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Real Time Non-intrusive Monitoring and

Prediction of Driver Fatigue

Qiang Ji, Zhiwei Zhu, Peilin Lan

Abstract— This paper describes a real-time online

prototype driver fatigue monitor. It uses remotely

located CCD cameras equipped with active IR illu-

minators to acquire video images of the driver. Var-

ious visual cues typically characterizing the level of

alertness of a person are extracted in real time and

systematically combined to infer the fatigue level of

the driver. The visual cues employed characterize

eyelid movement, gaze movement, head movement,

and facial expression. A probabilistic model is devel-

oped to model human fatigue and to predict fatigue

based on the visual cues obtained. The simultane-

ous use of multiple visual cues and their systematic

combination yields a much more robust and accurate

fatigue characterization than using a single visual

cue. The system was validated under real life fatigue

conditions with human subjects of different ethnic

backgrounds, different genders, ages, with/without

glasses, and under different illumination conditions,

and it was found reasonably robust, reliable and ac-

curate in fatigue characterization.

Keywords— Driver Vigilance, Human Fatigue,

Probabilistic Model, Visual Cues

I. Introduction

The ever-increasing number of traffic accidents in

the U.S. due to a diminished driver’s vigilance level

Qiang Ji is with the Department of Electrical, Computer

and Systems Engineering, Rensselaer Polytechnic Institute,

Troy, New York, USA. E-mail: qji@ecse.rpi.edu

Zhiwei Zhu is with the Department of Electrical, Computer

and Systems Engineering, Rensselaer Polytechnic Institute,

Troy, New York, USA. E-mail: zhuz@rpi.edu

Peilin Lan is with the Department of Computer Science,

University of Nevada at Reno, Reno, Nevada, USA. E-mail:

plan@cs.unr.edu

has become a problem of serious concern to soci-

ety. Drivers with a diminished vigilance level suffer

from a marked decline in their abilities of percep-

tion, recognition, and vehicle control and therefore

pose serious danger to their own life and the lives of

other people. Statistics show that a leading cause

for fatal or injury-causing traffic accidents is due

to drivers with a diminished vigilance level. In the

trucking industry, 57% fatal truck accidents are due

to driver fatigue. It is the number 1 cause for heavy

truck crashes. 70% of American drivers report driv-

ing fatigued. The National Highway Traffic Safety

Administration (NHTSA) [1] estimates that there

are 100,000 crashes, which are caused by drowsy

drivers and result in more than 1,500 fatalities and

71,000 injuries each year in U.S. With the ever-

growing traffic conditions, this problem will further

deteriorate. For this reason, developing systems ac-

tively monitoring a driver’s level of vigilance and

alerting the driver of any insecure driving condi-

tions is essential to accident prevention.

Many efforts [2], [3], [4], [5], [6], [7], [8], [9], [10],

[11], [12], [13], [14], [15], [16], [17], [18], [19], [20],

[21] have been reported in the literature for devel-

oping active safety systems for reducing the number

of automobile accidents due to reduced vigilance.

The techniques can be classified into the following

categories [22].

• Readiness-to-perform and fitness-for-duty tech-
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nologies

These technologies [10], [11], [12] attempt to assess

the vigilance capacity of an operator before the work

is performed. The tests conducted to assess the

vigilance level of the operator consist of two groups:

performance-based or measuring ocular physiology.

• Mathematical models of alertness dynamics

joined with ambulatory technologies

The technologies use the mathematical models to

predict operator alertness and performance at dif-

ferent times based on interactions of sleep, circa-

dian, and related temporal antecedents of fatigue

[13], [14], [15].

• Vehicle-based performance technologies

These technologies detect the behavior of the driver

by monitoring the transportation hardware systems

under the control of the driver, such as driver’s

steering wheel movements, driver’s acceleration,

braking and gear changing [16], [17], [18].

• In-vehicle, on-line, operator status monitoring

technologies

The technologies in this category seek to real-time

record some bio-behavioral dimension(s) of an op-

erator, such as feature of the eyes, face, head, heart,

brain activity, reaction time etc., during driving

[19], [20], [21]. According to the methods used

for measurements, the technologies can be further

divided into three types. The first type employs

electroencephalograph measures (EEG), based on

which most of successful equipments developed are

for off-line fatigue monitoring. Also, there is an on-

line version called “Mind Switch” that uses a head-

band device, in which, the electrodes are embedded

to make contact with the driver’s scalp so as to mea-

sure the brain waves. Ocular measures are used in

the second type, which is considered as the most

suitable way for on-line monitoring. So far, many

eye blinking, pupil response, eye closure and eye

movement monitors have been developed. Other

physiological/bio-behavioral measures used in the

third type include tone of facial muscles (facial ex-

pression), body postures and head noddings.

Among different techniques, the best detection

accuracy is achieved with techniques that measure

physiological conditions like brain waves, heart rate,

and pulse rate [9], [23]. Requiring physical contact

with drivers (e.g., attaching electrodes), these tech-

niques are intrusive, causing annoyance to drivers.

Good results have also been reported with tech-

niques that monitor eyelid movement and eye gaze

with a head-mounted eye tracker or special con-

tact lens. Results from monitoring head movement

[24] with a head-mount device are also encouraging.

These techniques, though less intrusive, are still not

practically acceptable. A driver’s state of vigilance

can also be characterized by the behaviors of the

vehicle he/she operates. Vehicle behaviors includ-

ing speed, lateral position, turning angle, and mov-

ing course are good indicators of a driver’s alertness

level. While these techniques may be implemented

non-intrusively, they are, nevertheless, subject to

several limitations including the vehicle type, driver

experiences, and driving conditions [3].

People in fatigue exhibit certain visual behaviors

easily observable from changes in facial features like

the eyes, head, and face. Visual behaviors that typ-

ically reflect a person’s level of fatigue include eyelid

movement, gaze, head movement and facial expres-

sion. To make use of these visual cues, another

increasingly popular and non-invasive approach for

monitoring fatigue is to assess a driver’s vigilance

level through visual observation of his/her physical
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conditions using a remote camera and state-of-the-

art technologies in computer vision. Techniques us-

ing computer vision are aimed at extracting visual

characteristics that typically characterize a driver’s

vigilance level from his/her video images. In a re-

cent workshop [25] sponsored by the Department

of Transportation (DOT) on driver’s vigilance, it

is concluded that computer vision represents the

most promising non-invasive technology to monitor

driver’s vigilance.

