ing set-up and calibration) lasted about 60 min. As

expected, the majority of time was spent to grasp the ob-

ject (i.e., voluntarily control the hand in the prehensile

pattern), after which subjects were able to transport and

release it within few seconds and with minimal effort.

The primary cause of trial failure (83% of total fails) was

the object fall during the grasping phase, especially for

small objects requiring precision grasps. In some cases

(17%), the object fell during its transportation from the

initial to the target point on the desk, due to a poorly

stable grasp.

Task-completion rates

The task-completion rate, for subjects in G2 on day 1, 2,

3 and for subjects in G1, is presented in Figure 5. Each

bar representing power grasps (in black) includes 96

samples (8 objects, 2 repetitions, 6 subjects), precision

grasps (in white) 72 samples (6 objects) and lateral

grasps (light gray) 72 samples (6 objects).

The visible improvement in performance throughout

the three days was not always confirmed by the Fried-

man test, as task-completion rates across days and sub-

jects (G2) revealed to be statistically different only for

precision grasps (p = 0.015) but not for power (p = 0.495)

and lateral (p = 0.222) grasps.

Object-grasp and task-completion times

The object-grasp and task-completion time distributions

for G1 and G2 on day 1, 2 and 3 are presented in

Figure 6. On the average, Tg and Tc times for G2 sub-

jects decreased along with days. The Friedman test on

Table 1 Objects used in the experimental trials

Object Shape Size [mm] Grasp Type

Paper roll cylindrical d= 47; h= 225 power

Spray cylindrical d= 52; h= 140 power

2 l bottle cylindrical d= 90 power

0.5 l bottle cylindrical d= 65 power

Coke tin cylindrical d = 65; h = 110 power

Twine roll cylindrical d= 60; h= 80 power

Cigarette pack parallelepiped 20 × 55× 85 power

Torch cylindrical d= 35; h= 165 power

Golf ball spherical d= 40 precision

Plastic sphere spherical d= 33 precision

Soft rubber ball spherical d= 50 precision

Electric adapter plug cylindrical d= 43; h= 40 precision

Plastic cube cube L= 30 precision

Paperclips pack parallelepiped 70 × 38× 15 precision

CD circular d= 120 lateral

Single CD case rectangular 140× 125 × 5 lateral

Pad-per-hole perfboard rectangular h= 2 lateral

Audio-cassette case parallelepiped 108× 67 × 16 lateral

Business card rectangular h= 1 lateral

Post-it notes package parallelepiped 78 × 127 × 8 lateral

In the Size column, d stands for diameter and h for height.
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Figure 5 Results: average task-completion rates. Task-completion rates for group G2 on day 1–3 (d1–d3) and for group G1, considering both

sets for each object. Black bars represent power grasps, white bars refer to precision grasps and light gray ones to lateral grasps.

Figure 6 Results: object-grasp and task-completion times distributions. Box & whiskers plots representing (A) object-grasp time (Tg) and (B)

task-completion time (Tc) distributions for subjects in G2 on day 1,2,3 (d1, d2, d3) and for group G1. Black boxes refer to power grasps, white

boxes to precision grasps and the gray ones to lateral grasps. Each box is delimited by the first and third quartile values; thick horizontal lines,

instead, highlight median values. Whiskers show the extent of the rest of the data, while crosses represent the outliers.
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Tg revealed that there were significant differences among

days for power (p< 0.001) and lateral grasps (p< 0.001)

but not for precision grasps (p =0.192). Similar results

were obtained for task-completion times (power p< 0.001,

lateral p< 0.001, precision p= 0.088).

Overall, data presented in the box plots show high dis-

persion. Nevertheless, this large variability was caused

by the differences in subjective performance and not by

other variables (sets or days). This is clearly demon-

strated by the graphs in Figure 7, where all task-

completion and object-grasp times are plotted along

with days (outlier samples mostly refer to precision

grasps). Although each subject’s performance was differ-

ent (i.e. subject 6 was generally faster than subject 4), all

of them presented a clear improvement (Tc and Tg de-

crease) with time. The slope of the plotted fitting curve

(i.e. a single decaying exponential function obtained by

means of non-linear least squares fitting) may vary

among them, but the trend is always (encouragingly)

negative.

