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ABSTRACT In this era of technological advancement, the flow of an enormous amount of information has 

become such an inevitable phenomenon that makes a path for the takeover of the internet of things (IoT) 

based smart grid from the currently available grid system. In a smart grid, demand-side management plays a 

crucial role in reducing the generation capacity by shifting the user energy consumption from peak period to 

off-peak period, which requires detailed knowledge of the user consumption at the individual appliance level. 

Non-intrusive load monitoring (NILM) provides an exceptionally low-cost solution for determining 

individual appliance levels using a single-point measurement. This paper proposed an IoT-based real-time 

non-intrusive load classification (RT-NILC) system considering the variability of supply voltage using low-

frequency data. Due to the unavailability of smart meters at the household level in Bangladesh, a data-

acquisition system (DAS) is developed. The DAS is capable of measuring and storing rms voltage, rms 

current, active power, and power factor data at a sampling rate of 1 Hz. These data are processed to train 

different multilabel classification models. The best-performed classification model has been selected and 

utilized for the implementation of RT-NILC over IoT. The Firebase real-time online database is considered 

for data storage to flow the data in two-way between end-user and service provider (energy distributor). The 

GPRS module is used for wireless data transmission as a Wi-Fi network may not be available everywhere. 

Windows and web application are developed for data visualization. The proposed system has been validated 

in real-time, using rms voltage, rms current, and active power measurements at a real house. Even under 

supply voltage variability, the performance evaluation of the RT-NILC system has shown an average 

classification accuracy of more than 94%. Good classification accuracy and the overall operation of the IoT-

based information exchange systems ensure the proposed system's applicability for efficient energy 

management. 

INDEX TERMS Non-intrusive load monitoring, Real-time load classification, IoT framework, Machine 
learning, Variation of supply voltage.  

I. INTRODUCTION 

Nowadays, people are more involved in ground-breaking 

technological research in pertinent areas, especially smart 

cities, smart homes, the internet of things (IoT), and others. 

These technological advancements are quite demandable in 

present times - from the original constituents of a city, smart 

homes, and factories in the fourth industrial revolution smart 

cities, which are developed by combining IoT with artificial 

intelligence (AI). The rapid development in building 

construction and urbanization increases power demand, and 

these changes require an efficient energy management 

program (EEMP), especially for developing countries. EEMP 

can be obtained by monitoring electric appliances' energy 

consumption patterns in real-time. To achieve efficient energy 
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management, electric loads must be identified within a given 

period in real-time from the household or workplace. This load 

identification process is called load monitoring [1], which can 

be achieved in intrusive and non-intrusive ways. Non-

intrusive load monitoring (NILM) is a single sensor-based 

process, where the sensor is installed at the power entry point 

and can recognize turned-on appliances without the 

requirement of multiple sensors to each appliance. The NILM, 

an exceptionally cost-effective and promising alternative to 

intrusive load monitoring, was originally developed by Hart et 

al. in the early 1980s [1]. Recent days extensive research has 

been done to make this method more reliable and applicable 

in real-life and real-time load disaggregation. A detailed 

comparative discussion about NILM is available in Refs. 1 and 

2. García-Pérez et al. reported that NILM could help energy 

management of both residential and non-residential 

buildings [3]. 

    The NILM using high frequency (in the range of kHz and 

higher) has been observed to attain excellent performance in 

many studies. Xin et al. showed that the frequency domain 

characteristics had been extracted by analyzing steady-state 

current to realize load operation states [4]. Ruyi et al. utilized 

1-16th harmonics and a neural network to differentiate multiple 

appliances [5]. Le et al. proposed the lower odd harmonics-

based household appliance classification using a bagging 

decision tree [6]. A time-frequency analysis-based NILM was 

also reported by Lin et al. [7]. The particle filtering was 

demonstrated for load disaggregation by Egarter et al. [8]. Liu 

et al. reported that the on-off transient signature curve could 

be employed to identify the appliance [9]. Though the 

mentioned approaches' performances are satisfying [4-7], 

extra hardware is essential to make the high sampling data 

collection possible [10].  

    With the advent of smart grid, smart energy meter is 

becoming an inseparable part of the energy management 

systems (EMS). Consequently, NILM with low-frequency 

data has been the focus of many researchers due to the 

availability of low-frequency data in smart energy meters. 

Aiad et al. and Cominola et al. tried to decompose low-

frequency total powers using hidden Markov model-based 

methods [11-12]. However, the increasing computational 

complexity associated with the growing number of appliances 

makes the methods difficult to implement for real-time 

applications. Individual appliance identification using features 

of the low-frequency power-series signal was demonstrated by 

Corrêa et al. [13] and Zhang et al. [14]. Rafiq et al. also 

identified a single appliance using low-frequency active power 

(P), apparent power (S), reactive power (Q), rms voltage (V), 

rms current (I), and power factor (PF) data [15]. Le et al. 

showed a NILM system to identify multiple appliances using 

transient features from 15 Hz power-series signals by decision 

tree algorithm [16]. Dinesh et al. also demonstrated a NILM 

system for identifying multiple appliances using low-

frequency power-series signals without showing the 

possibility of determining a single appliance [17]. For the 

classification of different combinations of multiple appliances, 

the naïve Bayesian estimation model had been employed by 

Yang et al. [18], while the identification of appliances with a 

similar power profile was challenging.   

    For NILM, S, P, and Q have been the most utilized features 

[19-23]. The P and V have recently been observed to obtain 

high performance even at low frequency [24]. The P, V, and 

S, I are extracted from AMPds and REDD datasets [25-26]. 

Different statistical features, such as Interquartile Range, Crest 

Factor, Variance, Kurtosis, Mean Absolute Deviation, 

Skewness, and Form Factor, are extracted from the current 

waveform and envelope current waveform with the aim of 

disaggregating loads in [24]. Shapelet extracted from the 

envelope of the current waveform is used in [26]. Due to high-

level redundancy, time-series data is transformed into the 

frequency domain to extract harmonics information with 

Fourier transform [27]. Discrete Wavelet Transform (DWT) 

[28-29], Stock well Transform [7], and harmonic current-

based features [30] have also been studied by researchers.  

