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Real-Time Object Tracking and Segmentation 

Using Adaptive Color Snake Model 

 

Kap-Ho Seo, Jin-Ho Shin, Won Kim, and Ju-Jang Lee 

 

Abstract: Motion tracking and object segmentation are the most fundamental and critical 

problems in vision tasks such as motion analysis. An active contour model, snake, was 

developed as a useful segmenting and tracking tool for rigid or non-rigid objects. In this paper, 

the development of new snake model called “adaptive color snake model (ACSM)” for 

segmentation and tracking is introduced. The simple operation makes the algorithm runs in 

real-time. For robust tracking, the condensation algorithm was adopted to control the 

parameters of ACSM. The effectiveness of the ACSM is verified by appropriate simulations 

and experiments. 

 

Keywords: Active contours, condensation algorithm, object tracking, image segmentation. 

 

1. INTRODUCTION 
 

In recent years, automatic controls have affected the 

world in various fields. Automation has been carried 

out in factories, military, services in hospitals, and so 

on. The controllers of high performance need large 

amounts of integrated information about systems and 

the environment for feedback. A vision system is a 

sensor that is capable of giving this kind of 

information. Vision sensors are necessary for sensing 

obstacles or targets in complex systems such as 

mobile robots, active and intelligent cruise controls. In 

a vision system, processing such as segmentation and 

tracking are critical tasks to be accomplished 

satisfactorily. 

A considerable work has been done during the past 

decade in object tracking and motion analysis of 

nonrigid objects in the context of snake models. 

Active contour models have been developed as useful 

tools for segmenting and tracking rigid and nonrigid 

objects. Snake, one of the active contour models, was 

introduced by Kass et al. [1] in 1987. They defined 

snake energies such as internal energy, image energy 

and external energy. Segmentation and tracking can be 

done by this energy minimization process. They tried 

to solve optimization problem for energy 

minimization by use of the variational approach. They 

have applied snake to track facial features such as lips 

in an image sequence. The estimated motion 

parameters of these features were used to explain 

facial expressions, etc. Leymarie and Levine [2] have 

used the snake model to track cells in biological 

image sequences and proved the convergence of 

snake’s motion. DeCarlo and Metaxas [3] have 

proposed a deformable face model which includes 

both shape and motion parameters and have applied it 

to track human faces. Point distribution based active 

shape models were also proposed by Kervrann and 

Heitz [4] to track objects in long image sequences, 

where a point distribution is used to characterize the 

structure and variations in the object shape. 

Besides the object boundaries, various information 

in an image or a sequence of images have been used 

for segmenting objects. Appearance information 

including grayscale or color have been used in 

conjunction with deformable shape models [5-8]. 

Bascle and Deriche [9] have combined texture 

correlation of the entire internal region of the object 

and B-spline contour along the object boundary. Color 

information has also been used to track nonrigid 

objects in real-time application [7,10,11]. 

While an active contour model is applied to track 

an object, stepping to the next image frame in the 

presence of a large motion difference between them 

may cause unpredictable effects on the tracking 

contour. If the variance of the object’s location and the 

configuration between two successive images is large 

due to the abrupt increase of the object’s speed or the 

low operation speed of the vision system, then the 
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tracking of snake cannot be guaranteed. For the better 

tracking performance, some advanced algorithms 

were employed for motion estimation in the snake 

model. 

Optical flow algorithm has been commonly applied 

to estimate the object’s motion [3,12,13]. But, the 

computation of the optical flow field for the entire 

area of interest lead to a considerable computational 

complexity. It may be effective only for a static 

camera. As the camera moves, the system generates 

many variations between successive images. Optical 

flow-based approach is not suitable for these 

situations. Another approach is the Kalman filter, a 

powerful tool for motion analysis [14,15], which is an 

frequently used in dynamic estimations. Kalman 

filtering requires the system to be linear, with its 

observations be linear functions of the underlying 

state. The most obvious difficulties of the visual 

tracking lie in the modeling of the shape uncertainty 

and the probability density of the state. Most of the 

algorithms that use the state-space description are 

based on Kalman filtering. Kalman filtering has a 

mechanism that fuse the current noisy measurement 

information and the estimation based on the history of 

states. Kalman filtering deals with the uncertainty of 

the state by carrying the covariance matrices of the 

states and the measurements, and it works optimally 

when the noise is Gaussian. This indicates that 

Kalman filtering algorithm can fail when the 

uncertainty in the system has multi-modal distribution. 