Many efforts have been reported in the literature

on developing active real-time image-based fatigue

monitoring systems [26], [2], [3], [6], [8], [9], [4], [5],

[27], [28], [29], [30], [31], [32], [33]. These efforts

are primarily focused on detecting driver fatigue.

For example, Ishii [8] et al introduced a system for

characterizing a driver’s mental state from his facial

expression. Saito et al [2] proposed a vision system

to detect a driver’s physical and mental conditions

from line of sight (gaze). Boverie et al [4] described

a system for monitoring driving vigilance by study-

ing the eyelid movement. Their preliminary evalu-

ation revealed promising results of their system for

characterizing a driver’s vigilance level using eye-

lid movement. Ueno et al [3] described a system

for drowsiness detection by recognizing whether a

driver’s eyes are open or closed, and, if open, com-

puting the degree of eye openness. Their study

showed that the performance of their system is com-

parable with those of techniques using physiological

signals.

Although the success of the existing ap-

proaches/systems for extracting characteristics of a

driver using computer vision technologies, current

efforts in this area, however, focus on using only a

single visual cue such as eyelid movement or line

of sight or head orientation to characterize driver’s

state of alertness. The system relying on a single vi-

sual cue may encounter difficulty when the required

visual features cannot be acquired accurately or re-

liably. For example, drivers with glasses could pose

serious problem to those techniques based on detect-

ing eye characteristics. Glasses can cause glare and

may be totally opaque to light, making it impossible

for camera to monitor eye movement. Furthermore,

the degree of eye openness may vary from people to

people. Another potential problem with the use of

a single visual cue is that the obtained visual fea-

ture is often ambiguous, therefore can not always be

indicative of one’s mental conditions. For example,

the irregular head movement or line of sight (like

briefly look back or at the minor) may yield false

alarms for such a system.

All those visual cues, however imperfect they are

individually, if combined systematically, can pro-

vide an accurate characterization of a driver’s level

of vigilance. It is our belief that simultaneous ex-

traction and use of multiple visual cues can reduce

the uncertainty and resolve the ambiguity present in

the information from a single source. The system-

atic integration of these visual parameters, however,

requires a fatigue model that models the fatigue

generation process and is able to systematically pre-

dict fatigue based on the available visual as well as

the relevant contextual information. The system we

propose can simultaneously, non-intrusively, and in

real time monitor several visual behaviors that typ-

ically characterize a person’s level of alertness while

driving. These visual cues include eyelid movement,

pupil movement, head movement and facial expres-

sion. The fatigue parameters computed from these

visual cues are subsequently combined probabilisti-



4

cally to form a composite fatigue index that could

robustly, accurately, and consistently characterize

one’s vigilance level. Figure 1 gives an overview of

our driver vigilance monitoring system.

 

Extract Visual Cues

      Information Fusion
     (Bayesian Networks)

Warning
Activate

Yes

No

Information
Contextual 

Operator’s Images

physical fitness
sleep history
time of day
temperature

head movement
eyelid movement

gaze 
facial expression

Fatigue ?

Fig. 1. A flowchart of the proposed driver vigilance moni-

toring system

The paper consists of three parts. First, the pa-

per focuses on discussion of the computer vision al-

gorithms and the necessary hardware components

to extract the needed visual cues. Second, after ex-

tracting these visual cues, the issue of sensory data

fusion and fatigue modeling and inference is dis-

cussed. Finally, experiments under real life condi-

tions are conducted to validate our driver vigilance

monitoring system.

II. Eye Detection and Tracking

Fatigue monitoring starts with extracting visual

parameters typically characterizing a person’s level

of vigilance. This is accomplished via a computer

vision system. In this section, we discuss the com-

puter vision system we developed to achieve this

goal. Figure 2 provides an overview of our visual

cues extraction system for driver fatigue monitor-

ing. The system consists of two cameras: one wide

angle camera focusing on the face and another nar-

row angle camera focusing on the eyes. The wide

angles camera monitors head movement and facial

expression while the narrow angle camera monitors

eyelid and gaze movements. The system starts with

eye detection and tracking.

Fig. 2. Overview of the driver vigilance monitoring system

The goal of eye detection and tracking is for sub-

sequent eyelid movement monitoring, gaze determi-

nation, face orientation estimation and facial ex-

pression analysis. A robust, accurate, and real-

time eye tracker is therefore crucial. In this re-

search, we propose real-time robust methods for eye

tracking under variable lighting conditions and face

orientations, based on combining the appearance-

based methods and the active IR illumination ap-

proach. Combining the respective strengths of dif-
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ferent complementary techniques and overcoming

their shortcomings, the proposed method uses ac-

tive infrared illumination to brighten subject’s faces

to produce the bright pupil effect. The bright pupil

effect and appearance of eyes (statistic distribution

based on eye patterns) are utilized simultaneously

for eyes detection and tracking. The latest tech-

nologies in pattern classification recognition (the

Support Vector Machine) and in object tracking

(the mean-shift) are employed for eye detection and

tracking based on eyes appearance.

Our method consists of two parts: eye detec-

tion and eye tracking. Figure 3 summarizes our

eye detection and tracking algorithm. Some of the

ideas presented in this paper have been reported in

[34],[35]. In the sections to follow, we summarize

our eye detection and tracking algorithms.

Eye Detection

Based on SVM


Success?


Kalman Filter Based

Bright Pupil Eye Tracker


Yes


Success?


 Update the

Target Model for

the Mean Shift

Eye Tracker


Yes


Yes


No


Mean Shift Eye Tracker


Success?


No


No


Input IR Images


Fig. 3. The combined eye tracking flowchart

A. Image Acquisition System

Image understanding of visual behaviors starts

with image acquisition. The purpose of image ac-

quisition is to acquire the video images of the driver

face in real time. The acquired images should have

relatively consistent photometric property under

different climatic/ambient conditions and should

produce distinguishable features that can facilitate

the subsequent image processing. To this end, the

person’s face is illuminated using a near-infrared il-

luminator. The use of infrared illuminator serves

three purposes: first it minimizes the impact of dif-

ferent ambient light conditions, therefore ensuring

image quality under varying real-world conditions

including poor illumination, day, and night; second,

it allows to produce the bright/dark pupil effect,

which constitutes the foundation for detection and

tracking the proposed visual cues. Third, since near

infrared is barely visible to the driver, this will min-

imize any interference with the driver’s driving.