Moreover, at a glance graphs in Figure 7 show similar

trends between pair wise task-completion and grasp-

object times. This is confirmed by the Wilcoxon signed-

rank test [37] (taking care of subtracting the mean value

from each distribution) in 11 subjects out of 12, demon-

strating that the transport and release phases of the task

did not significantly influence the overall subject’s

performance.

It should also be noted that the long times required to

perform a grasp (Tg up to 20 s and over) should be

related to the hand speed, which was very low (see the

“Concluding remarks”). The minimum time required to

perform stable grasps (in the three prehensile forms)

was measured, resulting in 4.2 s for power grasps and

3.2 s for lateral and precision grasps. Therefore, as

depicted in Figure 6 and Figure 7, day 3 results were

considerably near to the best achievable ones.

Discussion

The objective of this study was to demonstrate the feasi-

bility of the PCA-based control algorithm, previously

presented by the authors in [21], in more realistic condi-

tions, i.e. controlling in real-time the prosthetic hand

emulator with actual myoelectric signals.

Experimental trials demonstrated that the myoelectric

controller worked properly and that the PCA-based

Figure 7 Object-grasp and task-completion time trends throughout days for each subjects in G2. (A) Object-grasp (Tg) and (B) task-

completion (Tc) times for power, precision and lateral grasps throughout trials. Data are sorted following their temporal execution order (day 1:

set 1 and 2, day 2: set 1 and 2, day 3: set 1 and 2). Each dataset is fitted with a decreasing exponential function (black curve) demonstrating the

improvement in performance.
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approach allowed to drive—in the correct prehensile

pattern—a multi-fingered, multi-DoF hand with just two

differential EMG channels, i.e., with a clinically viable

system. Since the approach aims to improve the usability

of the prosthesis, the physical features of the grasp (e.g.

form closure, force closure, grasp stability, etc.) were not

considered as a measurement of performance, but rather

we preferred to investigate usability-related metrics.

Indeed, these can portray more interesting insights on

the ability of the final users to learn how to control the

artificial hand through the present system. Several con-

siderations can thus be made on the performance

achieved by each group.

G1 results: initial training ensures good performance

CR

For subjects belonging to G1 who operated the hand in

a single experimental session, after the 20 min practice,

task-completion rates for power and lateral grasps were

similar, also statistically (Friedman test: power p = 0.58,

lateral p = 0.37), to those obtained by G2 on the three

days and, importantly, considerably high (cf. Figure 5).

The CR in precision grasps was also high. These results

underline the importance played by the 20 min training

and instructions given, effectively sufficient for gaining

significant confidence with the system and for achieving

excellent performance (CR = 89% on the average).

Tg and Tc

With regard to time metrics, results for group G1 are

closer to those obtained by G2 on the first day, rather

than those on the second or third day (cf. Figure 6). As

described below, this is probably due to the fact that

improvements in time metrics are visible only after sev-

eral trials.

G2 results: performance improves with time

Observing results achieved by group G2, which under-

went a three days experimental session, it is possible to

highlight issues on the subjects’ performance evolution.

CR

Generally, the CR increased along with days (cf.

Figure 5). However, improvements were statistically

significant only for precision grasps (p = 0.015), as these

are (in general and especially in the beginning, with no

particular instructions on how to perform them) the

most difficult ones, due both to the mechanical features

of the hand and to the shape of the grasped object (often

spherical) [21]. Therefore, performance improvements

were particularly pronounced (i.e. the height of precision

grasp bars in Figure 5 significantly increase), underlying

that subjects learned how to finely operate the hand

thanks to practice.

For power and lateral grasps, which are instead sim-

pler, a high performance was already achieved on day 1,

and thus CR displayed just a slight increase (not statisti-

cally significant).

Tg and Tc

Concerning time analyses, results revealed a very high

dispersion; this was mainly due to inter-subject variabil-

ity and would decrease if considering the six subjects

separately (Figure 7). Subjective time trends, together

with average task completion rates, demonstrate that

those subjects who underwent a three days experimental

session soon learned how to functionally control the

artificial hand, improving their performance.