This is exactly what happens in the noisy 

measurement data from an image with several visual 

clutter, which causes malfunction of the Kalman filter 

in such situations. The condensation algorithm has 

been employed in many researches [16-18]. One of 

the striking properties of condensation algorithm is its 

simplicity compared to the Kalman filter. In presence 

of camera motion, the condensation algorithm shows 

the robust tracking of object’s motion. In following 

sections, the condensation algorithm will be described 

in detail. 

In this paper, we propose a new snake model, which 

is capable of dealing with color information. And, we 

also present a real-time algorithm to track and 

segment a moving object using the condensation 

algorithm for better tracking performance. In Section 

2, the problem statement is discussed. Section 3 and 4 

review the conventional snake and condensation 

algorithm. The proposed snake model, ACSM and 

tracking scheme are presented in Section 5 and 6. 

Experimental results with ACSM on a real video 

sequence are presented in Section 7. The conclusions 

are given in Section 8. 

 
2. PROBLEM STATEMENT 

 
Visual tracking involves successive segmentation of 

the target object’s boundaries in a sequence of images. 

Fig. 1 shows three sequential images for visual 

tracking of a particular object in them. Accurate visual 

tracking involves the successive segmentation of the 

object’s boundary. Snake’s segmentation process is 

related with energy minimization. Snake energies 

should be defined in such a way that include the 

boundary information as minimum energy states. If 

the minima of the energy surface is found accurately 

through the energy minimization process, snake can 

figure out the object’s boundary. This is the 

segmentation process [5]. When the variance of the 

object’s location and the configuration between two 

successive images is small, snake can also make 

segmentation of the succeeding image from the 

contour of the preceding image through the process of 

energy minimization. This is the tracking process of 

snake. 

When the variance between successive images is 

small, the snake operates well by the variational 

solution [1] or dynamic programming method [19]. 

However, when there is the large variance, the 

convergence of snake motion cannot be guaranteed as 

the assumptions of variational approach is not 

effective in such situations. This is a major problem of 

snake in objects tracking. Furthermore, when the 

object moves in a complex background, using only 

image intensity information is not enough to separate 

the object from its background. This is another major 

  

(a) (i-1)th frame.  (b) ith frame.  (c) (i+1)th frame.

Fig. 1. Example of visual tracking. 

 

Fig. 2. The concept of segmentation process. 

 

(a) Original image.       (b) Image energy. 

Fig. 3. The profile of image energy. 
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problem of snake in segmenting objects. 

Three kinds of problems are discussed in this 

section: segmentation problem, tracking problem, and 

contraction problem. 

 

2.1. Segmentation problem 

Snake can find an object’s boundary by the process 

of energy minimization in the energy space defined on 

the basis of the object’s geometry and the intensity 

information of the image. 

In Fig. 2, the segmentation process is explained 

conceptually. Snake contour may contract into the 

boundary of the target object from the initial location 

along the gradient of the energy related to the object’s 

geometry. Snake’s contour may be expressed by the 

set of node vectors in discrete cases. Snake can find 

the exact boundary of the object by searching the 

maximum gradient points. Kass defined image energy 

as a function of the gradient of image intensity as 

2
( , ) ( , )imageE x y I x y= − ∇ .                (1) 

Fig. 3 is a representation of the image energy. In 

Fig. 3(a), an original image is presented, where is a 

ball on green grass. By the gradient process of (1) the 

original image can be expressed as sets of energy 

values. In Fig. 3(b), the points that exist within the 

boundaries of the object can be identified, as they 

have minimum values in the image energy space. 

Therefore, snake can make segmentation of the object 

from an image. However, in this process, the 

conventional snake do not utilize the prior knowledge 

about color information, which often plays an 

important role in improving the detection performance 

in the presence of disturbing image features. 