Specifically, our IR illuminator consists of two

sets of IR LEDs, distributed evenly and symmet-

rically along the circumference of two coplanar con-

centric rings as shown in Figure 4. The center of

both rings coincides with the camera optical axis.

These IR LEDs will emit non-coherent IR energy in

the 800 to 900 nanometer region of the spectrum.

Fig. 4. An actual photo of the two rings IR illuminator

configuration
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The bright pupil image is produced when the in-

ner ring of IR LEDs is turned on and the dark pupil

image is produced when the outer ring is turned on.

This is controlled via a video decoder. An example

of the bright/dark pupils is given in Figure 5. Note

the glint 1 appears on both the dark and bright

pupil images.

(a) bright pupils with glints

(b) dark pupils with glints

Fig. 5. Bright and dark pupil images with glints

B. Eye Detection

Eyes tracking starts with eyes detection. Figure

6 gives a flowchart of the eye detection procedure.

Eyes detection is accomplished via pupils detection

due to the use of active IR illumination.

Image

Subtraction
 Adaptive Thresholding


Connected Component

Analysis


SVM Eye

Verification


Interlaced

Image


Even Field

Image


Odd Field

Image
 Binary Image


Geometric

Constraints


Blobs
Eye Candidates

Eyes


Video

Decoder


Fig. 6. Eye detection block diagram

Specifically, to facilitate pupils detection, we have

1the small bright spot near the pupil, produced by cornea

reflection of the IR light.

developed a circuitry to synchronize the inner ring

of LEDs and outer ring of LEDs with the even and

odd fields of the interlaced image respectively so

that they can be turned on and off alternately. The

interlaced input image is de-interlaced via a video

decoder, producing the even and odd field images as

shown in Figure 7 (a) and (b). While both images

share the same background and external illumina-

tion, pupils in the even images look significantly

brighter than in the odd images. To eliminate the

background and reduce external light illumination,

the odd image is subtracted from the even image,

producing the difference image as shown in Figure

7 (c), with most of the background and external il-

lumination effects removed. The difference image is

subsequently thresholded. A connected component

analysis is then applied to the thresholded difference

image to identify binary blobs that satisfy certain

size and shape constraints as shown in Figure 8 (a).

From Figure 8 (a), we can see that there are still sev-

eral non-pupil blobs left because they are so similar

in shape and size that we can not distinguish the

real pupil blobs from them. So we have to use other

features.

From the dark pupil image as shown in Figure 8

(b), we observed that each pupil is surrounded by

the eye region, which has an unique intensity dis-

tribution and appears different from other parts of

the face. The appearance of an eye can therefore be

utilized to separate it from non-eyes. We map the

locations of the remaining binary blobs to the dark

pupil images and then apply the Support Vector

Machine (SVM) classifier [36], [37] to automatically

identify the binary blobs that correspond to eyes. A

large number of training images including eyes and

non-eyes were used to train the SVM classifier. Fig-
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(a) (b) (c)

Fig. 7. (a) Even field image (b) Odd field image (c) The difference image

ure 8 (c) shows that the SVM eye classifier correctly

identify the real eye regions as marked and remove

the spurious ones. Details on our eye detection al-

gorithm may be found in [34].

C. Eye Tracking Algorithm

The detected eyes are then tracked frame to

frame. We have developed the following algorithm

for the eye tracking by combining the bright pupil

based Kalman filter eye tracker with the mean shift

eye tracker [35]. While Kalman filtering accounts

for the dynamics of the moving eyes, mean shift

tracks eyes based on the appearance of the eyes.

We call this two-stage eye tracking.

After locating the eyes in the initial frames, the

Kalman filtering is activated to track bright pupils.

Kalman filter pupil tracker works reasonably well

under frontal face orientation with eye open. How-

ever, it will fail if the pupils are not bright due to

oblique face orientations, eye closures or external

illumination interferences. Kalman filter also fails

when sudden head movement occurs because the as-

sumption of smooth head motion has been violated.

Therefore, we propose to use mean shift tracking

to augment Kalman filtering tracking to overcome

this limitation. If Kalman filtering tracking fails in

a frame, eye tracking based on mean shift will take

over. Mean shift tracking is an appearance based

object tracking method which tracks the eye regions

according to the intensity statistical distributions of

the eye regions and doesn’t need bright pupils. It

employs the mean shift analysis to identify an eye

candidate region, which has the most similar ap-

pearance to the given eye model in terms of intensity

distribution. Therefore, the mean shift eye tracking

can track the eyes successfully under eye closure or

under oblique face orientations. Also, it is fast and

handles noise well. But it does not have the capabil-

ity of self-correction and the errors therefore tend to

accumulate and propagate to subsequent frames as

tracking progresses and eventually the tracker drifts

away.

To overcome these limitations with mean shift

tracker, we propose to combine the Kalman filter

tracking with the mean shift tracking to overcome

their respective limitations and to take advantage

of their strengths. Specifically, we take the follow-

ing measures. First, two channels (eye images with

dark pupil and bright pupil) are used to characterize

the statistical distributions of the eyes. Second, the

eye’s model is continuously updated by the eyes de-

tected by the last Kalman filtering tracker to avoid
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(a) (b) (c)

Fig. 8. (a) The thresholded difference image marked with possible pupil candidates; (b) The image marked with possible

eye candidates according to the positions of pupil candidates; (c) The image marked with identified eyes

the error propagation with Mean Shift tracker. Fi-

nally, the experimental determination of the opti-

mal window size and quantization level for mean

shift tracking further enhance the performance of

our technique.

The two trackers are activated alternately. The

Kalman tracker is first initiated, assuming the pres-

ence of the bright pupils. When the bright pupils

appear weak or disappear, the mean shift tracker

is activated to take over the tracking. Mean shift

tracking continues until the reappearance of the

bright pupils, when the Kalman tracker takes over.

Eye detection will be activated if the mean shift

tracking fails. These two stage eye trackers work

together and they complement each other. The ro-

bustness of the eye tracker is improved significantly.

The Kalman filtering and mean shift tracking algo-

rithms are discussed in [38], [34].