    Both supervised, and unsupervised machine learning 

algorithms have been applied to load classification problems. 

The model must be trained offline to learn from available data 

before the supervised method's actual classification. Most 

common supervised methods include Support Vector 

Machines (SVM) [26, 29], K-Nearest Neighbors (k-NN) [26], 

naïve Bayes classifiers [27], Multilayer Perceptron (MLP) 

[31], Convolutional Neural Networks (CNNs) [32, 33], Deep 

Neural Networks [34], and Particle-Swarm-Optimization [35].  

    Welikala et al. proposed a power decomposition-based real-

time load monitoring system considering voltage variability 

within the power line [36]. Although they achieved good load 

identification accuracy, their approach was based on a local 

machine. One of the most crucial IoT-based EMS issues using 

NILM is data transmission from localized creation points to 

the cloud database for further processing and applications. 

This transmission can be attained with a wide range of 

technologies and protocols, such as Wi-Fi, GPRS, ZigBee, 

Bluetooth, etc. [37-39]. The smart edge analytics-empowered 

power meter prototype employs ThingSpeak as cloud storage 

where only two appliances were considered, such as electric 

fan and hairdryer for load identification [40]. Moreover, the 

ethernet connection was considered for data transmission, 

which is not feasible at all. The IoT-based intrusive load 

monitoring (ILM) had been proposed by Franco et al. for 

activity recognition in smart homes [41]. As ILM requires a 

lot of sensors, it is not a cost-effective solution. Most of the 

previous NILM reports are conducted on local machines using 

either an online database [13-35, 40] or collecting data from 

smart meters [36]. If NILM can be implemented to observe the 

current load condition over the internet, the power authority 

can observe the current load condition, leading to successfully 

achieving the EEMP. To the best of our knowledge, there is 

no report on real-time load monitoring feasibility over IoT 

considering supply voltage variability in NILM algorithms. 

Further, none of the studies provide a complete demonstration 
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of a practically feasible end-to-end solution for load 

monitoring in real-time over IoT. Therefore, a complete 

practicable end-to-end solution for load monitoring in real-

time over IoT is essential. This work demonstrates a 

practically implementable software and hardware package for 

real-time non-intrusive load classification (RT-NILC) over 

IoT using machine learning. The proposed system has been 

developed by designing a data acquisition system (DAS) that 

can measure and store rms voltage, rms current, active power, 

and power factor data to a micro-SD card. These data are 

employed to train and select a machine learning model for the 

implementation of RT-NILC. Finally, using some IoT 

framework, real-time load monitoring over the internet is 

achieved. 

    Therefore, the significant contributions of this work are as 

follows. 

1. Designing a low-cost data acquisition system in case 

of the unavailability of a smart meter. 

2. Collection of data using a customized system at 

different supply voltage from a household in a 

realistic scenario. 

3. Introduction to a novel current decomposition-based 

on state appliances database building using 

individual appliance database by combination. 

4. Implementation of a real-time IoT-based NILM 

system using low-frequency data with a complete 

hardware and software solution. 

    The rest of the manuscript is organized as follows. The basic 

overview of the proposed RT-NILC over IoT is discussed in 

Section II. Section III clearly explains the hardware 

description of the data acquisition system (DAS). Section IV 

describes the data preparation procedure for machine learning. 

Evaluation and selection of machine learning algorithm are 

discussed in Section V. Section VI explains the complete 

implementation of RT-NILC over IoT. Results and discussion 

are included in Section VII.  Finally, Section VIII concludes 

the article. 

II. OVERVIEW OF PROPOSED SYSTEM 

    The proposed RT-NILC system for real-time non-intrusive 

load monitoring over IoT is implemented utilizing custom-

designed hardware, software, and webpage, as shown in Fig. 

1. The whole work is divided into two stages. At Stage 1, a 

data acquisition system (DAS) is developed to prepare a 

database to train different machine learning classification 

algorithms. Then best machine learning model is selected 

based on performance scores. The description of DAS and 

database preparation are described in Sections III and IV, 

respectively. In Stage 2, the best load classification model has 

been employed to implement RT-NILC over IoT. The 

description of RT-NILC is given in Section VI. The hardware 

used in RT-NILC is an AC meter that reads rms voltage, rms 

current, and active power data from a house and sends these 

data to a real-time cloud database using GPRS 

communication. The software section reads data from the 

cloud database, makes load classification using the best 

machine learning model, and sends the classification results to 

the cloud database. A webpage is hosted on a website to view 

the current load conditions of a specific house remotely. The 

software and load classification models were developed in 

Python 3.8. Firebase is used here as a cloud database, and the 

website is hosted on 000webhost.com server. 

 
III. DESCRIPTION OF DATA ACQUISITION SYSTEM 

    Due to the unavailability of smart meters in Bangladesh, a 

data acquisition system (DAS) has been built using PZEM-

004T-100 A [42], Current Transformer (CT), Arduino Uno, 

micro-SD card module, and RTC module. The required 

components and their specifications are listed in TABLE I. 

The detailed description is as follows: 

PZEM-004T: It is an AC communication module capable of 

measuring rms voltage, rms current, active power, frequency, 

power factor, and energy. It sends data via TTL serial 

interface, which is compatible with software and hardware 

serial communication with Arduino. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Overview of the proposed system. 
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TABLE I 
COMPONENT LIST FOR DATA ACQUISITION SYSTEM (DAS) 

Component 

name 

Specification Quantity 

PZEM-004T-100 
A 

Voltage measuring range: 80～260 

V, resolution: 0.1 V. 

Current measuring range: 0～100 A, 

resolution: 0.001 A. 

