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Abstract

Goal—We present and evaluate a wearable high-density dry electrode EEG system and an open-
source software framework for online neuroimaging and state classification.

Methods—The system integrates a 64-channel dry EEG form-factor with wireless data streaming 
for online analysis. A real-time software framework is applied, including adaptive artifact 
rejection, cortical source localization, multivariate effective connectivity inference, data 
visualization, and cognitive state classification from connectivity features using a constrained 
logistic regression approach (ProxConn). We evaluate the system identification methods on 
simulated 64-channel EEG data. Then we evaluate system performance, using ProxConn and a 
benchmark ERP method, in classifying response errors in 9 subjects using the dry EEG system.
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Results—Simulations yielded high accuracy (AUC=0.97±0.021) for real-time cortical 
connectivity estimation. Response error classification using cortical effective connectivity (sdDTF) 
was significantly above chance with similar performance (AUC) for cLORETA (0.74±0.09) and 
LCMV (0.72±0.08) source localization. Cortical ERP-based classification was equivalent to 
ProxConn for cLORETA (0.74±0.16) but significantly better for LCMV (0.82±0.12).

Conclusion—We demonstrated the feasibility for real-time cortical connectivity analysis and 
cognitive state classification from high-density wearable dry EEG.

Significance—This paper is the first validated application of these methods to 64-channel dry 
EEG. The work addresses a need for robust real-time measurement and interpretation of complex 
brain activity in the dynamic environment of the wearable setting. Such advances can have broad 
impact in research, medicine, and brain-computer interfaces. The pipelines are made freely 
available in the open-source SIFT and BCILAB toolboxes.

Index Terms

Wearable sensors; EEG; dry-contact electrode; brain-computer interfaces; neuroimaging; 
connectivity analysis; adaptive systems

I. Introduction

In recent years, advances in dry-electrode electroencephalography (EEG) and wireless 
integrated acquisition systems [1, 2] have spurred increasing development of a new 
generation of wearable, mobile applications of EEG for real-world cognitive state 
monitoring, clinical diagnostics and therapeutics, and brain-computer interfaces (BCI), 
among others [3–7]. Concomitant with this is an increasing scientific appreciation for the 
importance of measuring complex dynamic interactions (e.g. functional or effective 
connectivity) between brain processes. These advances may provide key predictive 
information regarding brain function and dysfunction [8–11]. In particular, measuring 
interactions at the level of cortical sources, rather than sensors can offer increased 
interpretability while reducing confounding factors of volume conduction [12–14].

However, many practical applications of EEG call for further developments in signal 
processing and machine learning to improve real-time (and online) measurement and 
classification of brain and behavioral states from small samples of noisy EEG data. Such 
developments present significant challenges, which we comprehensively review in [15]. 
Methods for motion artifact rejection and neuronal system identification in the highly 
dynamic environments of mobile wearable EEG settings must be fully automatable and 
capable of adapting to changes in measured data distributions. Robust statistical machine 
learning approaches are required for modeling relationships between high-dimensional 
neuronal features and cognitive or behavioral states. For real-time applications, such 
methods must be capable of operating efficiently with minimal computational delay. Finally, 
the integration of data acquisition, processing, classification, and visualization pipelines 
within a unified interoperable software framework is key to reducing barriers to real-world 
application and reproducibility.
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Of similar importance is the development of wearable (wireless, lightweight, dry) EEG 
hardware capable of comparable signal quality to research-grade wet systems. High channel 
density and spatial coverage are particularly important for effective artifact rejection and for 
high-resolution EEG source localization [12].

Over the last decade, an increasing number of studies have explored the application of 
multivariate functional and effective connectivity estimation in the EEG source domain 
(reviewed in He et al [16]). For example, Babiloni et al [17] studied spectral directed 
information transfer between cortical regions of interest (ROIs) in a finger-tapping task. 
Astolfi et al [18] performed a detailed performance analysis of three commonly used 
multivariate spectral effective connectivity estimators (including dDTF and PDC estimators 
used in the present study) applied to cortical ROI activity. They demonstrated reliable 
recovery of cortical connectivity patterns in simulations and Stroop experimental task data. 
Haufe et al [14] provided a critical simulation-based assessment of Phase Slope Index and 
Granger-causality connectivity measures in both sensor and source space. Hassen et al [12] 
performed a comparative study of several approaches for source localization and 
connectivity analysis, applied to a well-characterized (picture recognition and naming) 
experimental task dataset.

However, these studies applied source connectivity models to ensembles of multi-trial data, 
confining applications to offline analysis. Less common is the online application of source-
level multivariate connectivity inference at the level of single trials and in real-time. 
Furthermore, the use of single trial multivariate source connectivity as predictive features for 
BCIs still remains relatively unexplored. One exception is a 2013 paper by Billinger et al 
[19] that described and evaluated a system for single-trial source connectivity analysis 
applied to motor imagery classification. While this system shares some features with our 
own, there are also ample differences, which we note in the discussion section. We also point 
to an innovative paper by Stopczynski et al [7] demonstrating online low-resolution cortical 
source localization on a mobile phone using 14-channel (Emotiv Epoch) wet EEG.

The objective of this paper is to describe and demonstrate 1) a novel high-density (64-
channel) dry EEG hardware system and 2) a software framework for real-time artifact 
rejection, source localization and connectivity analysis, cognitive/behavioral state 
classification, and data visualization. Outside a preliminary case study by our group [20], 
this is the first demonstration of such a framework applied to high-density, dry, wearable 
EEG data.

The software is made freely available within open-source toolboxes by the authors, 
including BCILAB [21] and SIFT [5, 22].

In [1], a first version of a 64-channel dry EEG system was introduced, focusing on the 
physical properties of the dry electrode, and briefly highlighting the wearable headset and 
compact electronics. Here we present an extended version with a detailed description of the 
complete headset system, including operational mechanics to minimize motion artifacts; 
system specifications and electronics, including analog frontend and shielding for obtaining 
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high quality signals from dry electrodes; and a wireless communications system, necessary 
for transmitting accurate time-marked data in a wireless environment.

We further demonstrate the use of the dry EEG system with the aforementioned real-time 
framework for artifact rejection and neuronal system identification, expanding on our earlier 
2013 report [20], in which we provided a brief introduction and preliminary (single subject) 
evaluation of the system. In this paper, we present mathematical details of key methods, 
including the Artifact Subspace Reconstruction method for artifact rejection; an efficient 
implementation of anatomically constrained LORETA for source localization; and the 
application of the Alternating Direction Method of Multipliers for efficient sparse neuronal 
system identification and connectivity-based cognitive state classification. Additionally, we 
evaluate system performance in a 9-subject BCI study.

We note that alternative open-source software solutions are available for inferring single-trial 
effective connectivity in the source domain. These include the Matlab-based eConnectome 
toolbox [23] and the Python-based SCoT toolbox [24]. The purpose of this paper is not to 
compare those useful toolboxes with BCILAB or SIFT, or advocate for any specific toolbox. 
However we note that, to our knowledge, alternative toolboxes are designed primarily for 
offline data analysis, and have not yet been optimized for online (streaming) or real-time 
application. Further, eConnectome does not offer methods for cognitive state classification. 
While other toolboxes offer methods unavailable in BCILAB or SIFT, the integration of 
BCILAB and SIFT offers a uniquely comprehensive selection of methods for EEG signal 
processing, neuronal system identification, and machine learning which may be easily 
combined into standard BCILAB pipelines for online or offline application. The pipelines in 
this paper demonstrate just a few possible combinations of such methods.