The eye detection and tracking algorithm is

tested with different subjects under different face

orientations and different illuminations. These ex-

periments reveal that our algorithm is more robust

than the conventional Kalman filter based bright

pupil tracker, especially for the closed eyes and par-

tially occluded eyes due to the face orientations.

Even under strong external illuminations, we have

achieved good results. Video demos are available at

http://www.ecse.rpi.edu/∼cvrl/Demo/demo.html.

III. Eyelid Movement Parameters

Eyelid movement is one of the visual behaviors

that reflect a person’s level of fatigue. The primary

purpose of eye tracking is to monitor eyelid move-

ments and compute the relevant eyelid movement

parameters. Here, we focus on two ocular measures

to characterize the eyelid movement. The first one

is Percentage of Eye Closure Over Time (PERC-

LOS) and the second is Average Eye Closure Speed

(AECS). PERCLOS has been validated and found

to be the most valid ocular parameter for monitor-

ing fatigue [26].

The eye closure/opening speed is a good indicator

of fatigue. It’s defined as the amount of time needed

to fully close the eyes or to fully open the eyes. Our

previous study indicates that the eye closure speed

of a drowsy person is distinctively different from

that of an alert person [38].

The degree of eye opening is characterized by the

shape of pupil. It is observed that as eyes close,

the pupils start getting occluded by the eyelids and

their shapes get more elliptical. So, we can use the
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ratio of pupil ellipse axes to characterize degree of

eye opening. The cumulative eye closure duration

over time excluding the time spent on normal eye

blinks is used to compute PERCLOS. To obtain a

more robust measurement for these two parameters,

we compute their running average (time tracking).

To obtain running average of PERCLOS measure-

ment, for example, the program continuously tracks

the person’s pupil shape and monitors eye closure

at each time instance. We compute these two pa-

rameters in 30 seconds window and output them

onto the computer screen in real time, so we can

easily analyze the alert state of the driver. The

plots of the two parameters over time are shown

in Figure 9. Also, video demos are available at

http://www.ecse.rpi.edu/∼cvrl/Demo/demo.html.

(a)

(b)

Fig. 9. (a) Detected eyes and pupils (b) Plots for eyelid

movement parameters: the top one displays AECS parameter

and the bottom one displays PERCLOS parameter.

IV. Face (Head) Orientation Estimation

Face (head) pose contains information about

one’s attention, gaze, and level of fatigue. Face pose

determination is concerned with computation of the

3D face orientation and position to detect such head

movements as head tilts. Frequent head tilts indi-

cate the onset of fatigue. Furthermore, the nominal

face orientation while driving is frontal. If the driver

faces in the other directions (e.g., down or sideway)

for an extended period of time, this is due to ei-

ther fatigue or inattention. Face pose estimation,

therefore, can indicate both fatigued and inatten-

tive drivers. For this study, we focus on the former,

i.e., detection of frequent head tilts.

We present a new technique to perform the 2D

face tracking and 3D face pose estimation syn-

chronously. In our method, 3D face pose is tracked

by Kalman Filtering. The initial estimated 3D pose

is used to guide face tracking in the image, which is

subsequently used to refine the 3D face pose estima-

tion. Face detection and pose estimation work to-

gether and benefit from each other. Weak perspec-

tive projection is assumed so that face can be ap-

proximated as a planar object with facial features,

such as eyes, nose and mouth, located symmetri-

cally on the plane. Figure 10 summarizes our ap-

proach. Initially, we automatically detect a fronto-

parallel face view based on the detected eyes [35]

and some simple anthropometric statistics. The de-

tected face region is used as the initial 3D planar

face model. The 3D face pose is then tracked start-

ing from the fronto-parallel face pose. During track-

ing, the 3D face model is updated dynamically, and

the face detection and face pose estimation are syn-

chronized and kept consistent with each other.
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Frontal-parallel Face Model Acquisition


Predict Next 3D Face Pose Using

Kalman Filter


Refine 3D Face Pose via Model Based

Face Image Matching


Update 3D Face Pose and Face Model


Model Based 3D

Face Pose Tracking


Frame K+1


Frame K


Fig. 10. The flowchart of face pose tracking

We will discuss our face pose tracking algorithm

briefly as follows.

A. Automatic 3D Face Model and Pose Initializa-

tion

In our algorithm, we should have a fronto-parallel

face to represent the initial face model. This ini-

tialization is automatically accomplished by using

the eye tracking technique we have developed [35].

Specifically, the subject starts in fronto-parallel face

pose position with the face facing directly to the

camera as shown in figure 11. The eye tracking tech-

nique is then activated to detect eyes. After detect-

ing the eyes, the first step is to compute the distance

deyes between two eyes. Then, the distance between

the detected eyes, eyes locations and the anthropo-

metric proportions are used to estimate the scope

and the location of the face in the image automat-

ically. Experiments show that our face detection

method works well for all the faces we tested. Ex-

ample of the detected frontal face region is shown

in Figure 11. Once the face region is decided, we

will treat it as our initial face model, whose pose

parameters are used as initial face pose parameters.

Compared with the existing frontal face detec-

tion methods, ours takes full advantage of the de-

tected eyes to guide the detection of the frontal face,

and it is simple, robust and automatic. In [39], we

also demonstrate the tolerance of our face initial-

ization to slight deviations from the fronto-parallel

face pose and to perturbations of initial positions of

the face.

B. Face Pose Tracking Algorithm

Given the initial face image and its pose in the

first frame, the task of finding the face location and

the face pose in subsequent frames can be imple-

mented as simultaneous 3D face pose tracking and

face detection described in [39].

Based on the detected face pose in the previous

frame, we can use the Kalman Filtering to predict

the face pose in the next frame. But the predic-

tion based on Kalman Filtering assumes smooth

face movements. The prediction will be off signifi-

cantly if head undergoes a sudden rapid movement.

To handle this issue, we propose to approximate the

face movement with eyes movement since eyes can

be reliably detected in each frame. Then the final

predicted face pose is based on combining the one

from Kalman Filtering with the one from eyes. The

simultaneous use of Kalman Filtering and eye’s mo-

tion allows to perform accurate face pose prediction

even under significant or rapid head movements.

Details on our face pose estimation and tracking

algorithm may be found at [39].