Power measuring range: 0～23 kW, 

resolution: 0.1 W. 
Power factor measuring range: 0.00

～1.00, resolution: 0.01. 

Energy measuring range: 0～9999.99 

kWh, resolution: 1Wh. 

Frequency measuring range:45～65 

Hz, resolution: 0.1 Hz. 

Working temperature: -20°～+60°C  

01 

Current 
Transformer 
(CT) 

Current measuring range: 0～100 A 

Ratio: 1000:1 

01 

Arduino Uno Operating voltage: 5 V 
Flash memory: 32 kB 
Clock speed: 16 MHz 
Serial interface: 0(Rx), 1(Tx), TTL 

01 

Micro SD TF 
card module 

Operating voltage: 4.5-5.5 V, 16 GB 01 

DS3231 RTC 
module 

Operating voltage: 5 V 
Counts Seconds, Minutes, Hours, 
Date of the Month, Month, Day of the 
Week, and Year, with Leap-Year 
Compensation Valid up to 2100 

01 

DC power supply Input (AC): 180-240 V, 50 Hz 
Output (DC): 5 V, 1 A  

01 

 

CT: 100A CT (1000:1) is used to reduce current to PZEM-004 

T's compatible level. 

Arduino: Arduino Uno is used here to read the TTL serial data 

from PZEM-004T-100 A and stores the data in comma-

separated values (.csv) format in a micro-SD card with date-

time information. 

Micro SD TF card module: A 16 GB micro-SD card is used to 

store data from PZEM-004T-100 A. 

RTC module: DS3231 RTC module is used here for data 

acquisition date and time information. 

DC power supply unit: A 5 V, 1 A DC power supply is used 

to power all of the hardware components mentioned above. 

     The block diagram (a), hardware implementation of DAS 

(b), and a snapshot of recorded data (c) are shown in Fig. 2. 

Figure 2 (b) also shows the CT connection to a distribution 

board and the DAS. The data has stored in the micro-SD card 

using the developed DAS, as shown in Fig. 2 (c). To ensure 

the DAS's measurement accuracy, it is calibrated with the 

standard calibration meter named Fluke 5502A [43]. The rms 

voltage, rms current, active power, and power factor are 

measured for four types of appliances by varying the supply 

voltage from 200 to 230 V using the developed DAS and 

standard Fluke 5502A meter. TABLE II shows the 

comparative measurement data and % error in terms of power. 

It is found that there is a slight difference between the 

measurement data of DAS and the standard Fluke 5502A 

meter. Thus, it can be concluded that the DAS has a good 

measurement accuracy. The total cost of the DAS is ~$ 22, 

which is very low compared to the commercially available 

system [44]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Schematic block diagram of the DAS (a), hardware implementation (b) and snapshot of recorded data format (c). 
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TABLE II 
MEASUREMENT ACCURACY OF THE DEVELOPED DATA ACQUISITION SYSTEM (DAS) 

Load  Developed DAS Standard meter (Fluke-5502A) % Error 

 

(
𝑷𝑭𝒍𝒖𝒌𝒆−𝑷𝑫𝑨𝑺𝑷𝑭𝒍𝒖𝒌𝒆 )×100 

RMS 

Voltage, 

V  

RMS 

Current, 

I 

Active 

Power, P 

Power 

Factor, 

PF 

RMS 

Voltage, 

V  

RMS 

Current, 

I 

Active 

Power, P 

 

Power 

Factor, 

PF 

(V) (A) (W)  (V) (A) (W)   

1000 W, 

Rice 

Cooker 

200 

209.9 

219.9 

229.9 

4.01 

4.214 

4.413 

4.443 

802 

884.14 

970.24 

1021.23 

0.998 

0.998 

0.998 

0.998 

200 

209.8 

219.9 

229.7 

4.01 

4.21 

4.41 

4.45 

802.1 

884 

970.2 

1023.5 

1 

1 

1 

1 

-0.01 

0.02 

0.01 

-0.22 

30 W, 

LED 

199.9 

210.1 

219.9 

229.9 

0.195 

0.175 

0.166 

0.156 

30.14 

30.14 

30.83 

30.52 

0.757 

0.786 

0.819 

0.884 

199.8 

210 

220 

229.8 

0.20 

0.18 

0.17 

0.15 

30.3 

30.2 

30.8 

30.5 

0.77 

0.8 

0.82 

0.88 

-0.53 

-0.20 

0.09 

0.07 

30 W, 

CFL 

200 

209.9 

219.9 

229.9 

0.208 

0.221 

0.234 

0.244 

26 

28.65 

30.35 

31.47 

0.648 

0.624 

0.598 

0.574 

200 

210 

220 

229.9 

0.20 

0.22 

0.23 

0.24 

25.9 

28.6 

30.2 

31.4 

0.65 

0.62 

0.6 

0.57 

0.38 

0.17 

0.49 

0.22 

80 W, 

Ceiling 

Fan 

199.9 

210 

219.9 

229.8 

0.358 

0.381 

0.398 

0.427 

57.60 

67.13 

76.56 

89.11 

0.798 

0.843 

0.867 

0.898 

199.91 

209.97 

219.93 

229.89 

0.36 

0.38 

0.40 

0.43 

57.6 

67.1 

77.1 

89.2 

0.80 

0.84 

0.88 

0.90 

0 

-0.04 

-0.70 

-0.10 

 
IV. PREPARATION OF DATABASE 

    One-minute data from six commonly used household 

appliances (rice cooker, LED lamp, CFL lamp, water heater, 

fridge, and ceiling fan) are collected using the DAS. TABLE 

III shows the rated wattage ratings of the six appliances used 

here. The sampling frequency of the data acquisition system is 

1 Hz (1 data/second). To incorporate the variability of the 

supply voltage, data from each appliance are collected at 

different voltages from 210 to 240 V with a 2 V increment per 

step. This voltage range (210 – 240 V) is selected because the 

supply voltage to the residence usually remains within this 

range. The voltages are changed using a single-phase 

autotransformer (3 kVA, 0 - 250 V, 50 Hz) [45]. Therefore, 

the data length is 60 × 16 = 960 for each appliance for sixteen 

different voltage levels. During data collection regulator of the 

ceiling fan was fixed to a particular position. The effect of 

voltage variability is shown in Fig. 3, which shows the change 

of power consumption of LED, CFL, water heater (WH), and 

rice cooker (RC) with a change in supply voltage ranging from 

221 to 229 V, and it is found that there exists a significant 

difference in power consumption for resistive loads e.g. RC 

and WH while a negligible effect for non-resistive loads for 

instance CFL and LED. For instance, at 221 V, RC and WH's 

power consumption is 975 W and 678.4 W, respectively. 

