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Abstract

Classifying moving objects to semantically meaningful
categories is important for automatic visual surveillance.
However, this is a challenging problem due to the factors
related to the limited object size, large intra-class varia-
tions of objects in a same class owing to different view-
ing angles and lighting, and real-time performance require-
ment in real-world applications. This paper describes an
appearance-based method to achieve real-time and robust
objects classification in diverse camera viewing angles. A
new descriptor, i.e., the Multi-block Local Binary Pattern
(MB-LBP), is proposed to capture the large-scale structures
in object appearances. Based on MB-LBP features, an ad-
aBoost algorithm is introduced to select a subset of discrim-
inative features as well as construct the strong two-class
classifier. To deal with the non-metric feature value of MB-
LBP features, a multi-branch regression tree is developed
as the weak classifiers of the boosting. Finally, the Error
Correcting Output Code (ECOC) is introduced to achieve
robust multi-class classification performance. Experimen-
tal results show that our approach can achieve real-time
and robust object classification in diverse scenes.

1. Introduction

With the rapid development of video capture technol-
ogy, video is becoming a cheap yet important media for
information record. Understanding video objects is attract-
ing extensive interest due to its greatly enhanced automa-
tion in public security surveillance. One important task in
video surveillance is to classify moving objects into seman-
tically meaningful categories. Typical applications include
constructing intelligent parking systems for different vehi-
cles and systems of object retrieval from videos, and so on.
However, this recognition task is difficult, due to the fol-
lowing three aspects. First, the objects have diverse visual

appearances and they may vary significantly due to different
viewing angles and lighting. This may result in large intra-
class variations. Second, the size of the moving objects may
change with the distance to the camera. Third, the perfor-
mance of video object recognition should be real-time so
that the system has time to respond to the ongoing events
in time. Thus, constructing such a real-time robust object
recognition system is desired in real-world applications.

In recent years, much attention has been attracted on
classifying object after motion segmentation. Moving ob-
jects can be separated from a static background reason-
ably by background subtraction, so the problem of clutter
can be minimized. Most previous approaches in this area
[13, 4, 10, 14] often use shape and motion information,
such as area size, compactness, bounding box, speed, etc.
However, object shapes in video may change drastically un-
der different camera view angles. In addition, the detected
shapes may be noised by shadow or other factors. Actu-
ally, shape-based approaches often require that the scene
and camera view for test are very similar to those for train-
ing. Such assumptions are inadequate in real applications.
Another important feature is based on object motion. They
can be used to recognize humans and vehicles [14]. How-
ever, it is difficult to use motion to classify vehicles into
more categories, such as car, truck, van, etc.

This paper focuses on applying appearance method to
achieve real-time and robust objects classification in diverse
camera viewing angles. Specifically, our goal is to classify
the objects in the video into car, van, truck, person, bike
and group of people by extracting distinct visual features
and constructing appearance-based classifier.

Recently, there has been a great progress on appearance-
based methods for object recognition [18, 19] from still im-
ages. One reason the recognition methods for still images
have not been widely used in the past years in video is the
small size of the objects or low resolution in video surveil-
lance. Typically, for example, when monitoring the car-park
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or airport, the objects of interest are usually less than 80 pix-
els in height. In video analysis, edge-based rich represen-
tation with SIFT features [15] is used to recognize different
types of vehicles in visual surveillance for an un-calibrated
camera. However, this approach is designed for a single
static scene, even restricts all the vehicles in a same pose.

In this paper, we propose a new feature for object repre-
sentation and call it multi-block local binary pattern (MB-
LBP). MB-LBP is extended from the original LBP feature
[16], which has been proven to be a powerful appearance
descriptor with computational simplicity. Besides, this fea-
ture is also successfully applied in many low resolution im-
age analysis tasks [9]. However, it is limited to calculate
the information in a small region and has no ability to cap-
ture large-scale structures of objects. To remedy this limit,
MB-LBP is proposed to calculate the LBP values on large
image windows (patches). The original LBP has also been
extended in several ways. The most similar one to MB-
LBP is the multi-scale LBP (MS-LBP) [17]. The distinct
characteristic from MS-LBP is that MB-LBP is developed
on image patches divided into sub-blocks (rectangles) with
different sizes, while MS-LBP is still constructed on single
pixel. This treatment provides a mechanism for us to cap-
ture appearance structures with various scales and aspect
ratios. Intrinsically, MB-LBP is to measure the intensity
differences between sub-blocks in image patches. Calcula-
tion on blocks is robust to noises, lighting changing. At the
same time, MB-LBP can be computed very efficiently by
using integral images [23].