The proposed algorithm is tested with numerous

image sequences of different people. The image se-

quences include a person rotating his head before
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initial 3D face model


Fig. 11. The initial face model

an un-calibrated camera, which is approximately 1.5

meter from the person. Figure 12 shows some track-

ing results under different face rotations. It is shown

that the estimated pose is very visually convincing

over a large range of head orientations and chang-

ing distance between the face and camera. Plots

of three face pose angles ω, φ, κ are shown in Fig-

ure 13, from which we can see that three face pose

angles vary consistently and smoothly as the head

rotates. Video demos of our system may be found at

http://www.ecse.rpi.edu/∼cvrl/Demo/demo.html.

Fig. 13. The results of face pose tracking. The plots show

the sequences of three estimated rotation angles through the

image sequence.

To quantitatively characterize one’s level of fa-

tigue by face pose, we introduce a new fatigue pa-

rameter called NodFreq, which measures the fre-

quency of head tilts over time. Figure 14 shows the

running average of the estimated head tilts for a pe-

riod of 140 seconds. As can be seen, our system can

accurately detect head tilts, which are represented

in the curve by the up-and-down bumps.
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Fig. 14. Head tilts monitoring over time (seconds)

V. Eye Gaze Determination and Tracking

Gaze has the potential to indicate a person’s level

of vigilance. A fatigued individual tends to have a

narrow gaze. Gaze may also reveal one’s needs and

attention. The direction of a person’s gaze is de-

termined by two factors: the orientation of the face

(face pose), and the orientation of eye (eye gaze).

Face pose determines the global direction of the

gaze, while eye gaze determines the local direction

of the gaze. Global gaze and local gaze together

determine the final gaze of the person. So far, the

most common approach for ocular-based gaze es-

timation is based on the determination of the rel-



12

Fig. 12. Face and face pose tracking results for images randomly selected from one video sequence. The white rectangle

indicates the tracked face region and the white line represents the normal of the face plane, which is drawn according to the

estimated face pose.

ative position between pupil and the glint (cornea

reflection) via a remote IR camera [40], [41], [42],

[43], [44], [45], [46]. While contact-free and non-

intrusive, these methods work well only for a static

head, which is a rather restrictive constraint on the

part of the user. Even a chin rest is often used to

maintain the head still because minor head move-

ment can fail these techniques. This poses a sig-

nificant hurdle for practical application of the sys-

tem. Another serious problem with the existing eye

and gaze tracking systems is the need to perform

a rather cumbersome calibration process for each

individual. Often re-calibration is even needed for

the same individual who already underwent the cal-

ibration procedure, whenever his/her head moved.

This is because only local gaze is accounted for while

global gaze due to face pose is ignored.

In view of these limitations, we present a gaze es-

timation approach [47] that accounts for both the

local gaze computed from the ocular parameters

and the global gaze computed from the head pose.

The global gaze (face pose) and local gaze (eye gaze)

are combined together to obtain the precise gaze in-

formation of the user. Our approach, therefore, al-

lows natural head movement while still estimating

gaze accurately. Another effort is to make the gaze

estimation calibration free. New users or the ex-

isting users who have moved, do not need undergo

a personal gaze calibration before using the gaze

tracker. Therefore, the proposed gaze tracker can

perform robustly and accurately without calibration

and under natural head movements.

An overview of our algorithm is given in Figure

15.

Eye Tracking


Pupil & Glint

Tracking


Pupil & Glint

Parameters

Extraction


Gaze Estimation

via
 Hierarchical


GRNNS


Eye Gaze


Fig. 15. Major components of the proposed system

A. Gaze Estimation

Our gaze estimation algorithm consists of three

parts: pupil-glint detection and tracking, gaze cali-

bration, and gaze mapping.

Gaze estimation starts with pupil & glint detec-
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tion and tracking. For gaze estimation, we continue

using the IR illuminator as shown in Figure 4. To

produce the desired pupil effects, the two rings are

turned on and off alternately via the video decoder

we developed to produce the so-called bright and

dark pupil effect as shown in Figure 5 (a) and (b).

The pupil detection and tracking technique can be

used to detect and track glint from the dark images.

Figure 16 (c) shows the detected glints and pupils.

Given the detected glint and pupil, we can use

their properties to obtain local gaze and global gaze.

Figure 16 shows the relationship between the local

gaze and the relative position between the glint and

the pupil, i.e., the pupil-glint vector.

(a) (b)

(c)

Fig. 16. Relative spatial relationship between glint and

bright pupil center used to determine local gaze position. (a)

bright pupil images, (b) glint images; (c) pupil-glint vector

indicating local gaze direction.

Our study in [48] shows there exists a direct corre-

lation between 3D face pose and the geometric prop-

erties of the pupils. Specifically, pupil size, shape,

and orientation vary with face pose. It is therefore

to capture 3D face pose using pupil geometric prop-

erties. 3D face pose provides the global gaze.

In order to obtain the final gaze, the factors ac-

counting for the head movements and those affect-

ing the local gaze should be combined. Hence, six

parameters are chosen for the gaze calibration to

get the parameters mapping function: ∆x, ∆y, r,

θ, gx and gy. ∆x and ∆y are the pupil-glint dis-

placement. r is the ratio of the major to minor axes

of the ellipse that fits to the pupil. θ is the pupil

ellipse orientation and gx and gy are the glint image

coordinates. The choice of these factors is based on

the following rational. ∆x and ∆y account for the

relative movement between the glint and the pupil,

representing the local gaze. The magnitude of the

glint-pupil vector can also relate to the distance of

the subject to the camera. r is used to account

for out-of-plane face rotation. The ratio should be

close to one when the face is frontal. The ratio

becomes larger or less than 1 when the face turns

either up/down or left/right. Angle θ is used to ac-

count for in-plane face rotation around the camera

optical axis. Finally, (gx, gy) is used to account for

the in-plane head translation.

The use of these parameters accounts for both

head and pupil movement since their movements

will introduce corresponding changes to these pa-

rameters. This effectively reduces the head move-

ment influence. Given the six parameters affecting

gaze, we now need to determine the mapping func-

tion that maps the parameters to the actual gaze.

This mapping function can be approximated by the

Generalized Regression Neural Networks (GRNN)

[49]. GRNN features fast training times, can model

non-linear functions, and has been shown to per-

form well in noisy environments given enough data.