While the power consumption of RC and WH are 1015W and 

728 W, respectively, at 229 V. The power consumption 

difference of 40 W and 49.6 W have been observed for RC 

and WH, respectively, by changing supply voltages. The 

combined power difference of RC and WH is 89.6 W, which 

is between the fridge's power rating (100 W) and the ceiling 

fan (80 W). Thus, the supply voltage variation may negatively 

affect the load classification accuracy if it is not accounted for. 

For instance, at 229 V, only rice cooker may be misclassified 

as rice cooker plus LED or CFL as LED and CFL alone have 

power consumption near about 32 W.  

TABLE III 
RATINGS OF EMPLOYED APPLIANCES 

Appliance Name Rated Wattage (W) 

Rice cooker 1000 

LED lamp 30 

CFL lamp 30 

Water heater 700 

Fridge 100 

Ceiling Fan 80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 3. Power consumption of LED, CFL, rice cooker, and water heater 
with voltage change.  
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    The developed DAS is installed at a house, where rms 

voltage, rms current, active power, and power factor data are 

collected by turning ON only one appliance at a time for 1-

minute. This process has repeated for sixteen different voltage 

levels (210 - 240 V, 2 V increment per reading), as discussed 

earlier. At the same time, the data are stored in a micro-SD 

card. Since individual appliance data are collected, and any 

combinations of appliances may occur, it is required to 

calculate the rms current, active power, and power factor data 

for each possible combination. The goal is to determine all 

possible ON-state rms current, active power, and power factor 

data of all appliances for each voltage. Therefore, the prepared 

database should contain the combined rms current, combined 

active power, combined power factor, and the name of each 

combination's appliances for each voltage level. In each 

combination, rms current of the individual appliance is 

decomposed into the rectangular form using equations (1-4).  

 𝐼𝑚𝑎𝑥 = √2𝐼                                                                            (1) 

 ∅ = cos−1(𝑃𝐹)                                                                    (2) 

 𝐼𝑅𝐸 = 𝐼𝑚𝑎𝑥 cos ∅                                                                    (3) 

 𝐼𝐼𝑀 = 𝐼𝑚𝑎𝑥 sin ∅                                                                     (4) 

 

Where, ∅ is the phase difference between voltage and current, 

PF represents power factor, 𝐼𝑅𝐸 represents the real part of 

current, and 𝐼𝐼𝑀 is the imaginary part of the current. Hereafter, 

the real and imaginary parts of current from different 

appliances have been added in any possible combination to 

create the total real and imaginary current, IS component for 

that particular combination using equation 5. The power factor 

and the maximum total current 𝐼𝑇 for each combination are 

calculated using equations 6 and 7, respectively. 

 𝐼𝑆 = ∑ 𝐼𝑅𝐸 + 𝑗 ∑ 𝐼𝐼𝑀                                                              (5) 

 𝑃𝑜𝑤𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝑡𝑎𝑛−1(∑ 𝐼𝐼𝑀∑ 𝐼𝑅𝐸)                                                   (6) 

 𝐼𝑇 = √𝐼𝑅𝐸2 + 𝐼𝐼𝑀2                                                                 (7) 

 

Finally, the total rms current 𝐼𝐿𝐶  is obtained for each load 

combination using equation 8.  

 𝐼𝐿𝐶 = 1√2 𝐼𝑇                                                                              (8) 

 

The total active power, 𝑃𝑇𝐴 of each combination is calculated 

using a simple summation of active power, 𝑃𝐴 of each load in 

each combination using equation 9. 

 𝑃𝑇𝐴 = ∑ 𝑃𝐴                                                                            (9) 

 

For N appliances, the possible combination is 2N-1. Therefore, 

the total number of possible combinations of six appliances are 

26-1= 63. During database preparation, in each combination, 

the appliance's name is assigned with a unique label (0 - 62). 

The appliances combination and corresponding label are listed 

in TABLE IV. The 63 combinations of appliances are 

constructed by adding current vectors and active power data. 

As a result, the training database consists of 960 × 63 = 60480 

data samples of active power (P), rms voltage (V), rms current 

(I), power factor (PF), and corresponding label. The procedure 

of database preparation from individual appliance's data is 

described in Algorithm 1. Similarly, two separate databases 

are prepared for two different voltage levels at 221 and 227 V 

to verify the performance under a new unknown database 

which is not included during the training. The new test 

database consists of 2 × 60 × 63 = 7560 data samples of P, V, 

I, PF, and corresponding label. 