 

2.2. Tracking problem 

When an image is grabbed by the image-grabbing 

unit, the tracking procedure finds the object’s 

boundary, despite the variation of the object’s location 

from the preceding image. If the variation is small, the 

solutions gained from the variational approach are 

effective, and the snake can find the object’s boundary 

by the gradient of the image energy. If it is not the 

case, the effectiveness of the solutions of the snake’s 

motion is not guaranteed. This concept is further 

explained in Fig. 4. The energy profile, which can be 

gained by cutting the object’s image energy along the 

S-S’ axis in Fig. 3(a), is expressed in Fig. 4. In this 

figure, the snake’s nodes are in the segmentation state. 

Therefore, two representative nodes, black dots, are 

placed in the minimum energy states of the image 

energy. If the ball on the grass moves to the right, the 

energy profile of Fig. 4(a) also moves to the right. In 

Fig. 4(b) the result of motion is expressed when the 

variance of motion is small. As the motion is small, 

the positions of nodes may remain in the valley 

created by the gradient of image energy. Each node 

can also move down to the minimum energy state 

along the gradient of image energy. This way, the 

tracking is possible in small variance cases. Large 

variance cases are conceptually explained in Fig. 4(c), 

where the degree of motion is large, and the nodes of 

snake may not exist in the valley of energy. Therefore, 

there may be no gradient of energy and no moving 

force can be generated. This is a tracking problem of 

Kass’ snake in large variation cases. Consequently, the 

solutions are not guaranteed in large motion. 

 

2.3. Contraction force problem 

Kass proposed internal energy to make the contour 

of snake have smooth geometry. Snake’s internal 

energy is composed of two parts, i.e., the first and 

second derivatives of the contour along the spline. 

The snake’s contour can be expressed in discrete form 

as shown in Fig. 5(a), and the derivative operations 

are approximated by finite difference equations. The 

internal energy, Eint, at ith node can be expressed as 

2 2
int 1 1 1( ) 2i i i i i i iE i v v v v vα β− − += ⋅ − + ⋅ − + . (2) 

In the initial segmentation mode, it is required to 

generate contraction forces into the center of the 

object. The contraction forces are related with the 

second term in (2). If we introduce iu  such that 

1i i iu v v −= −                             (3) 

then 1i iu u+ −  can be expressed as follows: 

1 1 12i i i i iu u v v v+ − +− = − + .                (4) 

From (4) it is evident that the minimization of Eint is 

along the direction of 1i iu u+ − . The contraction 

(a) ith frame.  (b) (i+1)th frame:  (c) (i+1)th frame:

                     small difference.   large difference.

Fig. 4. The concept of snake’s tracking. 

 

 

(a) Discrete snake.      (b) Eint at node i. 

Fig. 5. Contraction force of Eint. 
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forces are generated by the second term of Eint in (2). 

The direction of the contraction force at node i is 

expressed in Fig. 5(b). If objects have rectangular 

shapes like automobiles for example, the Eint may 

have larger values at corners compared to the other 

points. Moreover, if objects have non-convex shapes, 

then the contraction forces may not be generated into 

the center of the object at the points in the vicinity of 

non-convex region. Therefore, a new energy has to be 

formulated to avoid effects from the shape of the 

object. New contraction energy designed on the basis 

of quadratic functions is proposed in Section 6. 

 

3. CONVENTIONAL SNAKE 

 

Kass introduced snake concept in 1987, where he 

proposed a contour, a deformable curve, and its 

energies and solutions based on variational approach. 

Consider a deformable curve v(s,t) with parameters s 

(spatial index) and t (time index), defined in given 

open intervals Ω and T, where it is a function of two 

variables x and y with the parameterization 

( , ) ( ( , ), ( , )); ,v s t x s t y s t s t T= ∈Ω ∈ .        (5) 

Kass defined energy terms, that are functions of the 

contour v(s,t). Active contour models are the energy-

minimizing spline guided by internal constraint forces 

and influenced by external image forces that pull it 

toward features such as lines and edges [20]. The 

conventional energy function in the snake is defined 

in discrete form as follows: 

int

1

( ) ( )
n

snake image

i

E E i E i

=

⎡ ⎤= +⎣ ⎦∑ ,            (6) 

where n is the number of snake node (called snaxel vi), 

the internal spline energy Eint(i), and the external 

image energy Eimage(i), at the ith position of the 

contour, are described as 

2 2
int 1 1 1( ) 2i i i i i i iE i v v v v vα β− − += − + − ⋅ + ,  (7) 

2
( ) ( )image iE i f v= − ∇ ,                     (8) 

where f(vi) is the original pixel value at vi. The 

symbols αi and βi are the weighting factors. The 

image energy is set to be the negative magnitude of 

the image gradient, so that the snake is attracted to the 

regions with low image energy, i.e., strong edges. 