Specifically, the input vector to the GRNN is

g =
[

∆x ∆y r θ gx gy

]
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TABLE I

Gaze classification results for the GRNN gaze

classifier. An average of gaze classification

accuracy of (96% accuracy) was achieved for 480

testing data not included in the training data

ground truth estimated result correctness

(mapping target #)

(target #) 1 2 3 4 rate (%)

1 114 4 2 0 95

2 0 117 0 3 97.5

3 2 3 111 4 92.5

4 0 0 0 120 100

A large amount of training data under different

head positions is collected to train the GRNN. Dur-

ing the training data acquisition, the user is asked to

fixate his/her gaze on each predefined gaze region.

After training, given an input vector, the GRNN

can then approximate the user’s actual gaze.

Experiments were conducted to study the perfor-

mance of our gaze estimation technique. Table V-A

shows some results. An average of gaze classifica-

tion accuracy of (96% accuracy) was achieved for

480 testing data not included in the training data

as shown in the confusion table V-A. Details on our

gaze estimation algorithm may be found in [47].

Given the gaze, we can compute a new fatigue

parameter named GAZEDIS, which represents the

gaze distribution over time to indicate the driver’s

fatigue or attention level. GAZEDIS measures the

driver’s situational awareness. Another fatigue pa-

rameter we compute is PERSAC, which is the per-

centage of saccade eye movement over time. Sac-

cade eye movements represent the deliberate and

conscious driver action to move eye from one to an-

other place. It therefore can measure the degree of

alertness. The value of PERSAC is very small for

a person in fatigue. Figure 17 plots the PERSAC

parameter over 30 seconds.

VI. Facial Expression Analysis

Besides eye and head movements, another visual

cue that can potentially capture one’s level of fa-

tigue is his/her facial expression. In general, peo-

ple tend to exhibit different facial expressions under

different levels of vigilance. The facial expression of

a person in fatigue or in the onset of fatigue can

usually be characterized by lagging facial muscles,

expressionless, and frequent yawnings.

Our recent research has led to the development

of a feature-based facial expression analysis algo-

rithm. The facial features around eyes and mouth

represent the most important spatial patterns com-

posing the facial expression. Generally, these pat-

terns with their changes in spatio-temporal spaces

can be used to characterize facial expressions. For

the fatigue detection application, in which there are

only limited facial expressions, the facial features

around eyes and mouth include enough information

to capture these limited expressions. So in our re-

search, we focus on the facial features around eyes

and mouth. We use 22 fiducial features and three

local graphs as the facial model (shown in Fig.18).

In our method, the multi-scale and multi-

orientation Gabor wavelet is used to represent and

detect each facial feature. For each pixel in the im-

age, a set of Gabor coefficients in the complex form

can be obtained by convolution with the designed

Gabor kernels. These coefficients can be used to

represent this pixel and its vicinity [50]. After train-

ing, these coefficients are subsequently used for fa-

cial feature detection.

After detecting each feature in the first frame,
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Fig. 17. Plot of PERSAC parameter over 30 seconds.

Fig. 18. The facial features and local graphs

a Kalman Filter-based method with the eye con-

straints is proposed to track them. The Kalman

filter is used to predict the current feature positions

from the previous locations. It puts a smooth con-

straint on the motion of each feature. The eye po-

sitions from our eye tracker provide a strong and

reliable information that gives where a rough loca-

tion of face is and how the head moves between two

consecutive frames. By combining the head motion

information inferred from the detected eyes with the

predicted locations from the Kalman Filtering, we

can obtain a very accurate and robust prediction of

feature locations in the current frame, even under

rapid head movement. The detected features and

their spatial connections are used to characterize

facial expressions. Details can be found in [51].

A series of experiments are conducted in [51]

, and good results are achieved under large head

movements, self-occlusion and different facial ex-

pressions. Figure 19 shows the results of a typi-

cal sequence of a person in fatigue. It consists of

blended facial expressions. The person in the scene

yawned from the neutral state, then moved the head

rapidly from the frontal view to the large side view

and back to the other direction, raised the head up

and finally returned to the neutral state. During

the head movements, the facial expression changes

dramatically.

For now, we focus on monitoring mouth move-

ment to detect yawning. A yawning is detected

if the features around mouth significantly deviate

from its closed configuration, especially in vertical

direction. There are 8 tracked facial features around

the mouth as shown in Figure 20. Also, as shown in

Figure 20, the height of the mouth is represented by

the distance between the upper-lip and the lower-

lip, and the width of the mouth is represented by

the distance between the left and right mouth cor-

ners. The degree of mouth opening is characterized

by the shape of mouth. Therefore, the openness of

the mouth can be represented by the ratio of mouth

height and width.

We develop a new measure of facial expres-

sion, YawnFreq, which computes the occurrence fre-

quency of yawning over time. Figure 21 shows the
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Fig. 19. Tracked facial features and local graphes.
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Fig. 21. The plot of the openness of the mouth over time. The bumps A, B, C, D, E, F are the detected yawns.
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Fig. 20. The facial features to be tracked around the mouth

and the mouth width and height used to represent the open-

ness of the mouth.

plot of YawnFreq over time, and a yawning is rep-

resented by an up-and-down bump.

VII. Fatigue Modeling Using Bayesian

Networks

As we discussed above, human fatigue generation

is a very complicated process. Several uncertain-

ties may be present in this process. First, fatigue

is not observable and it can only be inferred from

the available information. In fact, fatigue can be

regarded as the result of many contextual variables

such as working environments, health and sleep his-

tory. Also, it is the cause of many symptoms, e.g.

the visual cues, such as irregular eyelid movements,

yawning and frequent head tilts. Second, human’s

visual characteristics vary significantly with age,

height, health and shape of face. To effectively

monitor fatigue, a system that integrates evidences

from multiple sources into one representative format

is needed. Naturally, a Bayesian Networks (BN)

model is the best option to deal with such an issue.

A BN provides a mechanism for graphical repre-

sentation of uncertain knowledge and for inferring

high level activities from the observed data. Specif-

ically, a BN consists of nodes and arcs connected

together forming a directed acyclic graph (DAG)

[52]. Each node can be viewed as a domain variable

that can take a set of discrete values or a continuous

value. An arc represents a probabilistic dependency

between the parent node and the child node.