 
V. EVALUATION AND SELECTION OF MACHINE 
LEARNING MODEL 

    The training database is employed to train different 

supervised machine learning classification algorithms such as 

Random Forest (RF), XGboost, k-nearest neighbors (KNN), 

and Naïve Bayes. The detailed information of Random Forest  

 
TABLE IV 

POSSIBLE COMBINATIONS OF APPLIANCES WITH THE CORRESPONDING 

LABEL 

Label Load 

combina

tion 

Label Load 

combinat

ion 

Label Load 

combination 

0 L 21 L+C+RC 42 L+C+RC+F 

1 C 22 L+C+WH 43 L+C+RC+FR 

2 RC 23 L+C+F 44 L+C+WH+F 

3 WH 24 L+C+FR 45 L+C+WH+FR 

4 F 25 L+RC+W
H 

46 L+C+F+FR 

5 FR 26 L+RC+F 47 L+RC+WH+F 

6 L+C 27 L+RC+F
R 

48 L+RC+WH+F
R 

7 L+RC  28 L+WH+F 49 L+RC+F+FR 

8 L+WH 29 L+WH+F
R 

50 L+WH+F+FR 

9 L+F 30 L+F+FR 51 C+RC+WH+F 

10 L+FR 31 C+RC+W
H 

52 C+RC+WH+F
R 

11 C+RC 32 C+RC+F 53 C+RC+F+FR 

12 C+WH 33 C+RC+F
R 

54 C+WH+F+FR 

13 C+F 34 C+WH+F 55 RC+WH+F+F
R 

14 C+FR 35 C+WH+F
R 

56 L+C+RC+WH
+F 

15 RC+WH 36 C+F+FR 57 L+C+RC+WH
+FR 

16 RC+F 37 RC+WH+
F 

58 L+C+RC+F+F
R 

17 RC+FR 38 RC+WH+
FR 

59 L+C+WH+F+
FR 

18 WH+F 39 RC+F+FR 60 L+RC+WH+F
+FR 

19 WH+FR 40 WH+F+F
R 

61 C+RC+WH+F
+FR 

20 F+FR 41 L+C+RC
+WH 

62 L+C+RC+WH
+F+FR 

*L=LED, C=CFL, RC=Rice cooker, WH= Water Heater, F=Fan, FR= Fridge 
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(RF), k-nearest neighbors (KNN), and Naïve Bayes 

algorithms are available in scikit learn [46] package of Python, 

while the detailed information of XGboost classification 

algorithm can be found in Ref. 47. A 10-fold cross-validation 

has been performed on the prepared train dataset using those 

classification algorithms for four different sets of features. In 

this work, the Accuracy, F1-score, Precision, and Recall are 

considered as classification metrics. 

 % 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑇𝑃+𝑇𝑁𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁×100                                        (10) 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃𝑇𝑃+𝐹𝑃                                                              (11) 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  𝑇𝑁𝑇𝑃+𝐹𝑁                                                                    (12) 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙                                     (13) 

 

Where, TP, FP, TN, and FN are denoted the number of true 

positive, false positive, true negative, and false negative 

instances, respectively. The goal is to train the machine 

learning algorithms to choose the best combination of 

hyperparameters for each algorithm (RF, XGboost, KNN) 

using the training dataset. Therefore,  hyperparameter tuning 

(for RF n_estimators, max_depth, max_features, criterion, 

min_samples_split, min_impurity_decrease, bootstrap; for 

Xgboost n_estimators, max_depth, min_child_weight, 

tree_method, eta, gamma, objective; and for KNN 

n_neighbors, weights, algorithm, leaf_size, p; are used as 

tuning parameters) is performed by using 10-fold cross-

validation (in each iteration 9 subgroups were used to train the 

model, and the rest one is used for testing the model) using 

sklearn.model_selection.Randomized SearchCV library for 

each machine learning algorithm except the Naïve Bayes. The 

Naïve Bayes algorithm is excluded from hyperparameter 

tuning because it does not have any iterable parameters. Using 

the library, the accuracy on 10 test datasets (of cross-

validation) is computed 250 times for the random 

combinations of the hyper-parameters for each machine 

learning algorithm. Hereafter, the best combination of the 

hyper-parameters, which shows the maximum mean accuracy 

on cross-validation test datasets, are selected. The 

hyperparameter tuning is performed on four different sets of 

features in Python programming language on a single 

computer (Intel® Core(TM) i5 - 6200U CPU @ 2.30 GHz, 8.0 

GB RAM) with Windows - 10 operating system. The outcome 

results for four different sets of features are shown in TABLE 

V. It is found that there is a significant improvement in 

classification score when the rms voltage is incorporated as a 

feature. It is also observed that the RF and XGboost classifiers 

represent better performance scores than the others for the 

feature set V, I, and P. In addition, the RF classification 

algorithm shows slightly better performance as compared with 

XGboost. To choose the best classification algorithm, the RF 

(n_estimators=500, max_depth=none, max_features='log2', 

criterion='gini', min_samples_split=2, min_impurity_ 

decrease = 0, bootstrap=True) and the XGboost 

(n_estimators=60, max_depth=20, min_child_weight=1, 

tree_method='auto', eta=0.3, gamma=0, objective ='multi : 

softmax') models are stored using the pickle library of Python 

for further validation. Hereafter, the new unknown test dataset 

which consists of rms voltage, rms current, active power, and 

corresponding label for two different voltage levels 221 and 

227 V are considered for the validation. The validation scores 

of the RF and XGboost classification algorithms are listed in 

TABLE VI. Once more, the RF classifier shows better scores 

than XGboost. Therefore, the RF classifier has been chosen 

for the implementation of RT-NILC over IoT. 

 
VI. IMPLEMENTATION OF RT-NILC OVER IoT 

     To develop the RT-NILC over IoT, it is essential to modify 

the DAS. A wireless communication medium is required to 

send the V, I, P data and receive the classification results from 

a cloud database. The block diagram of hardware components 

of the proposed RT-NILC is shown in Fig. 4. The relay serves 

an additional purpose like turn ON/OFF main supply of a 

house. Since Wi-Fi network may not be widely available,  

 