Similar to the original LBP [16], the proposed MB-LBP
feature is just a binary string sequence. For this non-metric
feature value, multi-branch tree is designed as weak classi-
fiers and Gentleboost [6] is used to select the features and
construct the binary classifier. Finally, the Error Correct-
ing Output Codes (ECOC) method [5] is used to reduce the
multi-class problem to multiple binary classification prob-
lems. The good error correction property in ECOC [5] guar-
antees that even if some of the individual hypotheses were
wrong, the example may still be right classified in some
right classifier. In this way, we solve the multi-class prob-
lem as well as enhance the classification performance with
MB-LBP features. Experimental results illustrate the valid-
ity of our method.

1.1. Related Work

There are two main classes of approaches used for lo-
calization and categorization of candidate objects. One ap-
proach is to directly detect object in single frames without
prior segmentation. These methods often focus on detect-
ing a specific object type in surveillance, such as pedestri-
ans [24] or vehicles [11]. The other approach is to perform
object classification on detected moving objects or tracked
object sequences. Moving objects can be separated from

a static background reasonably by background subtraction.
Our system exemplifies the latter type.

One important step in all object classification methods
is to extract suitable features for image data representation.
Common features for classifying objects after motion-based
detection include size, compactness, aspect ratio and simple
descriptors of shape or motion. The main limitation of the
systems based such features [13, 4, 10, 14] is that they often
just work well in the restricted settings. Furthermore, these
systems can just classify the objects into a few class, mostly
only distinguish pedestrians from vehicles.

Some recent approaches have tried to address the issue
of view independence. Bose and Grimson [2] describe a
scene-invariant classification system that use the learning of
scene context information for a new viewpoint. Brown [3]
presented an object classification system for distinguishing
humans from vehicles for an arbitrary scene. The limitation
of above methods is that they just recognize humans from
vehicles.

Many other features are also used. Researchers have in-
vestigated 3D based methods for classifying different types
of vehicles [21]. These methods need camera calibration
to reduce the parameters to be estimated and can hardly
achieve real time performance due to high computation
complexity. In [15], edge-based rich representation with
SIFT features is used to classify all kinds of vehicles for
an uncalibrated camera. However, this approache just de-
sign for a single static scene even restrict all the vehicles in
a same pose. In [22], Tsuchiya and Fujiyoshi evaluate the
relative importance of features such as shape, texture and
motion by applying adaboost algorithm. The problems as-
sociated with objects view, scale and real time are not men-
tioned.

The original LBP, introduced by Ojala [16], is a power-
ful texture descriptor with computational simplicity. Later
the operator was extended to consider different neighbor-
hood sizes [17]. The LBP descriptor has been successfully
used in many areas, such as face detection [7] and recog-
nition [9], etc. Error correcting output code (ECOC) [5] is
used as a general framework for handling multi-class prob-
lems by reducing the multi-class problem to a set of binary
problems. ECOC classifier design concept has been used in
many applications, such as text classification [8] and face
verification [12].

1.2. Outline of Our method

Our method performs object classification on detected
moving objects. A simple background subtraction based
on on-line Gaussian Mixture Model (GMM) [20] is used
to detect the moving objects. Different from using the de-
tected binary shape information, we calculate their bound-
ing boxes and select to calculate the corresponding image
patches, i.e., the detected foreground patches. Each such



Figure 1. The basic LBP operator. This operator compares each
neighborhood pixel value with the center pixel value.

Figure 2. Three examples of the multi-scale LBP. (a) The circular
(8,1) neighborhood. (b) The circular (8,2) neighborhood. (c) The
circular (8,3) neighborhood. The pixel values are bi-linearly inter-
polated when the sampling point is not located at the point with
integer coordinate.

patches is normalized to a unified scale (20×20 pixels) and
converted to a gray-scale patch. In this way, we construct
the training set. MB-LBP feature is then used to represent
the objects’ appearance features. By applying the AdaBoost
learning algorithm [23], the most efficient MB-LBP fea-
tures are finally selected, and a decision function is learned
from training data. During training, the ECOC-based ap-
proach is used to divide the multi-class problem into several
two-class classification problems via a predefined two-class
task code matrix.