A. Fatigue Modeling with Bayesian Networks

The main purpose of a BN model is to infer the

unobserved events from the observed or contextual
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data. So, the first step in BN modeling is to identify

those hypothesis events and group them into a set

of mutually exclusive events to form the target hy-

pothesis variable. The second step is to identify the

observable data that may reveal something about

the hypothesis variable and then group them into

information variables. There are also other hidden

states which are needed to link the high level hy-

pothesis node with the low level information nodes.

For fatigue modeling, fatigue is obviously the target

hypothesis variable that we intend to infer. Other

contextual factors, which could cause fatigue, and

visual cues, which are symptoms of fatigue, are in-

formation variables. Among many factors that can

cause fatigue, the most significant ones are sleep his-

tory, circadian, work condition, work environment,

and physical condition. The most profound factors

that characterize work environment are tempera-

ture, weather and noise; the most significant fac-

tors that characterize physical condition are age and

sleep disorders; the significant factors characterizing

circadian are time of day and time zone change; the

factors affecting work conditions include workload

and type of work. Furthermore, factors affecting

sleep quality include sleep environment and sleep

time. The sleep environment includes random noise,

background light, heat and humidity.

The vision system discussed in previous sec-

tions can compute several visual fatigue parameters.

They include PERCLOS & ACSE for eyelid move-

ment, NodFreq for head movement, GAZEDIS and

PERSAC for gaze movement, and YawnFreq for fa-

cial expression. Putting all these factors together,

the BN model for fatigue is constructed as shown

in Fig.22. The target node is fatigue. The nodes

above the target node represent various major fac-

tors that could lead to one’s fatigue. They are col-

lectively referred to as contextual information. The

nodes below the target node represent visual ob-

servations from the output of our computer vision

system. These nodes are collectively referred to as

observation nodes.

B. Construction of Conditional Probability Table

(CPT)

Before using the BN for fatigue inference, the

network needs to be parameterized. This requires

specifying the prior probability for the root nodes

and the conditional probabilities for the links. Usu-

ally, probability is obtained from statistical anal-

ysis of a large amount of training data. For this

research, training data come from three different

sources. First, we obtain some training data from

the human subjects study we conducted. These

data are used to train the lower part of the BN fa-

tigue model. Second, several large-scale subjective

surveys [1], [53], [54], [55] provide additional such

data. Despite the subjectivity with these data, we

use them to help parameterize our fatigue model.

They were primarily used to train the upper part of

the fatigue model. Since these surveys were not de-

signed for the parameterizations of our BN model,

not all needed probabilities are available and some

conditional probabilities are therefore inferred from

the available data using the so-called noisy or princi-

ple [56]. Third, still some prior or conditional prob-

abilities are lacking in our model, they are obtained

by subjective estimation methods [56]. With the

methods discussed above, all the prior and condi-

tional probabilities in our BN model are obtained,

part of which are summarized in Table II.
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Fig. 22. Bayesian Network model for monitoring human fatigue

C. Fatigue Inference

Given the parameterized model, fatigue inference

can then commence upon the arrival of visual ev-

idences via belief propagation. MSBNX software

[57] is used to perform the inference and both top-

down and bottom-up belief propagations are per-

formed. Here we use some typical combination of

evidences and their results are summarized in Table

III.

From Table III, we can see that the prior prob-

ability of fatigue (e.g. when there is not any ev-

idence) is about 0.5755 (ref#1). The observation

of single visual evidence does not usually provide

conclusive finding since the estimated fatigue prob-

ability is less than the critical value 0.952 (ref#2

and ref#3). Even when PERCLOS is instantiated,

the fatigue probability reaches 0.8639, which is still

below the threshold 0.95. This indicates that one

visual cue is not sufficient to conclude if the per-

2a hypothesized critical fatigue level. It may vary from

application to application

son is fatigued. On the other hand, when combined

with some contextual evidences, any visual param-

eter can lead to a high fatigue probability (ref#4).

This demonstrates the importance of contextual in-

formation. The simultaneous observation of abnor-

mal values for two visual parameters (ref#5) such as

NodeFreq and PerSAC can lead to a fatigue prob-

ability higher than 0.95. This makes sense since

they quantify fatigue from two different perspec-

tives: one is gaze and the other is head movement.

Any simultaneous observation of abnormal values

of three or more visual parameters guarantees that

the estimated fatigue probability exceeds the criti-

cal value. The simultaneous presence of several con-

textual evidences only leads to a high probability

of fatigue, even in the absence of any visual evi-

dence. These inference results, though preliminary

and synthetic, demonstrate the utility of the pro-

posed framework for predicting and modelling fa-

tigue.
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TABLE II

Prior Probability Table

Nodes State Prob. Notes

Random noise yes 0.15 average

no 0.85 of [1] [53]

Light on 0.13 average

off 0.87 of [1] [53]

Heat high 0.24 average

normal 0.76 of [1] [53]

Humidity high 0.19 average

normal 0.81 of [1] [53]

Sleep time sufficient(> 6h) 0.90 [53]

loss(< 6h) 0.1

Napping > 30min. 0.22 [53]

No 0.78

Anxiety yes 0.28 average of

no 0.72 [1] [53]

Sleep disorder yes 0.08 average

no 0.92 of [1] [53]

Workload heavy 0.15 [53]

normal 0.85

Time drowsy time 0.26 [1]

Active time 0.74

Time zone changed 0.17 [1]

no 0.83

Temperature high 0.15 average

normal 0.85 of [1] [53]

Weather abnormal 0.10 average

normal 0.90 of [1] [53]

Noise high 0.15 average

normal 0.85 of [1] [53]

Work type tedious 0.2 average

normal 0.8 of [1] [53]

D. Interfacing with the Vision System

To perform real-time driver’s fatigue monitoring,

the visual module and the fusion module must be

combined via an interface program such that the

output of the vision system can be used by the fu-

sion module to update its belief in fatigue in real

time. Such an interface has been built. Basically,

the interface program periodically (every 0.03 sec-

TABLE III

The inference results of fatigue Bayesian network

model

Ref. No. Evidences Instantiated Fatigue Prob.

1 No any evidence 0.5755

2 YawnFreq (high) 0.8204

3 PERCLOS (high) 0.8639

4 AECS (slow), 0.9545

Sleep time (insufficient),

Time (drowsy time)

5 YawnFreq (high), 0.9552

AECS(slow)

6 Sleep time (insufficient), 0.8363

Time (drowsy time),

Temperature (high)

ond) examines the output of the vision module to

detect any output change. If a change is detected,

the interface program instantiates the correspond-

ing observation nodes in the fusion module, which

then activates its inference engine. The interface

program then displays the inference result, plus cur-

rent time as shown in Fig. 23. Besides displaying

current fatigue level, the interface program also is-

sues a warning beep when the fatigue level reaches

a critical level.