Tg (and Tc) values significantly decreased throughout

days for power and lateral grasps but not for precision

grasps, which anyhow (importantly) did not increase. In

this last case, their persistent high variability was prob-

ably affected by the intrinsic complexity and effort

required to control the hand in such posture.

Precision grasps accuracy

The time-improving grasp accuracy for precision

grasps was clearly visible for the operator who super-

vised the experiments: on the first day, almost all sub-

jects exploited the inherent dexterity of the PCA-

controller, trying to perform grasps with the minimum

effort. They mostly used only one DoF (i.e., the one

mainly controlling fingers flexion/extension) which was

good enough to grasp all objects, even if approxi-

mately. On day 2 and 3 instead, they controlled the

hand more accurately.

This can be demonstrated by Figure 8, which repre-

sents in the Ch1,Ch2 plane (the two signals that modu-

late the two principal components) the values reached

when stable precision grasps were achieved. Circles refer

to day 1 (naïve subjects), whereas triangles refer to day 2

and 3 (when subjects were supposed to be trained). It is

immediate to observe that the majority of day 1 samples

are distributed along the bottom horizontal axis (where

Ch2=max(Ch2)), that corresponds to a rough powerful

adduction of the wrist. On day 2 and 3 the control be-

came finer: this is denoted by the increased concentra-

tion of points spread over the Ch1,Ch2 plane, meaning

that subjects paid more attention in operating the sys-

tem (not just making Ch2 saturate, as on day 1). Never-

theless, importantly, the improvement in accuracy and

completion rate was not paid in terms of increased

object-grasp time (Figure 6A).

Concluding remarks

Some final remarks on the setup should be provided.

The relatively low speed of the hand is a parameter that

certainly affected experimental outcomes. For this
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reason, in fact, the measured time values are definitely

long (cf. Figure 6, where Tg are up to 20 s); however,

what is interesting and worth publishing are the differ-

ences in times and trends throughout days and not

absolute values. It should be noted that the minimum

time required to perform stable grasps (in the three pre-

hensile forms) was measured and resulted in 4.2 s for

power grasps and 3.2 s for lateral and precision grasps.

Therefore, as depicted in Figure 6 and Figure 7, day 3

results were considerably near to the best achievable

ones. It is still not clear whether a faster hand would

improve or worsen performance, as a more reactive sys-

tem may be less controllable, especially during accurate

movements. Further researches dealing with these

aspects and employing a faster hardware are therefore

foreseen.

The present ones are the first experiments and the

viability of such system, which is mostly indicated for

transradial amputees, would be in the end demonstrated

by amputated subjects performing real activities of daily

living. Nevertheless, it is reasonable to suppose that EMG

performance in controlling a hand prosthesis—especially

using four electrodes—would not significantly change

with amputees using a traditional myoelectric hand (as

shown in [13] and [14]). In particular, if the amputation

level ranges from wrist disarticulation to transradial in the

lower third, we can assume that results would not be

significantly different, as the muscles targeted in this study

would be preserved. If the amputation instead is more

proximal, e.g. short below the elbow, four independent

EMG sites should be found and their positioning should

be assessed in each different case. Even with a transhum-

eral amputation the present system could still be imple-

mented, but in this case the setup should be changed

(e.g. placing electrodes sites on the shoulder and breast

muscles) and results would probably be different.

Conclusions

In this work, we demonstrate for the first time that a

PCA-based controller can be successfully combined with

a two DoFs (4 electrodes) EMG acquisition system and

easily used by able-bodied participants to control in

real-time the prehension of a five-fingered six-motorized

artificial hand. The experimental results of the trials

described in this paper demonstrate that this bio-

inspired myoelectric interface and control system has

the great potential to become a usable means for ampu-

tees by achieving both ease of use and dexterous func-

tionality, and by allowing them at last to manage their

hand prosthesis in a more intuitive and natural way.