Thus a snake model is actually a function with a 

compromise balance between internal and image 

forces. 

 

4. ADAPTIVE COLOR SNAKE MODEL 

 

Although conventional snake has proved to be a 

very attractive and an efficient method, it is not 

suitable for complex situations, where fast motion or 

abrupt variations of object contours are encountered. 

The critical disadvantage of conventional snake is 

not to utilize the prior knowledge such as color and 

motion information, which often plays an important 

role in improving the detection performance in the 

presence of some disturbing image features (e.g. 

shadows, shading and neighboring objects). Therefore, 

our attention is directed towards the use of color and 

motion information. This consideration provides more 

accurate results compared to conventional algorithms, 

in which objects are tracked by exploiting motion 

information; this is more evident in sequences with 

complicated content, such as fast motions, complex 

backgrounds, special camera effects (zooming, pan-

tilting), etc. 

Approach of ACSM is somewhat different from 

other approaches that utilize the color information in 

active contours [6-8,12]. Most previous work has been 

based on the gradient of color intensity, in that a mere 

extension on gradient of gray image intensity is used. 

ACSM doesn’t depend on gradient of color intensity, 

but it depends on the stochastic matching degree of 

color. 
 

4.1. Tracking problem 

We have proposed color snake model in previous 

work [23,24]. The main idea was the redesign of the 

snake node, which can deal with color information. 

But, snaxels in previous research could not adapt 

color variations. In this paper, we propose a new 

formulation for ACSM. 

The energy functions for ACSM are modified from 

the conventional snake. As shown in Fig. 6, we have 

designed a snaxel having two components: outside 

and inside color patch. These components are 

compared to the original image where each snaxel 

lays. This makes the feature/object segmentation 

process faster and more accurate. The newly proposed 

energy function is as follows: 

int

1

( ) ( ) ( )
n

acs image cs

i

E E i E i E i

=

⎡ ⎤= + +⎣ ⎦∑ ,        (9) 

{ }
1 2

, ,

1

( ) ( )
p pn n

cs i k i k

k

E W p D p

+

=
= − ⋅∑ ,           (10) 

where 

[ ]
[ ]

1 2

2 1

( )
k in

k

k out

w w if p P
W p

w w if p P

⎧ ∈⎪= ⎨
∈⎪⎩

 

 

Fig. 6. Design scheme of adaptive color snake model.
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,

,

2 2
, 1 , 1,

2 2
, 2 , 2,

( ; ) ( ; )
( )

( ; ) ( ; )

k i i i gen

k o o o gen

p P P P gen

k

p P P P gen

N z z N z z
D p

N z z N z z

⎡ ⎤Σ Σ
⎢ ⎥= ⎢ ⎥Σ Σ⎢ ⎥⎣ ⎦

. 

In ( )W ⋅ , w1 and w2 are the user-determined 

weighting factors for each patch of the snake node. 

And, a color distribution ( )N ⋅  can be represented by 

a Gaussian distribution model as follows: 

( )2 21
( ; , ) exp [ ] [ ] / 2

2

T
N z z z z z z

π
−Σ = − − Σ −

Σ
,(11) 

where 

[ ]Tz r g= , 1 2

1 2

1

1
[ ]p pn n T

i ii
p p

z r g
n n

+
==

+ ∑ , 

rr rg

gr gg

σ σ

σ σ
⎡ ⎤

Σ = ⎢ ⎥
⎢ ⎥⎣ ⎦

. 

and r, g are the normalized color values. 