In the test phase, the foreground patches including the
moving objects are first detected and normalized to the same
unified scale as that for training. Then only the selected fea-
tures via the AdaBoost learning method are calculated and
supplied to the decision function to obtain a class score. Fi-
nally, we apply a simple voting method to the tracked se-
quence to get a final class score. The performance is real-
time and can be able to recognize simultaneously multiple
objects in the scene.

2. Multi-block Local Binary Pattern Represen-
tation

The original LBP operator is defined for each pixel, by
thresholding the pixel values of its 3×3 neighborhood with
the center pixel value and considering the results as a se-
quence of eight binary numbers. Fig. 1 shows the LBP oper-
ator. Such binary patterns can describe local structure of im-
age, such as edges, lines, spots, flat areas and corners [16].

The most prominent limit of the LBP operator is its small
spatial support area, hence the bit-wise comparison therein
made between two single pixel values is much affected by
noise. Moreover, features calculated in a local 3×3 neigh-

Figure 3. Multi-block LBP operator for image representation. As
shown in the figure, this operator encodes intensities of the rectan-
gular regions by local binary pattern. Compared with the original
LBP operator calculated in a local 3×3 neighborhood, MB-LBP
can capture image structure at large scales and aspect ratios.

borhood have no ability to capture the large scale structures
which may be the dominant component for the visual ap-
pearances. Later, this operator was extended to different
neighborhood sizes [17]. Fig. 2 shows a basic extension,
i.e., multi-scale LBP (MS-LBP). Specifically, the size of
the neighborhood can be changed to different scales and the
number of the neighbors can be more than eight. When cal-
culating the binary values in MS-LBP, however, only the
selected pixel values are considered.

Here we introduce a novel extension. The basic idea is
to divide the image patch into sub-blocks (rectangles). The
comparison operator between single pixels in original LBP
is replaced by sub-blocks. We call this new feature Multi-
block Local Binary Pattern (MB-LBP) feature. To encode
the rectangles, the MB-LBP operator is defined by compar-
ing the central rectangle’s average intensity gc with those
neighboring rectangles {g0, ..., g7}, see Fig. 3. In this way,
it can output a binary sequence. An output value of the MB-
LBP operator can be obtained as follows:

MB − LBP =
∑7

i=0
s(gi − gc)2i (1)

where gc is the average intensity of the center rectangle, gi

i = 0, · · · , 7, are those of the eight neighboring rectangles,

s(x) =
{

1, if x > 0
0, if x < 0

Totally, we can get 256 (= 28) kinds of binary patterns.
Fig. 4 shows some demos of MB-LBP patterns. In Fig. 4,
each patches is further divided into 3 × 3 sub-blocks. The
center sub-block is shown with light color. If the average
gray value of the sub-block is greater than that of the cen-
ter sub-block, it is shown with white color; otherwise, it is
shown with dark color. We can see that such patterns can
capture large scale structures.

Generally, the histograms of the Local Binary Patterns
in local region are used as descriptors. For computational
simplicity, in this paper we directly use the output value of
MB-LBP operator at each pixel as image feature. For an im-
age with 20×20, totally we can get 2049 local patches with



Figure 4. Some demos of the MB-LBP patterns.

different sizes and aspect ratios at different pixel locations.
In this way, we get a MB-LBP feature vector with length of
2049. The features will be selected by an adaboost learning
algorithm.

However, a problem is that the value of MB-LBP fea-
ture is nonmetric. The output of MB-LBP operator is just a
symbol of a binary string. Each MB-LBP feature has totally
256 kinds of discrete values, since the number of all possi-
ble output value of MB-LBP operator is 256. In the next
section, we design multi-branch tree as a weak classifier for
each MB-LBP feature.

3. Feature Selection and Binary Classifier
Learning

The feature set of MB-LBP feature is large and contains
much redundant information. AdaBoost algorithm is used
to select significant features and construct a binary classi-
fier. Here, AdaBoost is adopted to solve the following three
fundamental problems in one boosting procedure: (1) learn-
ing effective features from the large feature set, (2) con-
structing weak classifiers, each of which is based on one of
the selected features, (3) boosting the weak classifiers into
a stronger classifier.

3.1. Gentle AdaBoost for Binary Classification

We choose to use the gentle adaboost [6, 1] for the rea-
son that it is simple to be implemented and numerically
robust. Given a set of training examples as {(x1, y1), ...,
(xN , yN )}, where yi ∈ {+1,−1} is the class label of the
example xi ∈ Rn. Boosting learning provides a sequen-
tial procedure to fit additive models of the form F (x) =∑M

m=1 fm(x). Here fm(x) are often called weak learn-
ers, and F (x) is called a strong learner. Gentle adaboost
uses adaptive Newton steps for minimizing the cost func-
tion: J = E[e−yF (x)], which corresponds to minimizing a
weighted squared error at each step.