The outline of the paper is as follows. First, we detail the design and implementation of the 
wireless 64-channel dry-electrode EEG system. Then we provide details on the signal 
processing and machine-learning framework supporting real-time analysis of the streaming 
data. Next, we describe two validation studies: a 64-channel simulated EEG experiment, and 
an EEG BCI experiment (detecting behavioral response error commission in a modified 
Eriksen Flanker task) using the wearable system. Finally, we present and discuss the results 
of experiments including exposition and interpretation of neuronal features that discriminate 
between correct and erroneous responses.

II. Material and Methods

The proposed real-time analysis framework is outlined in Fig. 1. EEG data are acquired from 
the wearable dry EEG system via the open-source Lab Streaming Layer software1 (LSL). 
The data stream feeds to a data analysis and classification pipeline consisting of pre-
processing, source localization, dynamical model fitting and connectivity estimation, and 
cognitive state classification. Supporting tools for 2D and 3D data visualization augment 
this, allowing examination of task-relevant brain network dynamics and activity across time, 
frequency, and anatomical location.
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The framework is implemented in the MATLAB-based (The Mathworks, Natick, MA) 
BCILAB and SIFT toolboxes for EEGLAB. We have made the workflow available as the 
BCILAB "Source Information Flow Toolbox Adapter" paradigm (ParadigmSIFT class). 

For an example of online data acquisition and source connectivity analysis, we point to 
SIFT's /scripts/BCILAB_MINIMAL_DEMO example.

A. Wearable EEG Hardware

While dry-electrode EEG systems have been explored for BCIs and are commercially 
available for “consumer” gaming applications, few such systems feature more than a handful 
of EEG electrodes. Cognionics has developed the HD-72 dry wireless high-density EEG 
headset, shown in Fig. 2a. The system features 64 EEG electrodes (Fig. 2d) plus reference 
and ground. An additional 8 recording channels are available providing ECG, EMG, 
respiration and other physiological variables for mobile brain-body activity monitoring.

Obtaining high-quality EEG signals in real-world environments is challenging due to the 
various sources of electrical, mechanical and physiological artifacts, especially in real-world 
environments. The EEG headset is designed to mitigate these challenges by optimizing 
electro-mechanical design in a single, integrated and wearable form-factor.

In terms of electronics, a practical wearable EEG system must not only be lightweight but 
also able to reject electrical interference and cope with variable and changing electrode 
contact qualities. External electrical noise is often the first sign of poor signal quality, 
commonly observed as 50/60 Hz line noise. While notch filtering has some utility in 
removing known line noise, many other sources of external interference (e.g., static charging 
as the subject moves) are unpredictable and cannot be removed via simple filtering. To 
minimize the influence of external electrical fields, the headset utilizes an actively driven 
ground system to sense and cancel out common-mode potentials on the subject’s body. In 
addition, the internal wiring of the headset itself sits within a local Faraday cage-like 
enclosure formed by a conductive layer, spanning the headset, driven by the output of a 
reference amplifier. This further eliminates differential interference, which is particularly 
problematic with high impedance dry electrodes.

In addition to rejecting external noise, the headset electronics provide a high dynamic range 
input (+/− 400mV) to cope with the potentially large DC offsets encountered with dry 
electrodes. The use of a 24-bit ADC enables the use of low analog amplification and the 
elimination of AC-coupling within the signal path. Large transient artifacts (e.g., sweating or 
movement) recover quickly as there are no filter settling or amplifier saturation issues.

The headset provides an optional real-time impedance measurement for monitoring of the 
electrode contact quality prior to and during recording. This can significantly reduce the 
time required for setup while allowing for improved automated channel rejection during 
recording. Each channel contains a precision AC current source (+/− 24nA) operating at ¼ 
the sample rate. Measuring the induced voltage drop, with respect to the reference electrode, 
isolates the local electrode impedance. The impedance check signal is superimposed as a 
carrier wave on top of the EEG and notch filtered out by the acquisition software.
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Signals are digitized at 300 samples/sec with a bandwidth from DC to 50 Hz (80 Hz with 
impedance check off) and transmitted via an onboard Bluetooth transmitter. A secondary 
radio is also onboard to receive event markers/triggers that require precise timing. The 
trigger receiver also operates within the 2.4 GHz band but uses a custom protocol optimized 
for the reliable and deterministic transmission of short data packets. Markers are sent by a 
dedicated transmitter box (Fig. 2a, right) with standard RS232 serial (DB-9) and TTL 
parallel-type (DB-25) inputs. Timing accuracy is less than 2 ms, independent of the large 
latencies and jitter encountered with Bluetooth and without the use of a wireline. The 
transmitter unit also provides a virtual serial interface over USB.

While the electronics provide a high degree of electrical shielding and low-noise signal 
amplification, a dry electrode system is also highly dependent on the mechanics to provide 
adequate contact between sensor and subject, particularly during movement. Unlike wet 
electrodes, dry electrodes lack the benefit of a fluid coupling medium to fill gaps between 
the electrode metal and the surface of the scalp. A dry electrode system is critically 
dependent on a harness to hold the electrodes in place and maintain direct skin contact. 
Building a high-density dry electrode array is especially difficult given the many variations 
in head size and shape.

To adapt to a wide range of subjects, the EEG headset starts with a mechanically flexible 
“spine” running from the forehead to the base of the neck (shown in Fig. 2a). The spine is 
made from a series of plastic pods that are hinged together to form a single, easy to handle 
unit. Each pod contains a pair of bands that run laterally out to the sides of the subject’s head 
and contain a row of sensors. A knob at each pod adjusts the tension and sensor contact 
pressure. Providing independent tension adjustment at each pod enables the headset to 
conform to different individuals and use cases (e.g., more tension for ambulatory use and 
less for more comfortable stationary recordings). To minimize weight, the internal wiring is 
provided by a flexible printed circuit board which is enclosed inside the headset. The base of 
the headset at the neck (shown in Fig. 2a), houses the electronics module and provides two 
wire connections that terminate in standard ECG-sized snap connectors, for reference and 
active ground. The entire system weighs only 350 grams, including batteries, enabling it to 
be easily worn by a mobile subject.

Two types of sensors are used with the headset: one with flexible prongs designed to go 
through hair shown in Fig. 2b, and one with a flat surface designed for use on bare skin 
shown in Fig. 2c. Both sensors connect to the headset via a miniature snap receptacle, 
enabling it to be easily interchanged as needed. The flexible sensor contains an array of 
angled legs. Mild to moderate pressure, from the headset onto the scalp, causes the legs to 
spread to better push aside hair and make contact to the scalp. Hard pressure causes the 
sensors to completely flatten, making it potentially safer than conventional straight metal pin 
electrodes. The body of the electrode is made from a flexible polymer and coated with a 
conductive outer layer. The tips, which make skin contact, are further coated with Ag/AgCl 
for the best possible signal quality. Typical contact impedances range from a few MΩs to 
hundreds of kΩs depending on the condition of the subject’s skin and contact pressure. The 
high input impedance of the amplifier and the use of an integrated active shield enables the 
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system to obtain acceptable signal quality despite higher contact impedances than traditional 
wet electrodes.