Appendix A

Myoelectric joystick

The myoelectric joystick was implemented as follows.

Signals generated by the antagonist extensor and flexor

carpi radialis (s1,1 and s1,2, wrist extension/flexion) were

combined to obtain the first DoF (Ch1 signal) of the

control input; signals from the flexor carpi ulnaris and

the extensor pollicis longus (s2,1 and s2,2, wrist adduction/

abduction) were used to obtain the second DoF (Ch2 sig-

nal) (cf. Figure 3). Signals were sampled at 1 kHz, and

integrated over 20 ms non-overlapping windows:

Si;j kð Þ ¼
X

NkþN�1

t¼Nk

si;j tð Þ i ¼ 1; 2; j ¼ 1; 2 ð1Þ

where t represents sampled time (t= 0,. . .,tn, being tn the

time of acquisition end), N is the number of samples

Figure 8 Control signal values corresponding to the reaching of stable precision grasps. Precision grasp points distribution over the Ch1,

Ch2 plane for all subjects in G2. Circles denote grasps on the first day, triangles correspond to grasps on day 2 and day 3.
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included in 20 ms (i.e. 20, if sampling at 1 kHz) and k is

an integer index:

k ¼ 0; 1; 2; . . . ; floor
tn þ 1

N

� �

� 1 ð2Þ

(floor stands for “round to the nearest lower integer

value”). Index i is used to denote the muscles pair (i.e.,

FCR and ECR or EPL and FCU), while j refers to the

muscles inside the pair.

Two combined signals Sxi(k) (one for each muscles

pair) were then computed by multiplying the maximum

between the integrated signals of each two antagonist

muscles (Si,j(k)) by an empirical corrective factor Fi,k:

Sxi kð Þ ¼ Fi;k � max
j

Si;j kð Þ
� �

� sign Si;1 kð Þ � Si;2 kð Þ
� �

;

ð3Þ

with k varying as in (2).

Finally, signals Ch1 and Ch2 (i.e. the outputs of the

EMG processing module) were computed by simple in-

tegration (accumulation):

Chi kð Þ ¼ Sxi k � 1ð Þ þ Sxi kð Þ: ð4Þ

The empirical corrective factors Fi,k depended on the

four EMG signals as follows:

Fi;k ¼ 0 if Si;1 kð Þ < Ti;1

� �

∧ Si;2 kð Þ < T i;2

� �

f F1;k ¼ 1
F2;k ¼ 0:8

if M kð Þ 2 S1;1 kð Þ; S1;2 kð Þ
� �� �

∧ M kð Þ > 1:5 � S2;j kð Þ
� �

f F1;k ¼ 0:6
F2;k ¼ 1 if M kð Þ 2 S2;1 kð Þ; S2;2 kð Þ

� �� �

∧ M kð Þ > 1:5 � S1;j kð Þ
� �

Fi;k ¼ 1 otherwise

ð5Þ

where j = 1,2; Ti,1 and Ti,2 were threshold values (experi-

mentally assessed), below which signals were considered

as noise and, each time, M(k) was the maximum value

among the four signals Si,j(k).

In practice, every 20 ms the highest integral value

among the four (e.g. S1,1(k)) was compared with the ones

generated by the other pair of muscles (in this example,

S2,1(k) and S2,2(k)) and if it was sufficiently greater (i.e.

S1,1(k)> 1.5�S2,1(k) and S1,1(k)> 1.5�S2,2(k)), then the cor-

rective factor for the “losing” pair of muscles was set to a

number between 0 and 1 (i.e. 0.8 or 0.6 vice-versa). The

corrective factor for the “winning” pair was always set to

1, in order to totally reflect the maximum muscular con-

traction into a variation of the corresponding Chi signal;

whereas, if muscular activity was below the thresholds (i.

e., considered as noise), it was set to zero.

The two signals (DoFs) Ch1 and Ch2 were finally fed

into the “inverse PCA” algorithm (presented in [21] and

briefly resumed below) to compute the six end-point

position values for the control of the CyberHand.