Algorithm 1: Training Database Preparation 

Input: V, I, P, PF data of N appliances 

Output: 2N-1 data of V, I, P, PF and Label 

1   for j ← 1 to N do 

2      data[j] ← read V, I, P, PF data for N appliance 

/*   Store V, I, P, PF data in N different variables  */ 

3   applianceName[] ← make list of N appliances name 

4   for k ← 1 to length(data[1]) do 

5         read V[k], I[k], P[k], PF[k] data for N appliance 

6         v ← V[k] for N appliance 

7         pf ← PF[k] for N appliance 

8         i ← convert I[k] to rectangular form using PF[k] for N appliance 

9         p ← P[k] for N appliance 

10       make list of  i, p for N appliances 

11       I_comb ← make combinations of N elements in the list i 

12       P_comb ← make combinations N elements in list the p 

13       name_comb ← make combinations of N elements in list the              

                                     applianceName 

14       for n ← 1 to length(I_comb) do 

15              I← abs(sum(I_comb[n])) for each combination 

16              I_real← take real part of I_comb[n] for each combination 

17              I_imag← take imaginary part of I_comb[n] for each  

                                   combination 

18              PF← calculate power factor using I_real and I_imag for each 

                            combination 

19              P← sum(P_comb[n]) for each combination 

20              V← round(v[n]) for each combination 

21              Label← name_comb[n] of each combination 

22              trainData← append V, I, P, PF and Label data for each 

                                      combination 

23  return trainData 
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TABLE V 
PERFORMANCE SCORES USING FOUR DIFFERENT SETS OF FEATURES 

Features  

10-Fold Cross-Validation Scores (% Maximum 

Mean Accuracy) 

Random 

Forest 

Classifier 

XGBoost 

Classifier 

KNN 

Classifier 

Naïve 

Bayes 

Classifier 

I, P 89.01 89.40 77.26 83.70 

I, P, PF 89.40 89.38 77.24 83.74 

V, I, P 95.52 94.43 86.45 83.72 

V, I, P, PF 94.10 93.38 86.45 83.76 

 

TABLE VI 
PERFORMANCE SCORES OF RANDOM FOREST AND XGBOOST CLASSIFIER 

USING NEW VALIDATION DATASET 

Performance 

scores  

Random Forest 

Classifier 
XGBoost Classifier 

For 221 V 

(rms) 

For 227 V 

(rms) 

For 221 V 

(rms) 

For 227 

V (rms) 

Accuracy (%) 95.05 94.14 91.23 92.24 

F1-score (%) 96.56 96.87 90.28 91.92 

Precision (%) 97.10 97.58 91.37 92.96 

Recall (%) 96.03 96.18 89.22 90.89 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. Methodology of the proposed RT-NILC over IoT. 

 

GPRS wireless communication system is considered. For 

GPRS communication with the cloud database, the SIM900A 

module is employed. The workflow diagram and algorithm of 

the proposed RT-NILC over IoT are shown in Fig. 4 and 

Algorithm 2, respectively, which has two-parts, such as 

Hardware part and Software part. The proposed system has 

been developed using an IoT infrastructure that consists of 

four layers, as shown in Fig. 5. The bottom layer, named the 

device layer, has two sub-layers, such as things and gateway. 

The measurement sensors (PZEM-004T and CT: 100 A) are 

the parts of things layer, which measures V, I, P, and PF data, 

whereas Arduino Uno and SIM900A are in the gateway layer, 

building connections between the components of the things 

layer and network layer. The network layer uses GPRS 

communication for data transmission from the device layer to 

the cloud service layer. The cloud service layer consists of a 

hosting server and Firebase real-time database for data storage 

and retrieval. The application layer is the top layer that 

provides service to the end-users. 

A. HARDWARE PART 

    This part involves reading data from a house and 

transmitting data to a cloud database. During reading data, 

Arduino reads real-time rms voltage, rms current, and active 

power using serial communication with PZEM-004T. These 

three data are the features required for the load classification. 

For transmission of these data to a cloud database, it is 

required to create a real-time database in a cloud server. 

Firebase real-time database have been employed to send and 

receive data. As Arduino Uno cannot generate https 

connection which is essential to send and receive data in the 

Firebase database, a PHP proxy server is built in 

CT: 100 A

Power 

Distribution Line
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Power Relay

Home Appliances

GSM/GSRM

Serial 
Comm.

DC Power 
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www.000webhostapp.com. The Arduino Uno communicates 

with the 000webhost PHP proxy server via http protocol 

(GET(), POST() method) using SIM900A and the PHP proxy 

server makes https connection (GET(), SET() methods) with 

Firebase. By this way, it possible to transfer data between 

Arduino Uno and Firebase. The hardware is configured to 

send data to Firebase at 0.2 Hz sampling rate. Here cost-free 

limited service of Firebase and 000webhost is used for 

demonstration. Figure 6 shows the firebase real-time 

database. Field-1 shows the rms voltage, rms current, and 

active power, Field-2 represents the classification result, 

Field-3 represents the ON/OFF status of main supply to a 

house. The Arduino sends data to the Field-1 and reads data 

from the Field-3. Based on the Field-3's value, Arduino turns 

ON and OFF the main supply to the load (1 = ON, 0 = OFF) 

using the relay as shown in Fig. 4. The Field-2 is associated 

with the software part. 

B. SOFTWARE PART 

    This part deals with three tasks. Firstly, it involves the 

extraction of feature data (i.e., rms voltage, rms current, and 
active power) from Firebase to classify the load combination 

label using the RF model. Secondly, sending the information 

of that label to Field-2 of Firebase. Finally, data visualization 

in a graphical user interface (GUI). To perform the above-  

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Considered IoT architecture consists of four layers. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Figure 6. Process of Firebase real-time database. 