For areas of the head with bare skin, a pad-like sensor is used instead for maximum comfort 
and signal quality. The pad sensor contains a layer of hydrogel sandwiched between a semi-
permeable membrane and a plate of Ag/AgCl. The membrane enables ionic conduction with 
the skin for high signal quality while retaining a reusable and dry exterior. Due to larger 
surface area of the pad sensor, the impedances are typically lower, in the range of tens to 
hundreds of kΩs.

System evaluation demonstrated ability to acquire high fidelity EEG signals even with the 
use of high impedance dry electrodes. Average evoked potentials (AEP, SSVEP, P300) 
showed a correlation of r > 0.9 with signals measured simultaneously with nearby wet 
electrodes (Fig. 2e). An additional plot of simultaneously acquired wet and dry raw EEG 
data is also shown in Fig. 2f demonstrating comparable single-trial signal quality for wet and 
dry electrodes.

B. Preprocessing and Artifact Rejection

Despite the use of an artifact-mitigating form factor and electronics design, motion artifacts 
and poor-contacting EEG sensors can remain a challenge for both wet and dry electrode 
EEG data in mobile wearable settings. Furthermore, physiological artifacts, such as EMG 
and skin potentials, are inherently part of the recording. We employ online preprocessing in 
our BCILAB pipeline to further remove such artifacts.

The pre-processing framework supports several methods for artifact removal. This includes 
rejecting a subspace of ICA components pre-computed using an (possibly overcomplete) 
decomposition [25] on calibration data or adaptively estimated using Online Recursive ICA 
[26, 27]. In this paper, we describe an adaptive spatial filtering approach called Artifact 
Subspace Reconstruction (ASR), which we briefly introduced in [20]. The ASR filter 
operates online and is designed to detect and remove high-amplitude data components (for 
instance, stemming from eye blinks, muscle, and sensor motion) of high amplitude relative 
to some artifact-free reference data, while recovering EEG background activity that lies in 
the subspace spanned by the artifact components (see Fig. 9 for an example). Fig. 3 
graphically demonstrates the ASR procedure, which we outline next.

Let Xc = ℝQ×M be a reference (e.g. artifact-free) signal with low artifact content. Typically, 
this may be a short (e.g., 1 minute) segment of data collected at during a "calibration" period 
at the start of an online session, or it may be heuristically extracted from a longer data 
segment containing artifacts. Let x(t) ∈ ℝQ be a Q-channel EEG sample measured at time 
point t and let X ∈ ℝQ×N be a short sliding window of data containing x(t). We apply 
Principal Component Analysis (PCA) decomposition to X and obtain components V = [v1…
vQ] ∈ ℝQ×Q. We then remove the subspace of "artifact" components whose short-window 
variance σk exceeds a (spatially varying) threshold t(vk), itself derived from Xc, and impute 
each removed component with a linear combination of activity of the remaining non-artifact 
components. Finally, we back-project components into channel space.

Mullen et al. Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This sequence of operations is collapsed into a linear operator R = VM(M ◦ U)+VT which is 
applied to x(t) as x̂(t) = Rx(t). M = VTM ̅is the projected matrix square root of the 
covariance matrix C of Xc, such that M̅M̅T = C. For improved robustness to artifacts in Xc, 

we estimate C using the l1-median [28] of sample-wise covariance matrices  rather 
than the mean covariance.

The threshold operator U ∈ ℝQ×Q is chosen such that Ukl = 0 if σk > t(vk), otherwise Ukl = 
1. Thresholds t(vk) are computed from reference data as follows: we first obtain principal 
components W = [w1…wQ] ∈ RQxQ for Xc from C. Next, we obtain component activations 
Y = XcWT. For each component yk we estimate root-mean-square (RMS) amplitudes of 
successive overlapping short windows (e.g., half-second), as well as the robust mean mk and 
standard deviation sk of these values. Use of the median and median absolute deviation, 
respectively, typically yields good results. However, to support data with more than 50% of 
time windows affected by artifacts, an alternative maximum-a-posteriori estimator is used. 
This fits a truncated exponential power distribution with a data-dependent prior that is based 
on EEG-specific heuristics. Given the robust per-component amplitude mean m = [m1…mQ] 
and standard deviation s = [s1… sQ], we estimate a vector of per-component thresholds z = 
m+cs and threshold matrix Z = diag(z)WT, where c is a tunable 'cutoff' parameter, typically 

set between 5 and 7. The direction-dependent threshold is now simply . It is 
also possible to derive a usable threshold from C alone as a simpler approximation.

To attain real-time performance, a new filter R is estimated every ca. 100ms (typically after a 
new signal block has been received from the hardware). EEG samples between any two 
updates of R are filtered by applying a raised-cosine blend R̃ of the two neighboring R 
operators as x̂(t) = R̃x(t). To further increase sensitivity to artifacts while decreasing 
sensitivity to natural high-amplitude brain signal components, the signals X and Xc can be 
spectrally reweighted using an 8th order IIR filter designed to boost known artifact 
frequencies, mitigate frequencies of known high-amplitude brain idle rhythms, and suppress 
frequencies below what is captured by the sliding window. Note, however, that this filter is 
not applied to x(t) and therefore does not affect the spectrum of the output signal. Generally, 
ASR signal processing is applied after high-pass filtering.

We also provide functionality for detecting and removing broken or otherwise corrupted data 
channels, based on channel correlation within a reference data segment (e.g. Xc above) using 
the RANSAC method presented in [29]. An FIR notch pre-filter can be optionally enabled to 
suppress influence of line noise on covariance. Missing or otherwise removed channels may 
then be spatially reconstructed from activity of neighboring channels using a Gaussian spline 
function.

C. Distributed Source Reconstruction

Following ASR pre-processing, we apply inverse methods to a forward head model to infer 
source neuronal activity from the EEG data. We estimate the primary current source density 
(CSD) using a medium- to high-resolution (3000–12,000 dipole) source space 
homogenously distributed over the cortical surface. Our forward model consisted of a four-
layer (skull, scalp, cerebral spinal fluid, and cortex) Boundary Element Method (BEM) 
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model obtained through a nonlinear co-registration of the MNI “Colin 27” brain with the 
Cognionics HD-72 sensor montage (Fig. 2d). The BEM forward solution was computed 
using OpenMEEG [30]. We additionally segmented the cortical source space into (here, 90) 
regions of interest (ROIs) using Automated Anatomical Labeling (AAL) [31]. Arbitrary 
user-defined atlases are also supported. The pipeline makes use of modified routines and 
objects from the MoBILAB toolbox freely available online [32].

For inverse modeling, our framework supports several methods, including anatomically 
constrained low-resolution electromagnetic tomography (cLORETA) and regularized 
Linearly Constrained Minimum Variance Beamforming (LCMV), which we utilize in this 
study.

1) Anatomically constrained LORETA—cLORETA is well suited for real-time 
estimation and automatically controls the level of regularization for each inverse solution. 
We briefly outline the procedure and refer to [33] for further details.