In each step, the weak classifier fm(x) is chosen to min-
imize the weighted squared error:

Jwse =
∑N

i=1
wi(yi − fm(xi))2 (2)

3.2. Weak Classifiers

It is common to define the weak learners fm(x) to be
the optimal threshold classification function [23], which is

1. Start with weight wi = 1
N , i = 1, 2, ..., N, F (x) = 0

2. Repeat for t = 1, ,M

(a) Fit the regression function by weighted least squares

fitting of Y to X .

(b) Update F (x)← F (x) + fm(x)

(c) Update wi ← wie
−yifm(xi) and normalization

3. Output the classifier F (x) = sign[
∑M

m=1 fm(x)]

Table 1. Algorithm of Gentle AdaBoost

often called a stump. However, as indicated in Section 2,
the value of MB-LBP feature is non-metric. Hence it is
impossible to use threshold-based function as weak learner.

In this paper, for each MB-LBP feature, we adopt multi-
branch tree as weak classifiers. Each branch of such weak
classifier corresponds to a certain discrete value of MB-LBP
feature. So the number of branches is equal to the number
of all possible feature values. Since each MB-LBP feature
has totally 256 possible feature values, the corresponding
weak classifier has 256 branches. The weak classifier can
be defined as:

fm(x) =




a0, xk = 0
...

aj , xk = j
...

aJ−1, xk = J − 1

(3)

Where xk denotes the k-th element of the feature vector x,
and aj , J is the total number of branches, j = 0, · · · , J−1,
are regression parameters to be learned. These weak learn-
ers are often called decision or regression trees. We can find
the best tree-based weak classifier (the parameter k, aj with
minimized weighted squared error as Equ.(2)) just as we
would learn a node in a regression tree.The minimization of
Equ.(2))gives the following parameters:

aj =
∑

i wiyiδ(xk
i = j)∑

i wiδ(xk
i = j)

(4)

As each weak learner depends on a single feature, one
feature is selected at each step. In the test phase, given a
MB-LBP feature, we can get the corresponding regression
value fast by such multi-branch tree. This function is sim-
ilar to the lookup table (LUT) weak classifier for Haar-like
features [25], the difference is that the LUT classifier gives
a partition of real-value domain.

4. Learning ECOC-Based Classifier for Robust
Multi-class Object Classification

ECOC-based classifier is introduced to deal with the
multi-class classification problem. Error correcting out-



Person 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Group of People 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Bike 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
Car 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1
Van 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1

Truck 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
Bug 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2. ECOC code matrix for object classification.

put code (ECOC) [5] is a general framework for handling
multi-class problems by reducing the multi-class problem
to a set of binary problems. Owing to the large intra-class
variation, the binary boosting classifier with MB-LBP fea-
tures has still relatively high error rate. The error correction
mechanism in ECOC guarantees that even if some of the in-
dividual hypotheses were wrong, the example may still be
classified in some right classifier. In this way, we can obtain
more robustness multi-class classification performance.

4.1. Background Of Error Correcting Output Code

ECOC is used as a general framework for handling
multi-class problems [5]. This approach reduces the multi-
class problem to a set of two-class problems by a “cod-
ing matrix” M , where M ∈ {0, 1}k×n, k is the number
of classes (rows), and n is the length of the “code word”
(columns).

Each class is assigned a “code word”, defined by the cor-
responding row of “coding matrix” M . Each column of M
induces a two-class learning problem. For the training task
assigned by the j-th column of M , a sample belonging to
the i-th class can be labeled as positive or negative one, de-
pending on the value of Mij . Here Mij is the element of
the i-th row and the j-th column of matrix M . In this way,
each column can be viewed as a classification hypotheses.
Totally, we can get n hypotheses (h1, ..., hj , ..., hn) from
the coding matrix M . Finally, we can get n classifiers via
adaboosting learning from the MB-LBP features.