Algorithm 2: Hardware and Software part 

/*                                         Start of Hardware Part                                                */ 

1   while Data.available() do 

2                 read V, I, P from a house 

/*      using serial communication of PZEM-004T and Arduino Uno     */ 

3                 send V, I, P data to cloud database  

/*   using SIM900A GPRS communication using http GET()  method   */     

4                 read OnOff control data from cloud database 

/*    using SIM900A GPRS communication using http GET() method   */ 

5                 if  OnOff==0 then 

6                       turn Off main supply  

7                 end if 

8                 if   OnOff==1 then 

9                       turn On main supply 

10               end if 

11               delay(seconds) 

/*                                End of Hardware Part                                       */ 
/*                                Start of Software Part                                       */ 

1   while DataReading.available() do 

2                 read V, I, P from cloud database 

3                 label← make classification 

/*            using V, I, P as feature and previously saved ML model          */ 

4                 PF← calculate power factor using V, I, P 

5                 send label to cloud database 

6                 read OnOff control data form user 

7                 send OnOff control data to cloud database 

8                 display V, I, P, PF and name of running appliances name 

9                 delay(seconds) 

/*                                        End of Software Part                                              */ 
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Figure 7. Developed GUI layout of RT-NILC. 

 

mentioned tasks, a desktop GUI application and web 

application have been developed. The desktop GUI 

application has been built using tkinter library package of 

Python and hereafter has been converted to a windows 

application using pyinstaller library package of Python. The 

layout of the GUI is represented in Fig. 7. The GUI shows 

the rms voltage, rms current, active power, power factor, and 

current load status of the selected house. The power factor, 

which is displayed in the GUI, has been calculated using 

equation 14.  

 𝑃𝑜𝑤𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 = 𝐴𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟 𝐴𝑝𝑝𝑎𝑟𝑒𝑛𝑡 𝑃𝑜𝑤𝑒𝑟 = 𝐴𝑐𝑡𝑖𝑣𝑒 𝑃𝑜𝑤𝑒𝑟 𝑉𝑟𝑚𝑠×𝐼𝑟𝑚𝑠                (14) 

 

It is noted that the computer which runs the GUI application 

should have a good internet connection. This GUI 

application does not require any third-party online machine 

learning hosting services. 
    In addition, a webpage is developed using HTML and 
JavaScript and hosted in 000webhost server. The webpage 
requires a username and password. By providing correct 
information, currently running load status, rms voltage, rms 
current, active power, and power factor information of the 
selected house where the device is installed can be seen 
remotely. The power factor data is obtained using Equation 
14 in JavaScript. Figure 8 shows the webpage layout. The 
desktop application should be in operation to view the 
running combinations of load for a house on the web page. 
Besides, in the proposed system, the old data sets are replaced 
by new data sets, and only 699 Bytes of storage is occupied in 
Firebase database for a user. Thus, a large storage is not 
required for the proposed system.  
 
VII. RESULTS AND DISCUSSION 

    This section discusses the experimental results of RT-NILC 

over IoT, implementation cost with execution time, and a 

comparative study with the existing work. 

A. PERFORMANCE EVALUATION  

    After complete installation, ten readings have been taken for 

each of 63 combinations of loads from a real house without 

regulating the supply voltage, which varies between 220 to 

235 V during the experiment. The hardware sends feature data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 8. Layout of the webpage. 

 

(V, I, P) at 0.2 Hz (in every five seconds) sampling rate to the 

Firebase. The classification predicted results of RT-NILC over 

IoT have been taken from the webpage, which are compared 

with actual load combinations. The predicted labels and true 

labels are shown in the confusion matrix in Fig. 9. It is 

observed that the classifier classifies accurately in every label  

except labels 7, 8, 25, 28, 29, 47, 48, 50, and 60. Label 7 (LED 

+ Rice Cooker) misclassified 2 times out of 10 as label 11 

(CFL+ Rice Cooker). The classifier only misclassifies CFL as 

LED and vice versa. Similar results are found in label 28 (LED 

+ Water heater + Fan), which is misclassified 3 times out of 

10 as label 34 (CFL + Water heater+ Fan). Also label 47 (LED 

+ Rice Cooker + Water heater + Fan) is misclassified 5 times 

out of 10 as label 51 (CFL + Rice Cooker + Water heater + 

Fan). These inaccurate results may be due to the similar 

wattage ratings of the CFL and LED. The performance scores 

of the implemented RT- NILC over IoT are calculated using 

Equations 10-13, then averaged and listed in TABLE VII. 

Even under realistic scenarios, the proposed system has 

produced very accurate results with an average accuracy of 

more than 94%. 

 
B. IMPLEMENTATION COST AND EXECUTION TIME 

    The required hardware components are shown in Fig. 4. The 
cost of the hardware part is ~$35.  The software part requires 
the purchasing of hosting and data plan for GPRS 
communication. If the RT-NILC sends V, I, P data in every 
five seconds to the Firebase using SIM900A, then ~200 
Megabytes (MB) of data per month per user is required for the  
 

TABLE VII 
PERFORMANCE SCORES OF THE IMPLEMENTED RT-NILM OVER IoT 

Performance metrics Overall scores 

Accuracy (%) 94.60 

Precision (%) 96.13 

Recall (%) 94.60 

F1-score (%) 95.36 
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Figure 9. Confusion Matrix; (a) Confusion Matrix for label 0 to 20 (b) 
Confusion Matrix for label 21 to 41 (c) Confusion Matrix for label 42 to 62. 

GPRS communication. The per month MB uses can be 
minimized by increasing data transmission delay in the 
hardware section. Since the price of web hosting and mobile 
data plans varies from country to country, it isn't easy to 
address the overall cost of the proposal. Moreover, the 
proposed system uses a cloud database and webpage, there 
might be a concern regarding security and privacy issues. 
Also, the proposed IoT-based system requires a secure internet 
connection for data transmission. Proper protocols and robust 
coding might ensure cybersecurity, whereas the internet 
connection quality entirely depends on the service providers. 
    The power consumption curve of the RT-NILC is shown in 
Fig. 10 for twenty minutes. The power consumption of the 
IoT-based RT-NILC system is < 4 W when the relay (shown 
in Fig. 4) is energized, and the rest of the time, it consumes < 
3.5 W. When the GUI software (Fig. 7) of the RT-NILC 
system is executed on a computer (Intel® Core (TM) i5 - 
6200U CPU @ 2.30 GHz, 8.0 GB RAM with Windows - 10 
operating system), the average time to display a result in the 
GUI is 3.884 sec (which includes reading feature data (i.e., V, 
I and P) from Firebase, making classification and sending 
classification label to Firebase). During performance 
evaluation, the proposed RT-NILC system is configured to 
send feature data in every five seconds to the Firebase. The 
proposed system requires < 10 sec to display a new result on 
the webpage (Fig. 8). However, the total execution time can 
be reduced by decreasing the delay time (which is set to 5 sec 
in this work). Besides, the data transmission speed from an IoT 
device to a cloud database depends on the internet connection 
speed. If a faster communication speed is required, the 4G/3G 
(such as SIM7600CE shield for Arduino, which supports 4G, 
3G, and GPRS data transmission) module can be employed. 
 