Let X ∈ ℝQ×N be a length-N sequence of EEG observations from Q electrodes. Let S ∈ 
ℝJ×N be an unobserved matrix of current density estimates for J sources. We adopt the 
conventional linear generative forward model

(1)

where L ∈ ℝQ×J is a forward (lead-field) matrix, and ϒ ∈ ℝQ×N is zero mean i.i.d Gaussian 
sensor noise. Our objective is to obtain the maximum a-posteriori (MAP) estimate of S given 
the Bayesian parameterization

(2)

Gaussian assumptions on the noise and prior yield the likelihood and prior densities

(3)

where the hyperparameters β and α respectively express the precision (inverse variance) of 
the sensor observations and source estimates and HT H is a sparse J×J precision matrix 
encoding prior variance-covariance assumptions on the sources. The entries of H also 
express anatomical constraints. For instance, anatomical regions that are extremely unlikely 
to contain an EEG generator may have their corresponding prior source (co)variances set to 
zero (by setting entries of H to infinity). Prior assumptions on non-zero source correlation 
structure (for instance due to known inter-areal structural or functional connectivity) may 
also be encoded in H.
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Given observation X, finding the MAP estimator of S reduces to solving a regularized least 
squares problem:

(4)

 denotes the square of the Frobenious norm of A and λ=α / β is a 
regularization parameter. The analytic solution of (4) is given by SMAP = WX where W = 
(λHT H + LT L)−1LT. However, since the noise characteristics, and thus the optimal value of 
λ, may change for different data segments X, this requires inversion of a J×J matrix for 
every X. Even for moderate J, this can be too costly for real-time application. To address 
this, we can express (4) in terms of the singular value decomposition (SVD) of the 
standardized lead field matrix, LH−1 = U diag(si)VT for i ∈ {1…Q}. This yields a more 
efficient estimator:

(5)

The SVD of LH−1 as well as the matrix H−1V need only be pre-computed once, prior to 
online processing. An optimal value of λ is computed for a data block X by minimizing the 
generalized cross-validation function [34].

2) Regularized Linearly Constrained Minimum-Variance Beamforming—

Alternatively, LCMV beamforming [35] attempts to learn an inverse solution for each source 
j ∈ {1…J} by minimizing the beamformer output power:

(6)

subject to a unity gain constraint WsLs = I. C is a channel covariance matrix, which in our 
implementation is regularized as C = (1λλ)XXT + λ(tr(XXT)/Q)I, where λ is a small 
constant (here we fix λ = 0.001). The solution to (6) is given by 

.

For the above inverse methods, the choice of block size N reflects a tradeoff between 
temporal stationarity assumptions on the source distributions and numerical stability of the 
inverse solution. Typical values may range from 100ms to the length of a trial (1–2 seconds). 
Following current density estimation, we can compute spatially averaged, median, or 
maximal CSD for any subset of the AAL ROIs, which are then subjected to further analysis.

Mullen et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



D. Sparse Dynamical System Identification

Having inferred source activity within a desired set of ROIs, we next model their 
multivariate spatiotemporal linear dynamics, including spectral power and functional or 
effective connectivity, using routines implemented in SIFT [36], operating as a BCILAB 
filter plugin. In brief, let S = [s1…sN] ∈ ℝQ×N be a Q-dimensional, zero-mean, weakly 
stationary stochastic process of length N (e.g. data from Q ROIs or channels). Then we 

model the linear dynamics of the state vector  as a VAR process of order 
p:

(7)

From the estimated VAR[p] model coefficients, {Bp…Bp}, and the noise covariance matrix 

, we may derive a number of dynamical measures, including spectral density, 
coherency, and multivariate Granger causality (see Chapter 1 and Supplementary Material of 
[5] for a detailed review).

In the pipeline described in this manuscript, S is a short segment of recent data, yielding a 
sliding-window VAR model. We note that a number of alternatives for time-varying VAR 
estimation exist, including Kalman or RLS filtering [37] and minimum-phase factorization 
of spectral matrices [38]. Implementations of linear and non-linear Kalman filtering 
approaches are available in SIFT for use in an online pipeline.

1) Regularized optimization using Group Lasso—Equation (7) may be solved using 
a variety of unconstrained or constrained optimization methods [5]. However, for online 
applications, it is common for the number of model parameters to significantly exceed the 
number of data samples i.e. Q2 p > QN. Then the solution to (7) is underdetermined, and 
additional model constraints (i.e. regularization) must be imposed in order to obtain a unique 
solution. A common approach is to impose various non-uniform prior distributions over the 
VAR parameters [39]. Typical choices include the Gaussian, as in Tikhonov regularization; 
Laplacian, as in the Lasso; or a combination of both, as in Group Lasso or Elastic Net. 
Alternatively, Generalized Gaussian priors can be employed, as in (Block) Sparse Bayesian 
Learning [40]. We refer to [41] for an excellent assessment of regularization methods for 
accurate parameter estimation of highly underdetermined VAR models, such as in this paper.

The framework supports several of these regularization approaches. In this paper we follow 
previous work [41, 42] and employ the Group Lasso (sum-of-norms) penalty [43] to solve 
(7). This assumes the source-level dynamical system has a globally sparse topology (few 
non-zero interactions between brain regions), with smooth (jointly Gaussian) transfer 
functions, ensuring preservation of important spectral properties, including positive 
definiteness of spectral densities.

To apply the regularization we first transform the VAR[p] problem of (7) into a VAR[1] 
problem
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(8)

where B = [B1 …Bp]T denotes a matrix of all VAR[p] coefficients, and with multivariate 
data matrices S = [S1…Sp] and Y = S0, where Sl = [sp+1−1…sN−l]T are delay-embedded 
time-series. We obtain a unique solution to (8) with respect to B by minimizing a global cost 
function:

(9)

Here {B1,(ij)…Bp,(ij)} are the VAR filter coefficients expressing dynamical interactions from 
process j to i. The regularization parameter λ determines the relative tradeoff between the 
model prediction error and the Group Lasso penalty and reflects a prior assumption on the 
degree of sparsity of the system (or similarly, the noise variance).

We note that the assumption of sparse functional connectivity in brain-space has biological 
plausibility [44–46]. Numerical simulations additionally suggest that taking into account the 
group structure of VAR parameters (i.e. Group Lasso) can improve system identification 
over assuming unstructured sparsity (i.e. Lasso) [42]. Furthermore, Group Lasso aims to 
shrink non-significant parameter estimates exactly to zero, performing implicit feature 
selection. Since resulting connectivity tensors are sparse, this facilitates the use of sparsity 
assumptions in later classification and prediction stages. Conversely, assuming a (smooth) 
Gaussian prior guarantees strictly non-zero (if small) parameter estimates, and connectivity 
graphs may require post-hoc statistical thresholding for interpretation.

2) The ADMM Algorithm—Minimization of (9) may be achieved using a range of 
methods, including Second Order Cone Programming (SOCP) with an active set solver [42] 
or the Dual Augmented Lagrangian (DAL) method [47]. We propose to use the Alternating 
Direction Method of Multipliers (ADMM), a flexible and efficient iterative framework for 
distributed convex optimization and parameter estimation [48]. In general, ADMM solves 
problems of the form

(10)

where x ∈ ℝn, z ∈ ℝm,, B ∈ ℝp×m.

In “scaled form,” optimization consists of the following iterations:
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(11)

(12)

(13)

where ρ > 0 is a penalty parameter and (11)–(13) are respectively x-minimization, z-
minimization, and scaled dual variable updates.

In the case of Group Lasso, defining b = vec(Y), x = vec(B) and A = S⊗IQ×Q, the 
minimization problem of (10) can be stated as follows:

(14)

where  and  with scaled regularization parameter 
λ* = λ / 2 and where zq [B1,(ij)…Bp,(ij)] is the vector of VAR coefficients for the qth pair of 
processes i, j∈{1…Q}. Note that f(x) is the prediction error while g(z) is the Group Lasso 
regularization penalty.