In the testing phase, given a sample x, an n-bit binary
vector v is produced by evaluating h1(x), ..., hn(x). Then
the label of x is predicted as that class whose code word is
closet to v according to the Hamming distance:

H(x) = arg min
i
{
∑n

j=1
|Mij − vj |} (5)

The error-correction property of ECOC method is that
even if some of the individual hypotheses hj were wrong,
the example x can still be correctly classified in some class.
This property can be explained as follows. If “coding ma-
trix” is designed to ensure that the distance between every
pair of code words is greater than d, then the closed Ham-
ming balls with radius

[
d−1
2

]
around each code word are

disjoint. As long as the Hamming distance between the v

of a sample x and the i-th row of M is less than
[

d−1
2

]
, then

the i-th row is the unique closest one to v. This indicates
that ECOC approach has the ability to error-correction to
some degree.

4.2. Object Classification via ECOC-based Method

Our goal is to classify the moving objects into six
classes, including person, bike, group of people, car, van
and truck. Since many factors (e.g. abrupt changes in light-
ing, shaking trees and fluttering flags) may affect the results
of background subtraction, large numbers of detected re-
gions may correspond to spurious objects, for example, the
meaningless clutters. Simple treatment as setting minimum
duration of a track can partially filter the spurious objects.
To further reject the remaining spurious objects, we inte-
grate rejecting spurious objects to our foreground classifier
by treating them as a type of object class, which is called
“bug”. And therefore our foreground classifier based on
ECOC actually faces a seven-class classification problem.

We construct a complete code matrix with n = 31 via the
exhaustive code designing method [5], as shown in Table.
2. According to information theory, this code has error cor-
recting ability for any base classifier. Experimental results
(In section 5.2.3) show the multi-class classifier based on
this coding matrix can effectively improve the robustness,
compared with the simple One-Vs-Others classifier due to
its inherent error-correction ability.

5. Experiment

5.1. Data Set

We collected videos from some outdoor overlooking
cameras which locate in different places. Multi-view ob-
jects can be obtained by changing camera view angles.

5.1.1 Foreground Samples Collection

We firstly collect foreground samples to train the multi-class
classifier. We implemented real-time background subtrac-
tion and tracking as [20, 26], so that moving objects can
be reasonably separated from background. For each mov-
ing object, the detected window was fixed to a square ac-
cording to its mass center. Foreground image samples are



Figure 5. The diverse scenes used for testing. The objects’ appearances in these scenes vary significantly mostly due to camera view.

Figure 6. Some examples of training samples. The training set
contains van, car, truck, bike, person, group of people and spurious
object, which are collected in diverse camera viewing angles.

then obtained by normalizing such window to 20× 20. We
collected samples per 10 frames in order to reduce the cor-
relation between objects. As discussed in Section 4.2, we
first filter spurious objects by setting minimum duration of
a track. The remaining objects are manually labeled to per-
son, bike, group of people, car, van, truck and bug. Our
collected sample set consists of 55,458 cars, 7,032 vans,
5,324 trucks, 8,070 persons, 14,076 bikes, 16,116 groups
of people and 7,108 bug samples. Some of them are shown
in Fig. 6.

5.1.2 Collection of Testing Data

To test the performance of the whole system, we collect 432
tracked object sequences from 8 different scenes shown in
Fig.5. The objects in these test sequences are all not in-
cluded in the training set.

5.2. Experimental Result

5.2.1 Performance of whole Method

We trained our object classifier by the collected training
samples and apply it to the test set. As discussed in Sec-
tion 1.2, we first classify the detected foreground image
patches in each frame via the learned decision function;
then combine the individual class labels to produce a se-
quence of class labels. Table 3 shows the classification re-
sults. This results suggest that our approach achieve con-
siderable performance in diverse scenes. Furthermore, the
processing time of our classification method for a 320x240
image resolution is less than 0.1s/frame on a P4 3.0GHz PC.

Tracks Correct Tracks Correct Rate
Cars 208 179 86.1%
Vans 39 33 84.6%

Trucks 19 14 73.6%
Persons 71 63 88.72%
Bikes 55 45 82%

People Groups 40 33 82.5%

Table 3. Experimental result on test set.

5.2.2 Evaluation the distinctive of MB-LBP features

We evaluated the performance of MB-LBP features by com-
paring with original LBP features and extended LBP fea-
tures. According to Ojala’s work [17], with a circular neigh-
borhood P at radius R, LBP can be represent as LBPP,R.
Thus, the original LBP can be represent as LBP8,1, and the
MS-LBP can be constructed with any radius and number of
pixels in the neighborhood.