As regards the empirical factors used, the need to

introduce them emerged in preliminary investigations,

while plotting the two channels Ch1 and Ch2 on the x, y

axes of the monitor screen, i.e. converting them into co-

ordinate values of a 2D cursor. During these first trials,

the obtained cursor movements were not fluent; in par-

ticular subjects had difficulties in moving the cursor

along oblique paths, since the contributions of the two

muscles pairs to the two signals were not well balanced

(each time the “winning pair” too strongly prevailed on

the other pair). Thus, different Fi,k values were used to

correct them, trying to enhance each time the action of

the winning muscles pair and to lower the other one’s,

but without completely cancelling it. Moreover, signals

generated by flexor and extensor carpi radialis were

found to be significantly higher than those produced by

the other pair [38]; this is why, when the wrist adduc-

tion/abduction (usually weakly) prevailed, an even lower

corrective factor (e.g. 0.6) was required to attenuate

those strong muscles contribution.

Hence, the corrective factors finally chosen permitted:

first, to compute a 2-DoFs, continuous (50 Hz rate), and

independent (synchronous and not exclusive) output (as

both channels, if above thresholds, were always com-

puted); second, to match the cross-effects of different

pairs of muscles (by setting different corrections to the

losing pair, i.e. 0.6 or 0.8).

Being the corrective factors subject-dependent, they

had to be properly calibrated for each user; in this study

however, the values reported above demonstrated to be

a good trade-off for all subjects involved. If electrodes

were placed on other muscles (which might behave dif-

ferently and have different strengths) these values should

be properly re-tuned. Noise thresholds Ti,j (one for each

recorded signal) also required subjective tuning and

were calculated in this work during the calibration pro-

cedure preceding each experimental session, as a frac-

tion (1/4, found empirically) of the maximum value of

the recorded EMG signal.

PCA-based controller and hand-posture workspace

Being inspired by the work of Santello et al. [20], in our

previous paper [21] we presented a PCA-based control-

ler able to control some level of dexterity in multi-DoF

hands by means of just a 2-DoF control input.

The PCA algorithm [39] is briefly described hereafter.

Having a dataset matrix of hand postures (where each

datum consists of N position values), the eigenvectors of

its covariance matrix (NxN) are the PCs and the related

eigenvalues are the PCs weights, which represent the

amount of data variance the PCs can explain. By multi-

plying the dataset matrix by the PCs matrix (whose col-

umns are the PCs vectors ordered in descending order

according to their weights) a new dataset is obtained,
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where variables are uncorrelated. PCA can also be used

for dimensionality reduction, since, if the last PCs have a

low weight, they can be neglected, and each datum in

the new set will be represented by a reduced number of

variables.

In the specific case of the CyberHand, the analysis of

postural data directly collected from the hand six pos-

ition sensors (meaning that the original data dimension

is N=6), while performing a multitude of grasps with dif-

ferent objects, demonstrated that the first two PCs can

account for almost 90% of these data variance. Thus,

inverting the PCA algorithm and neglecting the low-

weight PCs, these 2 PCs can be used to transform a 2D

input (Ch1, Ch2) into its 6D original counterpart

(Out1,. . .Out6), which consists of six position values for

the hand fingers:

PC1
!

PC2
!

. . . PC6
!

2

4

3

5 �

Ch1
Ch2
0

. . .

0

2

6

6

6

6

4

3

7

7

7

7

5

¼

PC1;1 � Ch1 þ PC2;1 � Ch2
PC1;2 � Ch1 þ PC2;2 � Ch2
PC1;3 � Ch1 þ PC2;3 � Ch2

. . .

PC1;6 � Ch1 þ PC2;6 � Ch2

2

6

6

6

6

4

3

7

7

7

7

5

¼

Out1
Out2
Out3
. . .

Out6

2

6

6

6

6

4

3

7

7

7

7

5

ð6Þ

where PCi,j is the j-th dimension of the i-th principal

component (column) vector PCi.

In practice, the calculated PCs matrix, allows to trans-

form two independent inputs Ch1 and Ch2 (e.g. the

mouse coordinates on a PC screen) to a defined work-

space of hand postures (cf. Figure 4).
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