The corresponding ADMM iterations are then as follows:

(15)

with vector soft thresholding operator Sκ(a) = max(0,1−κ/‖a‖2)a. Convergence is achieved 
when the following criteria are met:
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(16)

where εpri and εdual are stopping criterion limits which may be defined absolutely, or relative 
to the norms of z, x, and u.

3) Warm Starting—The iterations of (15) can be “warm started” by initializing z and u 
with suitable values, for instance, a previously obtained solution to a similar problem. This 
can substantially reduce the number of iterations needed for convergence. In this study, we 
warm start ADMM for a given time window using the solution obtained for the previous 
time window.

4) Selection of Regularization Parameter λ—A suitable value for λ is often obtained 
through minimizing an objective value such as cross-validated prediction errors. However, 
since cross-validation is not readily applicable for online inference with non-stationary data, 
we utilize heuristic approaches for adapting λ online.

Following [48] we may heuristically define lambda as a fraction of the critical value of λ for 
which x = 0 (i.e. the sparsest possible solution): λopt = κλmax where κ ∈ [0, 1] and 

 where A(i) and b(i) are regressors and regressands for the ith VAR 
coefficient group.

Alternatively, we propose a simple adaptive approach to select λ based on convergence 
properties of the ADMM algorithm. We initialize the iterations in (15) with a relatively large 
heuristic value for λ, corresponding to a strong sparsity assumption. If the absolute change 
in residual norms rpri and rdual in (16) remain below a predetermined threshold for a 
predetermined number of iterations, then we divide λ by a constant factor (e.g. 10). This 
process is repeated, thereby gradually relaxing the sparsity constraint, until convergence is 
accelerated (e.g. the gradient of residual norms is sufficiently large). While this by no means 
guarantees the “true” or optimal value for λ will be found in a statistically principled sense 
(only one that ensures rapid ADMM convergence), we find that in practice this yields 
reasonable VAR solutions while accelerating convergence. In this study, we use this 
approach.

We also note that we exploit several additional optimizations, including an adaptive update 
scheme for the penalty parameter ρ ([48], section 3.4.1) and caching factorizations of the 
coefficient matrix F = ATA+ρI ([48], section 4.2.3). Note that when A is “fat” (wide), rather 
than “skinny” (tall) a more efficient factorization may be carried out by applying the matrix 
inversion lemma to the x-update in (15) as in [48], section 11.1.1. Finally, we exploit the 
sparse block-Toeplitz structure of the data matrix A for much more efficient iterative 
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operations on reduced sub-matrices. We refer the interested reader to [48] for further details 
on the ADMM method and its application to Group Lasso.

5) Model Order Selection, Validation, and Power and Connectivity Estimation

—In our framework, the VAR model order can be automatically selected by minimizing 
information criteria (e.g. AIC or BIC), either online or on offline calibration data. 
Alternatively, one may just set the model order to a reasonably high value and allow the 
Group Lasso regularization to select a suitably parsimonious sub-model by shrinking 
uninformative coefficients.

Following model fitting and (optional) tests of model stability and residual whiteness 
(autocorrelation function or Portmanteau), we may obtain the spectral density matrix and 
any of (to date) over 15 frequency-domain functional and effective connectivity measures 
implemented in SIFT. These include ordinary and partial coherence, Granger-Geweke 
causality, and several related multivariate causality measures including several variants of 
Partial Directed Coherence, the Directed Transfer Function, and the Direct Directed Transfer 
Function [5].

The connectivity estimates take the form of a tensor C ∈ ℝQ×Q×T×F, where Q is the number 
of sources, ROIs, or channels, T is the number of overlapping time windows within a data 
chunk or trial, and F is the number of selected frequencies. We note that tensor diagonals 
Cii, : reflect auto-connectivity measures, which can be regarded as the fraction of a source's 
variance (power) that cannot be explained by causal inputs from other measured sources. 
This can also be interpreted as a measure of a processes' autonomy within a complex system 
[49]. We also note that the framework allows for graph-theoretic measures [50] such as 
degree, flow, and asymmetry ratio to be easily applied to connectivity matrices, although we 
do not study these here. The various measures may then be directly visualized, transmitted 
(e.g. via LSL), or stored for research or monitoring purposes. They may also be 
subsequently used by BCILAB as features for classification or prediction an individual's 
state (e.g. behavioral, cognitive, or affective state) within a brain-computer interface.

E. Connectivity-based Classification with ProxConn

To learn robust BCI-relevant predictive models on a high-dimensional multivariate (e.g. 
connectivity-based) feature space from only a few trials, strong prior assumptions are 
required. We developed a method, which we refer to as ProxConn, consisting of applying 
regularized logistic or linear regression to log-transformed time/frequency (T/F) connectivity 
measures (yielding a 4-dimensional feature tensor across pairwise connectivity, time and 
frequency). The regularization simultaneously employs a sparsifying l1,2+l1 norm with one 
group for each connectivity edge, containing its associated T/F weights, plus two trace norm 
terms to couple the T/F weights for all out-edges of a node and all in-edges of a node, plus 
an l2 smoothness term across time and frequency, respectively.

More formally, single-trial tensors C of log-transformed connectivity features are classified 
with binary label y by a Generalized Linear Model with logistic link function:
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(17)

The weight tensor θ (of same dimensionality as C) and unregularized bias b are learned in a 
jointly convex optimization problem of the form:

(18)

where:

Θi,j denotes the T×F matrix of time/frequency weights for connectivity j→i.

Θi,: denotes the [Q−1]×TF matrix of inflow weights for node i.

Θ:,j denotes the outflow weights for node j.

tf is a time/frequency finite difference operator enforcing T-F smoothness.

‖x‖* denotes trace norm of x, and λD and {λk} are respective regularization parameters for 
data loss and constraint terms.

We perform minimization of (18) via consensus ADMM with proximal splitting [48]. 
Regularization parameters are typically learned via nested cross-validation, although in 
practice we may heuristically set λk = 1 for some k. We note that simpler or more complex 
variations of (18) may also be used, depending on the specific application. For continuous 
target variables y, we simply replace the logistic link function (17) with a linear link 
function.

F. Real-time Visualization

The proposed framework supports interactive real-time visualization of time-series and 
estimated dynamical measures. This includes 2D plots of raw and cleaned EEG channel or 
current source density time-series, power spectra, as well as 4D rendering of time-varying 
connectivity, graph-theoretic metrics, source distributions, power, etc. within a 3D model of 
the head and brain. Pipeline elements can be enabled/disabled "in flight" using a Graphical 
User Interface.
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G. Data Collection and Analysis Pipeline

Next we describe validation of the above pipelines for 64-channel simulated EEG data as 
well as real 64-channel task data collected using Cognionics HD-72 hardware.