Because our multi-class classifier is composed of multi-
ple binary classifiers, the comparison can be illustrated by
a binary classification problem which distinguish humans
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Figure 7. Comparative results with MB-LBP features, original
LBP features and multi-scale LBP features. (a) The curves show
the error rate as a function of the selected features in training
process. (b) The ROC curves show the classification performance
of the three classifiers on the test set.

(including person, group of people) from vehicles (includ-
ing bike, car, van and truck) and bug samples. The training
set contains 19,131 positive samples (humans) and 37,461
negative samples (others), and the test set contains 19,131
positive samples and 37,461 negative samples.

We first compare MB-LBP with the original LBP and
MS-LBP LBP8,R. Here R can be equal to all possible val-
ues. That is, R belongs to {1, 2, ..., 9} in our experiments
since the image patches are all normalized to 20 × 20 pix-
els. Based on Adaboost learning framework, three boost-
ing classifiers are trained with 50 original LBP features,
LBP8,R and MB-LBP features, respectively. Then they are
evaluated on the test set. Fig. 7(a) shows the curves of the
error rate (average of false alarm rate and false rejection
rate), with the increment of the number of the selected fea-
tures. We can see that the curve corresponding to MB-LBP
features has the lowest error rate. This indicates that the
weak classifiers based on MB-LBP features are more dis-
criminative. The ROC curves of the three classifiers on the
test set can be found in Fig. 7(b). It is shown that in the
given false alarm rate at 0.01, classifier based on MB-LBP
features shows 12% higher correct rate than LBP8,R and
28% higher than original LBP feature.

In our algorithm, the weak classifier corresponding to
each LBP feature is constructed by multi-branch tree. Each
branch of such weak classifier corresponds to a certain dis-
crete value of LBP. So the total number of branches is 2P .
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Figure 8. Comparative results of MS-LBP features with different
P . Although larger P can get lower error rate on the training data,
the ROC performance on the test set is not high. (a) The curves
show the error rate as a function of the selected features in training
process. (b) The ROC curves show the classification performance
of the three classifiers on the test set.

This number will significantly increase with the increase of
P . When P is 10, the total number of branches is 1046.
Actually, our experiments with larger P show low perfor-
mance. On the one hand, the over-fitting problem occurs
(See Fig.8). On the other hand, a large number of branches
also increases the computation and memory burden.

5.2.3 Evaluation the advantage of Error correction
property of ECOC-based classifier

There are many different approaches for reducing multi-
class problem to multiple two-class classification problems.
The most straightforward way is One-Vs-All. This method
considers the comparison between each class from all the
others. An example is classified in the class whose corre-
sponding classifier has the highest output. This classifier
decision function is defined as:

f(x) = arg max
j∈{1,...,K}

fj(x)

This method directly uses the output of single classifiers.
We implemented a One-Vs-All classifier and compared its
performance on the test set with ECOC-based classifier.

In this experiment, we randomly divide the collected
foreground samples (described in section 5.1.1) to two
equally parts, one for training the other for testing. Ta-
ble 4 shows the correct rate of classification comparison



between One-Vs-All and ECOC. It is shown that the error
rates decreased after combining all the binary classifiers via
error correcting code. It is illustrated that the advantage of
the error-correction property of ECOC method improves the
classification performance.

Samples One-vs-all ECOC-based
Cars 27729 86.2% 92.6%
Vans 3516 67.6% 76.0%

Trucks 2662 66.1% 71.1%
Persons 4035 81.2% 85.2%
Bikes 7038 72.6% 78.8%

People Groups 8058 71.6% 75.8%
Bug 3554 52% 60.4%

Table 4. Classification correct rates comparison between ECOC
and One-Vs-All.

6. Conclusions

In this paper, we have described a moving object classifi-
cation algorithm based on appearance learning. Multi-block
local binary pattern (MB-LBP) feature is proposed as fore-
ground image descriptor. The basic idea of MB-LBP is to
encode the neighboring rectangular regions by LBP opera-
tor. Compared with the original LBP, MB-LBP can capture
image structures with different scales and aspect ratios. Ex-
perimental results show that MB-LBP feature is more dis-
tinctive than original LBP.

Aiming at dealing with the non-metric feature value of
MB-LBP features, multi-branch regression tree is devel-
oped to construct the weak classifiers when using AdaBoost
algorithm to select the discriminant features and construct
the strong two-class classifier. Finally, to solve the multi-
class problem, the ECOC-based method is introduced to re-
duce the multi-class problem to a group of two-class clas-
sification problems. Recognition experiments indicate that
our method is validate.
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