VIII. System Validation

The last part of this research is to experimen-

tally and scientifically demonstrate the validity of

the computed fatigue parameters as well as the

composite fatigue index. The validation consists of

two parts. The first part involves the validation of

the measurement accuracies of our computer vision

techniques, and the second part studies the validity

of the fatigue parameters and the composite fatigue

index that our system computes in characterizing

fatigue.
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Fig. 23. The visual interface program panel. It displays the composite fatigue score over time.

A. Validation of the Measurement Accuracy

We present results to quantitatively character-

ize the measurement accuracies of our computer vi-

sion techniques in measuring eyelid movement, gaze,

face pose and facial expressions. The measurements

from our system are compared with those obtained

either manually or using conventional instruments.

This section summarizes the eye detection and

tracking accuracy of our eye tracker. For this study,

we randomly selected an image sequence that con-

tains 13, 620 frames, and manually identified the

eyes in each frame. The manually labelled data

serves as the ground-truth data, and they are com-

pared with the eye detection results from our eye

tracker. The study shows that our eye tracker is

quite accurate, with a false alarm rate of 0.05% and

a misdetection rate of 4.2%.

Further, we studied the positional accuracy of the

detected eyes as well as the accuracy of the esti-

mated pupil size (pupil axes ratio). The ground-

truth data are produced by manually determining

the locations of the eyes in each frame as well as

the size of the pupil. The study shows that the

detected eye positions match very well with man-

ually detected eye positions, with a RMS position

errors of 1.09 and 0.68 pixels for x and y coordi-

nates respectively. The estimated size of pupil has

an average RMS error of 0.0812.

Finally, we study the accuracy of the estimated

face pose. To do so, we use a head-mount head

tracker that tracks head movements. The output of

the head-mount head tracker is used as the ground-

truth. Quantitatively, the RMS errors for the pan

and tilt angles are 1.92 degrees and 1.97 degrees re-
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spectively. This experiment demonstrates that our

face pose estimation technique is sufficiently accu-

rate.

B. Validation of Fatigue Parameters and the Com-

posite Fatigue Score

To study the validity of the proposed fatigue pa-

rameters and that of the composite fatigue index,

we performed a human subject study. The study

included a total of 8 subjects. Two test bouts were

performed for each subject. The first test was done

when they first arrived in the lab at 9 pm and when

they were fully alert. The second test was per-

formed about 12 hours later early in morning about

7 am the following day, after the subjects have been

deprived of sleep for a total of 25 hours.

During the study, the subjects are asked to per-

form a TOVA (Test of Variables of Attention) test.

The TOVA test consists of a 20-minute psychomo-

tor test, which requires the subject to sustain atten-

tion and respond to a randomly appearing light on

a computer screen by pressing a button. TOVA test

was selected as the validation criterion because driv-

ing is primarily a vigilance task requiring psychomo-

tor reactions, and psychomotor vigilance. The re-

sponse time is used as a metric to quantify the sub-

ject’s performance.

Figure 24 plots the average response times ver-

sus average PERCLOS measurements. The figure

clearly shows the approximate linear correlation be-

tween PERCLOS and the TOVA response time.

This experiment demonstrates the validity of PER-

CLOS in quantifying vigilance, as characterized by

TOVA response time.

In addition, we want to demonstrate the corre-

lation between PERCLOS and fatigue. For this,

Fig. 24. PERCLOS versus TOVA response time. The two

parameters are clearly correlated almost linearly. A larger

PERCLOS measurement corresponds to a longer reaction

time.

we compared the PERCLOS measurements for two

bouts for the same individual. The comparison is

shown in Figure 25, where it is clear that the PER-

CLOS measurements for the night bout (when the

subject is alert) is significantly lower than the morn-

ing bout (subject is fatigued). This not only proves

the validity of PERCLOS to characterize fatigue but

also proves the accuracy of our system in measuring

PERCLOS. Similar results were obtained for other

visual fatigue parameters we proposed.

We also study the validity of the composite fa-

tigue index our fatigue monitor computes. Figure

26 plots the TOVA performance versus the compos-

ite fatigue score. It clearly shows that the composite

fatigue score (based on combining different fatigue

parameters) highly correlates with the subject’s re-

sponse time.

It is clear that the two curves’ fluctuations match

well, proving their correlation and co-variation,

therefore proving the validity of the composite fa-

tigue score in quantifying performance.
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Fig. 25. PERCLOS measurements for evening (blue) and morning (red) bouts.

Fig. 26. The estimated composite fatigue index (blue) versus the normalized TOVA response time. The two curves track

each other well.

IX. Conclusion

Through research presented in this paper, we de-

veloped an non-intrusive prototype computer vision

system for real-time monitoring a driver’s vigilance.

First, the necessary hardware and imaging algo-

rithms are developed to simultaneously extract mul-

tiple visual cues that typically characterize a per-

son’s level of fatigue. Then, a probabilistic frame-

work is built to model fatigue, which systematically

combines different visual cues and the relevant con-

textual information to produce a robust and consis-

tent fatigue index.

These visual cues characterize eyelid movement,

gaze, head movement, and facial expression. The

main components of the system consist of a hard-

ware system for real time acquisition of video images

of the driver and various computer vision algorithms

and their software implementations for real time eye

tracking, eyelid movement parameters computation,

eye gaze estimation, face pose determination and
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facial expression analysis. To effectively monitor

fatigue, a BN model for fatigue is constructed to

integrate these visual cues and relevant contextual

information into one representative format.

Experiment studies in a real life environment with

subjects of different ethnic backgrounds, different

genders and ages were scientifically conducted to

validate the fatigue monitoring system. The valida-

tion consists of two parts. The first part involves the

validation of the measurement accuracy of our com-

puter vision techniques, and the second part studies

the validity of the fatigue parameters we compute

in characterizing fatigue. Experiment results show

that our fatigue monitor system is reasonably ro-

bust, reliable and accurate in characterizing human

fatigue. It represents state of the art in real time

on-line and non-intrusive fatigue monitoring.
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