1) Simulated Data—To test the ability of our pipeline to accurately reconstruct source 
dynamics and connectivity in real-time, we generated a five-dimensional VAR[3] system of 
coupled oscillators as described in Eq. 3.1 of [51]. This comprised the CSD time-series of 5 
sources positioned on a 3571-vertex cortical mesh. Each source had a Gaussian spatial 
distribution (σ = 5 cm) with mean equal to the centroid of each of the following AAL ROIs 
(respectively): x1 Left Middle Cingulate Gyrus, x2: Left Middle Occipital Gyrus, x3: Right 
Medial Superior Frontal Gyrus, x4: Right Precentral Gyrus, x5: Left Precentral Gyrus. The 
system is depicted in Fig. 4. We generated two minutes of source time-series data (Sampling 
rate = 300 Hz) and projected this through the realistic forward model described in Section 
II.B to produce 64-channel EEG data. Gaussian i.i.d sensor noise was added with a signal to 
noise ratio of σdata/σnoise = 5. The simulated EEG data were streamed to an online BCILAB 
pipeline. cLORETA was applied using a 32-sample block size. Median CSD was computed 
for the 5 ROIs {x1…x5}. A group-sparse order 3 VAR model was fit to normalized ROI 
time-series via ADMM within a 1 sec sliding window. We used an initial Group Lasso 
regularization parameter λ=0.1 with online heuristic adaptation. Spectral density and partial 
directed coherence (PDC) [52] were obtained from 1–65 Hz. Finally, the max operator was 
applied to PDC across frequency producing a 2D connectivity matrix.

2) Real Data—To test real-world utility of our pipeline for BCI applications, we sought to 
detect behavioral response errors from single-trial cortical connectivity features. Univariate 
features, such as event-related potentials (ERPs), are known to perform well on this task, 
providing a competitive benchmark [53]. However, to our knowledge, effective connectivity 
features have not been used in this context.

a) Data collection and task: Dry EEG data (Cognionics HD-72) was collected from 9 right-
handed, male subjects, ages 22–46, with no history of neurological disorders. Data were 
collected at the Swartz Center for Computational Neuroscience, UCSD under IRB approval. 
Each subject performed a modified Eriksen Flanker task with a 133 ms delay between 
flanker and target presentation [54]. Flanker tasks have been extensively studied and are 
known to produce error-related negativity (ERN, Ne) and error-related positivity (P300, Pe) 
event-related potentials (ERPs) following error commission [55], as illustrated in Fig. 8. The 
experimental session lasted on average (+/− std. dev.) 13.67 +/− 0.54 minutes. The mean 
response time (following target presentation) was 179.3 ms +/− 38.4 ms for error trials and 
262.2 ms +/− 21.6 ms for correct trials. To reduce risk of classification bias due to class 
imbalance, correct trials were subsampled uniformly at random to yield a 3/1 ratio to error 
trials. Across 9 subjects, this yielded, on average, 51 +/− 11.2 error trials and 153 +/− 33.6 
correct trials for a total average of 204 +/− 44 trials.

3) Modeling Pipeline—Continuous EEG data were subjected to a BCILAB+SIFT 
pipeline, consisting of pre-processing, source reconstruction, neuronal system identification, 
and behavioral response classification. In this section, we outline each of these steps.
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a) Pre-processing: Our online pipeline included the following pre-processing elements (in 
order of application): downsampling to 128 Hz, drift correction with 0.1–1 Hz transition 
high-pass filter, bad channel removal and ASR (cutoff parameter c=7, sliding window length 
0.5 sec), common average referencing, and 45–50 Hz transition low-pass filtering. All filters 
were minimum-phase FIR. Single trial epochs centered at −0.6 to 1.6 sec relative to button 
press events were then extracted for subsequent analysis.

b) Source reconstruction: A distributed cortical inverse solution was obtained for each 2.2 
sec trial using (independently) cLORETA and LCMV. CSD was averaged within each of 10 
cortical ROIs constructed from AAL atlas parcels (Fig. 5). ROIs were selected based on a 
literature review implicating them in visual sensory input, motor output, and error 
processing [56], and a prior study [57] indicating error-related connectivity changes in these 
regions. These consisted of Left+Right Anterior Cingulate Cortex (ACC), Left+Right 
Middle Cingulate Cortex (MCC), Left+Right Posterior Cingulate Cortex (PCC), Left+Right 
Supplementary Motor Area (SMA), Left+Right Superior Medial Frontal (SMF), Left 
Precentral+Postcentral (SomMotorL), Left Mid+Sup+Inf Occipital (OccL), Right Mid+Sup
+Inf Occipital (OccR), Left Superior+Mid Parietal (SupParL), Right Superior+Mid Parietal 
(SupParR).

For each trial, an order 15 time-varying sparse VAR model was fit, using ADMM, to the 10 
ROI CSD. We used a 660 ms sliding window with a step size of 50 ms. The sliding window 
length was chosen to span at least 1 cycle of our lowest frequency of interest (2 Hz). At a 
sampling rate of 128 Hz, this yielded 84 multivariate data samples for fitting 102 × 15 = 
1,500 VAR parameters within a window. We used an initial Group Lasso regularization 
parameter λ=0.1 with online heuristic adaptation. From the model coefficients, we obtained 
the short-time Direct Directed Transfer Function (sdDTF) [58], which can be regarded as a 
multivariate, frequency-domain analogue to Granger Causality. The measure at frequency f 
and time t is given by

(19)

where H(f, t) is the VAR transfer matrix and P(f, t) is the partial coherence. We estimated 
sdDTF over the range 1–15 Hz. The frequency range was based on a prior study by the first 
author, which found significant sdDTF connectivity differences within this range between 
Error and Correct response conditions in a error-generating two-back task [57]. Additionally, 
evidence suggests that theta (4–7 Hz) and delta (2–3 Hz) medial-frontal cortical activity are 
related to error processing and conflict monitoring [55, 59, 60].

c) Behavioral response classification and performance evaluation: ProxConn regularized 
logistic regression models were trained on standardized log-transformed sdDTF time-
frequency features (cross- and auto-connectivity) from labeled trials with label mapping 
Error → +1 and Correct → −1. Model evaluation and hyperparameter search was 
performed using a nested 5-fold blockwise cross-validation, with a 5-trial margin between 
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consecutive blocks to cleanly separate testing and training data. For each fold, we measured 
the area under the receiver operating characteristic curve (AUC) with respect to trial class 
predictions. The regularization hyperparameter for the ProxConn data term was searched via 
an inner (nested) 5-fold blockwise cross-validation over the range 2{3,2.34…−7.56}. To reduce 
computation time, the weights of the additional regularization terms were set to 1. For 
further details on (nested) cross-validation, we refer the reader to [61].

In order to benchmark the ProxConn classifier against a conventional approach, we also 
applied a state-of-the-art first-order ERP classification method: dual-spectral regularized 
logistic regression (DSLR) [62]. This was applied separately to single trial evoked responses 
from the 10 ROIs, as well as pre-processed data from 64 channels. The epoch window and 
ROI CSD estimates were identical for ProxConn and DSLR approaches. DSLR evaluation 
and regularization parameter selection (over the range 2{−3,−2.75,−4}) was carried out 
using the aforementioned 5×5 nested blockwise cross-validation approach.

III. Results

A. Simulation Data

Fig. 7 shows a 1-sec segment of cLORETA estimated CSD superimposed on the true CSD. 
Superficial sources were accurately recovered, while the deep, tangential source (X1; mid-
cingulum) was somewhat more noisily reconstructed. Fig. 6 shows the reconstructed source 
network for a representative time window, using our BrainMovie3D visualizer. Ground truth 
is displayed in the inset. Over all time windows, the connectivity graph was recovered with 
high accuracy – the area under ROC curve (AUC), averaged over time windows, was 0.97 +/
− 0.021. Peak coupling frequency and relative strength were also correctly recovered.