The proposed energy function is composed of three 

components. First and second terms of (9) are 

identical to the corresponding terms in the 

conventional snake model. The first term is the 

internal energy, its modification will be mentioned in 

the next section. Third term is the color-fitting term so 

that ACSM is capable of shrinking until the contour of 

snake meets the desired color boundary. 

In (10), the distribution of general color 
2

, ,( ; , )i i gen i genN z z Σ  was multiplied to the distribution 

of each color, to prevent the color model from moving 

too far from the general color. 

 
4.2. Color adaptation 

Most color-based systems are sensitive to change in 

viewing environment. In general, the color 

representation of an object viewed with a color 

camera is influenced by many parameters: ambient 

light, object movement etc. There are two groups of 

researches that address environment changes: 

adaptation and toleration. The adaptive approach 

provides an alternative to making a color model useful 

in a large range. Instead of emphasizing the recovery 

of the spectral properties of light sources and surfaces 

that combine to produce the reflected lights, the goal 

of adaptation is to transform the previously developed 

color model into the new environment [25]. We have 

adopted a method to adapt the color model. Based on 

the identification of the desired color histogram, the 

modified parameters of the model can be computed 

according to the following process. 

In (11), z  is so noisy that we use the adaptation 

scheme for determining the color value. Each adapted 

color value is determined as follows: 

∑
−

=
−−−−−− Σ=Σ

1

0

),,()ˆ,ˆ,ˆ(
m

i

ikikikikikikkkk grgr γβα ,(12) 

where α , β , and γ  are scale factors for updating 

each color. 
 

4.3. Operation flow of ACSM 

The procedure of ACSM is summarized as the 

following pseudocode. 

begin 

initialize the number of iteration 

assign manually general color value genz , genΣ  

initialize snake node and set initial color genzz =  

while (not termination condition) do 

update the iteration number 

compute energy function using the greedy method 

find and move to the point with minimum energy 

calculate z  from the color value within patches 

update kr̂ , kĝ , kΣ̂  

end 
 

5. OBJECT TRACKING USING 

CONDENSATION ALGORITHM 
 

In the previous section, a new design scheme for 

the segmentation was discussed. In this section a new 

scheme for tracking is presented. 

The condensation algorithm [16] has attracted much 

interest in the field of active vision as it offers a 

framework for dynamic state estimation, where the 

underlying probability density function is not required 

to be Gaussian. The algorithm is based on factored 

sampling but extended to apply iteratively to 

successive images in a sequence. As new information 

becomes available, the posterior distribution of the 

state variables is updated by recursively propagating 

these samples. 

A new snake energy for tracking, operation modes 

for the proposed snake, and the application of the 

condensation algorithm are explained as follows: 
 

5.1. Design of contraction energy 

In (2), the second term makes the contraction forces. 

Yet, this internal energy suffers problems explained in 

Section 2.3. Therefore, a new formulation is required 

for the internal energy to overcome those problems. 

The contraction energy, Econt, is proposed on the 

basis of quadratic function in (13). This function has 

parabolic characteristics with the focus being 

determined by the initial snake contour. The estimated 

focus can be calculated by using the first moment and 

the area of initial snake. 

})ˆ()ˆ{()( 22

ciciconticont yyxxKiE −+−⋅= β ,(13) 

where β is a constant for Econt, Kcont is a energy 
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constant and 
cx̂ , 

cŷ  is the focus which can be 

estimated by the condensation algorithm. The concept 

of contraction energy, Econt, is explained in Fig. 7. The 

original image can be converted into the image energy, 

Eimage, by (1) as in Fig. 7(b). The sum of energies, 

Eimage+Econt, is shown in Fig. 7(c). The resulting 

energy has a property that contracts snake’s nodes into 

the estimated focus of the target object along the 

gradient. Initial snake’s nodes may be contracted by 

the contraction energy Econt, and along the boundary 

of the object, the nodes can fall into the valley of the 

image energy Eimage. According to this process, objects 

can be segmented successfully. 
 

5.2. Operation modes 

There are two kinds of operation modes in object 

tracking using ACSM: segmentation mode and jump 

mode. 