C. COMPARATIVE STUDY 

    The comparison of this work with some previous NILM 
work at low-frequency data is shown in TABLE VIII. Corrêa 
et al. introduced auto-associative neural network (AANN) and 
multi-layer perceptron (MLP) neural network algorithms on  
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Figure 10. The power consumption curve of the RT-NILC system. 
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TABLE VIII 
A COMPARATIVE STUDY WITH EXISTING LOW-FREQUENCY NILM SYSTEMS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
low-frequency power series signals for individual appliance 
identification [13]. They employed REDD and UK-DALE  
datasets and achieved F1-scores of 0.879 and 0.858, 
respectively, for the datasets. Zhang et al. demonstrated power 
series signal for individual appliance identification on REDD 
dataset using CNN [14]. Rafiq et al. reported P, Q, S, V, I, and 
PF as a feature for individual appliance identification using 
multi-feature input space long short-term memory (MFS-
LSTM) algorithm [15]. They employed UK-DALE and ECO 
datasets and gained F1-scores of 0.89 and 0.976, respectively, 
for the datasets. The rms voltage and active power series data 
were considered to identify multiple appliances by Welikala et 
al. [36]. They developed a power matching algorithm to 
identify combinations of multiple appliances. An 
experimental dataset was prepared and had achieved an 
accuracy of 92.5% using a power matching algorithm. 
Transient features from 15 Hz power series signal were 
represented by Le et al. for multiple appliance identification 
using a decision tree algorithm [16]. They considered the 
experimental data and achieved the F1-score of 0.926 with an 
accuracy of 92.64%. Tracebase and REDD datasets had been 
employed for multiple appliance identification by Dinesh et al. 
[17]. They employed the features of power-series signal and 
achieved accuracy 94.04% and 95.10%, respectively, using a 
power matching algorithm. Though there are many works 
related to the NILM system at low frequency, it is difficult to 
compare the previously reported results because of different 
datasets, appliances, and devices for data preparation. This 
work proposed a low-cost hardware and software solution for 

real-time load classification (single or multiple) and electricity 
monitoring over IoT. The proposed system is validated in real-
time using 0.2 Hz sample frequency of V, I and P data from a 
house. Therefore, the proposed cost-effective RT-NILM over 
IoT provides a complete NILM solution, especially for low-
frequency applications. 
 
VIII. CONCLUSION 

    The NILM is an exceptionally cost-effective and 
powerful tool for load monitoring. Instead of installing 
multiple sensors for monitoring various electrical appliances, 
a single-entry point sensor instalment can yield a cost-
effective and efficient solution. Therefore, the NILM idea 
emerges as a very promising concept for identifying 
individual electric appliances from a single point 
accumulated data. This work provides a practically feasible 
end-to-end hardware and software solution for non-intrusive 
real-time load identification over the internet. The training 
database building algorithm uses a novel approach to build 
all possible combinations of individual appliances using 
supply voltage-dependent signatures of each appliance. 
Using these training datasets, best-performed machine 
learning models are selected and then validated under a new 
dataset. The outperformed machine learning model is then 
incorporated with real-time load classification over IoT. 
After the complete implementation of RT-NILC over IoT, a 
final validation is performed in a real residential house. The 
final stage performance evaluation confirms the efficacy and 
feasibility of the proposed RT-NILC. Even under realistic 

Authors Sampling 

frequency used 

in database 

preparation 

Algorithm Performance Real-time 

implementation over 

the internet 

Purpose 

Corrêa et al. 

(2020) [13] 
≤ 1 Hz 

Auto-associative Neural 

Network (AANN) and Multi-

Layer Perceptron Neural 

Network (MLP) 

F1-scor e= 0.879 

F1-score = 0.858 
No 

Individual appliance 

identification 

Zhang et al. 

(2020) [14] 
≤ 1 Hz 

Convolutional Neural 

Network (CNN) 
F1-score = 0.813 No 

Individual appliance 

identification 

Rafiq et al. 

(2020) [15] 
1 Hz 

Multi-Feature input Space 

Long Short-Term Memory 

(MFS-LSTM) 

F1-score = 0.89 

F1-score = 0.976 
No 

Individual appliance 

identification 

Welikala et al. 

(2019) [36] 
1 Hz  Feature Matching Acc(%) = 92.50 No 

Multiple appliance 

identification 

Le et al. (2018) 

[16] 
15 Hz Decision Tree  

F1-scor e= 0.92 

Acc(%) = 92.64 
No 

Multiple appliance 

identification 

Dinesh et al. 

(2015) [17] 
≤ 1 Hz Feature Matching 

Acc(%) = 94.04 

Acc(%) = 95.10 
No 

Multiple appliance 

identification 

In this work 1 Hz Random Forest Classification 
F1-score = 0.954 

Acc (%) = 94.60 
Yes 

Individual and 

Multiple appliance 

identification 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3104263, IEEE Access

 Author Name: Preparation of Papers for IEEE Access (February 2017) 

 

scenarios, the proposed system has produced very accurate 
results with an average accuracy of more than 94%. The 
presented prototype system incorporates a dedicated low-
cost hardware design, online database management, and 
software interface to facilitate user-friendly real-time 
operation over the internet. 
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