B. Real Data

1) Data Quality and Artifact Rejection—Fig. 9 shows a representative segment of EEG 
data contaminated by blink and muscle artifacts, before and after ASR artifact removal. High 
variance artifacts were removed. Fig. 8 shows single-trial EEG data (subject 8) for response-
locked error trials at electrode FCz. Trials are sorted by reaction time. Although acausal 
filters cannot be used online, for this plot alone, in order to accurately assess ERP latencies, 
all filters were zero phase (acausal). We ran the analysis with and without ASR (the latter 
shown here) and confirmed that ASR did not distort ERPs (Fig. 8, red trace). Note that 
nearly every trial shows a visual evoked response to the stimulus as well as prominent Ne 
and Pe following the erroneous button press. The scalp topography of the Ne (upper left) has 
a frontocentral distribution centered at FCz, as expected for a mid/anterior cingulate or 
frontal midline generator. Encouragingly, the quality of the evoked responses is comparable 
to that reported using research-grade gel-based EEG systems.

2) Classification Results—Table I shows individual subject and group averaged 5-fold 
CV performance for classifying erroneous vs. correct responses using sdDTF connectivity 
features (ProxConn) and single-trial ERP (DSLR) features, using either LCMV or 
cLORETA source localization. Performance was measured using the area under the receiver 
operating characteristic curve (AUC). Chance AUC is 0.5.
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Application of ProxConn to cLORETA sources yielded a group mean AUC of 0.74 +/− 0.09 
(max: 0.87 ± 0.08), significantly higher than chance. This did not significantly differ from 
group means obtained for ProxConn on LCMV sources, and for DSLR on cLORETA 
sources. However, substantial differences in within-subject performance across the methods 
tested were observed. Application of DSLR to LCMV sources yielded significantly better 
mean performance (AUC = 0.82 +/− 0.12). Compared to DSLR, ProxConn showed less 
variance in performance across subjects, and a greater proportion of subjects exceeded 
chance performance. DSLR applied to 64-channel sensor data yielded a group mean AUC of 
0.88 +/− 0.08.

Given the comparatively low dimensionality and saliency of error-related ERP features (c.f. 
Fig. 8), it is not surprising that the DSLR method can perform quite well. We note however, 
that time-domain evoked response methods can only be used to detect, not predict, events, 
and generally require reliable event indicators, around which to extract phase-locked ERP 
features. In many real-world applications these requirements cannot be met, and alternative 
methods such as ProxConn may be attractive.

3) Real-time Performance—Once a ProxConn model is trained, the presented system 
runs online with real-time performance on typical computing platforms. We simulated online 
application of the above ProxConn error-detection pipeline to streaming Flanker task data 
from subject 8 on a 4-core 2.4 GHz AMD Opteron PC. Compute time (including pre-
processing, source localization, connectivity feature extraction, and classification) was 
438ms per second of data (2.26× real time). We have demonstrated parallelized acceleration 
of several components of this pipeline using graphical processing units (GPUs) [63]. This 
also allows higher dimensional models to be estimated with minimal increase in 
computation time. Note that for neuroimaging applications, pre-training of a classification 
model is not a requirement.

IV. Discussion

The combination of wearable, mobile EEG and real-time neuroimaging and cognitive state 
classification offers opportunities to study the human brain in action. As noted in Section I, 
and reviewed in [16], a increasing number of studies have applied source connectivity 
methods to EEG data. However, these typically leverage multi-trial ensembles of data or 
other offline processing steps. In contrast, the pipelines presented in this paper focus on 
measuring brain dynamics at the level of single trials and are capable of online, real-time 
operation. While such capabilities may not be a prerequisite for scientific study of the brain, 
they are required for many practical real-world neurotechnology applications. These range 
from clinical neuroimaging and BCI [16, 64–66], to neuroergonomics [67, 68], and 
extending to diverse general-purpose applications [4].

We reiterate that the presented BCILAB+SIFT system is not the first or only software 
solution for single-trial source connectivity analysis and/or cognitive state classification. For 
instance, eConnectome [23] offers routines for adaptive connectivity estimation and 
visualization from continuous data. Billinger et al [19] presented a system for single trial 
connectivity analysis and state classification, subsequently made available in the SCoT 
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toolbox [24]. As with SIFT, these toolboxes leverage a VAR representation of system 
dynamics and offer a range of connectivity measures. However, there are also many 
significant differences with the presented system ranging from software design, to the 
breadth and type of methods offered, to online and/or real-time capabilities (to our 
knowledge not available in other systems). For instance, SCoT focuses on ICA-based source 
separation (not localization) using pre-trained spatial filters, while this paper presents online 
distributed cortical localization methods. While a detailed comparison is beyond the scope 
of this paper, we encourage the reader to explore these and other software solutions.

A recent trend in the neurosciences is the biological interpretation of weight vectors or 
corresponding pattern vectors from classifier models trained, using neuronal data features, to 
discriminate between experimental conditions [69, 70]. While caution should be exercised in 
over-interpreting such weights [70], the ProxConn regression approach may likewise yield 
insight into source-level networks predictive of cognitive and behavioral states.

As a demonstrative example, Fig. 10 a depicts a "Time-Frequency Grid" plot of ProxConn 
classifier weights for subject 8. To obtain a single weight vector, ProxConn was applied to 
all single trials (no outer CV) following application of the cLORETA+sdDTF pipeline 
variant reported for Table I. Here, the ProxConn regularization terms of Eq. (18) were 
searched via 5-fold blockwise CV over 25 parameter combinations sampled uniformly from 
the distribution 2N(1,√2). For each sdDTF time-frequency-pair estimate, ProxConn yields a 
real-valued weight. Its amplitude and sign can be interpreted as that feature's fractional 
contribution in discriminating between classes (e.g. error vs. correct response). ProxConn's 
l1 regularization promotes shrinkage to zero of weights for uninformative features.

We note a pattern of pre-response alpha/mu (8–12 Hz) and post-response theta-band (3–7 
Hz) connectivity being associated with errors (warm colors) while post-response alpha/mu 
and beta (13–15 Hz) connectivity were associated with correct responses (cool colors). 
Error-related theta connectivity was prominent within and between a number of ROIs, 
including ACC, MCC and SMA (Fig. 10c–d). Theta power and connectivity modulation in 
these regions has been linked to error processing and conflict monitoring [5, 55, 59, 60]. 
PCC (Fig. 10e), SupParL, and OccL also showed significant error-related theta bursts. Pre-
response alpha connectivity between OccR and several ROIs, including somatomotor cortex 
(Fig. 10b) was also associated with errors. In prior studies, pre-stimulus alpha in occipital 
and sensorimotor regions has been shown to predict subsequent response errors [71].

These results demonstrate the feasibility of recovering meaningful single-trial source 
connectivity features from dry-electrode EEG, which can be used to detect or predict 
cognitive state and behavior. To our knowledge, this is the first demonstration of single-trial 
behavioral error detection using cortical effective connectivity measures. However, since 
event locking is not required for VAR-based feature extraction, they may have greater use 
where traditional event-locked analyses (e.g. ERP or ERD/ERS) cannot be applied; for 
instance, to predict future behavior from ongoing EEG activity. Finally, we note these 
methods have broad applications outside cognitive monitoring, including detection or 
prediction of neuropathologies, such as epileptic seizures [64, 66].
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V. Conclusions

In this paper, we presented and evaluated a wearable high-density (64-channel) dry electrode 
EEG system and an open-source software framework for real-time neuroimaging and user 
state classification in the dynamic environment of the wearable setting. We first presented 
details on the wearable EEG form factor, compact electronics, and wireless triggering 
system. Dry-electrode signal quality was comparable to simultaneously recorded wet 
electrodes for average evoked responses (AEP, P300 corr. > 0.9) and single trial data. We 
next described the software framework in detail, which included automated artifact rejection; 
neuronal system identification (cortical source localization and multivariate effective 
connectivity); prediction of behavior using spatiotemporal connectivity features; and 
interactive 2D and 3D data visualization. We presented mathematical details of several 
recent methods including the Artifact Subspace Reconstruction technique for online artifact 
removal, the use of ADMM for efficient small-sample sparse VAR model fitting and power 
and connectivity estimation, and the ProxConn constrained regression technique for 
connectivity-based classification.

We evaluated our framework on simulated high-density EEG data and on single-trial 
classification of Flanker-task response error commission from cortical multivariate effective 
connectivity (sdDTF) features using two source localization methods, cLORETA and 
regularized LCMV Beamforming. Classification performance with cLORETA and LCMV 
was significantly above chance (mean AUC=0.74 +/− 0.09 and 0.72 +/− 0.08, respectively). 
cLORETA performance did not differ when using a state-of-the-art ERP method (DSLR). 
However, application of DSLR to LCMV sources yielded significantly higher mean 
performance (AUC = 0.82 +/− 0.12). To our knowledge, this is the first demonstration of 
neuronal system identification and cognitive state classification using 64-channel dry EEG. 
We hope this will encourage new applications of wearable EEG to the study and monitoring 
of cognition and behavior in mobile, real-world environments.
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Fig. 1. 

A schematic of the real-time data processing pipeline used in this study.
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Fig. 2. 

The Cognionics HD-72 64-channel mobile EEG system. (a) EEG headset harness with 
adjustable tensioning of dry electrodes contacting the scalp, and with Bluetooth wireless 
transmission and data synchronization. (b) Flexible active dry-contact Ag/AgCl EEG 
electrodes, and pressure-induced flexing mechanism to reach scalp contact through hair [1]. 
(c) Hybrid wet-dry electrode with ion-permeable membrane separating conductive gel inside 
from skin outside. (d) 64-channel sensor montage, co-registered with MNI "Colin27" brain. 
Average sensor locations were obtained by averaging 3D digitized (ELPOS, Zebris Medical 
GmbH) electrode locations from 10 individuals. Electrodes labels are assigned based on 
nearest-neighbor mapping to the standard 10/5 montage. Nas, LPA, and RPA denote nasion 
and left/right preauricular fiducials. (e) Standard wet (3Mdot Ag/AgCl) and the flexible 
active dry electrodes produce comparable averaged evoked response potentials and (f) good 
agreement between simultaneously recorded continuous wet and dry data.
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Fig. 3. 

The Artifact Subspace Reconstruction method. High-variance artifacts (relative to a 
reference dataset or window) are identified and adaptively removed from the data using a 
series of linear subspace projections.
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Fig. 4. 

(upper) EEG simulation ground truth: VAR[3] dynamical equations. (lower) Gaussian source 
patches and directed connectivity graph. Line width reflects peak connectivity strength 
across frequencies.
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Fig. 5. 

Ten cortical regions of interest (ROIs) used for the real data analysis.
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Fig. 6. 

A BrainMovie3D frame showing source networks reconstructed online. Here edge color 
denotes preferred coupling frequency while edge size and tapering respectively denote 
coupling strength (PDC) and directionality at that frequency. PDC is thresholded at the 
common heuristic level of 0.1.
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Fig. 7. 

Comparison of true (red, dashed) vs. reconstructed (blue, solid) current source density 
(cLORETA) for a 1-sec segment of our 5 simulated ROIs. Time-series are normalized to unit 
variance.
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Fig. 8. 

Representative ERPImage (subject 8) showing single-trial EEG potentials (no smoothing) at 
FCz for response-locked error trials, sorted by latency of response to target onset (red 
sigmoidal trace). Responses occur at 0 ms (vertical line). The bottom panel shows the 
averaged ERP without ASR in blue, and the ERP with ASR enabled in red.
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Fig. 9. 

10 sec of EEG data following ASR data cleaning (blue trace) superimposed on original data 
(red trace).
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Fig. 10. 

(a) Time-Frequency Grid representation of cLORETA+sdDTF ProxConn classifier weights 
for subject 8. Each cell shows sdDTF from the respective column ROI to row ROI across 
time (x-axis) and frequency (y-axis). Cortical surfaces for Colin27 template brain are shown 
on row and column headers with color-coded ROI spatial extent and ROI centroid (red dot). 
Warm (cool) colored pixels indicate that pairwise time-frequency sdDTF contributed to 
classification of Error (Correct) behavioral responses. Markers F (black solid) and T (red 
solid) denote mean latency of Flanker and Target presentation, respectively. Marker R (black 

Mullen et al. Page 38

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2016 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



dashed) denotes mean behavioral response latency. Time axis reflects VAR sliding window 
centers, corrected to account for online pipeline delay (ASR, causal filters) of ~263 ms. 
Horizontal markers are placed at 3Hz and 7Hz. Panels (b) and (c) detail sdDTF interactions 
between representative cortical ROI pairs: Response errors are associated with (b) pre-
response alpha-band connectivity between OccR and SomMotorL and (c) early peri- and 
post-response theta-band sdDTF between MCC and SMA. Panels (d) and (e) detail sdDTF 
auto-connectivity within representative ROIs: theta-band sdDTF within ACC and PCC are 
associated with errors. (e) Post-response alpha sdDTF in PCC is associated with correct 
responses.
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TABLE I

5-Fold CV Area Under ROC Curve (mean ± Std)

Subj LCMV cLORETA

DSLR ProxConn DSLR ProxConn

1 0.9682 ± 0.02 0.7923 ± 0.14 0.8909 ± 0.09 0.8203 ± 0.16

2 0.8132 ± 0.11 0.6609 ± 0.10 0.6101 ± 0.18 0.6150 ± 0.14

3 0.8047 ± 0.06 0.7164 ± 0.09 0.6497 ± 0.10 0.7682 ± 0.10

4 0.7809 ± 0.13 0.7425 ± 0.07 0.5895 ± 0.08 0.7967 ± 0.05

5 0.5693 ± 0.17 0.5792 ± 0.12 0.5000 ± 0.00 0.6345 ± 0.08

6 0.9434 ± 0.03 0.7228 ± 0.08 0.8717 ± 0.08 0.6714 ± 0.09

7 0.8524 ± 0.04 0.7142 ± 0.10 0.8548 ± 0.08 0.8029 ± 0.08

8 0.8934 ± 0.03 0.8848 ± 0.08 0.9713 ± 0.02 0.8653 ± 0.08

9 0.7882 ± 0.14 0.6936 ± 0.18 0.7110 ± 0.16 0.6657 ± 0.06

Avg 0.8237 ± 0.12 0.7229 ± 0.08 0.7388 ± 0.16 0.7378 ± 0.09

pval 0.000033 0.000046 0.002316 0.000053

Mean ± standard deviation of Area under Receiver Operating Characteristic Curve (AUC) for individual subject 5-fold cross-validation, as well as 
group averages. Shaded cells denote results that did not significantly exceed chance AUC of 0.5. Pval denotes p-values for one-sided t-test against 
the null hypothesis that group mean does not differ from chance.
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