Segmentation mode: Segmentation is to separate 

the boundary of the target object from the images. In 

the initial state, snake has to be laid roughly around 

the target object. From this initial position, snake will 

gradually shrink to the boundary of the target object 

by minimizing snake energy function. In most of the 

previous works, this initialization of snake had 

accomplished manually. However, if the residual 

motion of the moving object can be detected by 

processing the condensation algorithm for two 

successive images, the regional information about the 

moving object can be stochastically obtained. Thus, 

automatic initialization can be made possible by using 

this concept. 

In this segmentation mode, total snake energy is 

comprised of three major terms Econt, Eimage, and Ecs: 

1

( ) ( ) ( )
n

acs cont image cs

i

E E i E i E i
=

⎡ ⎤= + +⎣ ⎦∑ .     (14) 

Jump mode: The jump mode is proposed to track 

the object’s motion when the overlapped area of the 

object to be tracked doesn’t exist between two 

sequential images [13]. This concept is explained in 

Fig. 8. This concept is based on the assumption that 

the position of the object can be obtained by 

processing the condensation algorithm. Snake’s nodes 

from every previous image are jumped into the 

boundary of the object, whose location has moved to 

another region and they are re-initialized on the basis 

of the radius of the segmented object. Segmentation 

process and jumping based on the information of the 

condensation algorithm are repeated through 

successive images. In this mode total snake energy is 

comprised of three major terms such as Econt, Eimage, 

and Ecs, the same way as the segmentation mode. 

The operation flow for the jump mode is explained 

in Fig. 9. In the initial state, snake’s nodes are 

initialized manually or automatically. Initially, snake 

contracts into the boundary of the object to be 

segmented and this segmentation process is continued 

to the minimal state of the total snake energy for 

segmentation. In the next frame, the object’s location 

may have moved to another position, which is far 

from the corresponding position in the previous image. 

After calculating the condensation algorithm, snake 

 

(a) Original image.          (b) Eimage. 

 

(c) Eimage+Econt. 

Fig. 7. The concept of contraction energy, Econt. 

 

 

Fig. 8. The concept of jump mode. 
 

 
 

Fig. 9. The operation flow of jump mode. 

 

 

Fig. 10. The concept of re-initializing process. 
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nodes jump on the basis of the information of the 

condensation algorithm. After that, the snaxels are re-

initialized as in Fig. 10. The boundary of the object in 

the next frame can be determined by the segmentation 

process based on the gradient of Econt. Then, the jump 

mode system receives the succeeding image for 

finding the new location of the object. Re-

initialization can be done by using the radius 

information of the object from the previous image. In 

the ith image, the maximum radius of the segmented 

object can be calculated. But this calculation by the 

condensation algorithm may not be so accurate that in 

the (i+1)th image, the calculated center may not 

coincide with the actual center. Therefore, the new 

radius for re-initialization has to be determined by the 

product with a scale factor, s. 
 

6. EXPERIMENTAL RESULTS 
 

6.1. System setup 

We demonstrated the performance of ACSM by 

applying it to real image sequences. We have 

implemented the proposed algorithm on a Pentium-IV 

2.4 GHz PC with 512MB RAM, and a Logitech 

QuickCam-Pro USB camera. Three sequential images 

were captured at the rate of 10 frames/sec. Each image 

has the resolution of 320x240 pixels and depth of 24-

bit color. For simplicity of comparison, 16 snaxels 

were used for each snake model. For ACSM, initial 

color distribution of the object was manually assigned. 

In most object tracking problems, the appearance 

properties (especially, color information) of target 

object are known. In the following experiments, 

however, the color information for outside patch of 

ACSM are not known, and therefore the energy for 

outside patch is not required to be calculated. Thus, 

only inside energy of Ecs in (10) is used for 

experiments. From the second frame, newly adapted 

color is applied to ACSM. The size of snake patches 

are 5 pixels each, along the same and opposite 

directions of the estimated center, which is calculated 

using the condensation algorithm. 

The state vector for Condensation algorithm has the 

following form: 

[ ]Tt t t t t t t t tx x x y y r r g g= ,     (15) 

where (x, y) locates the center of the object, r and g 

are the normalized color of the object. In the 

experiments, 100 samples were used at each iteration. 
 

6.2. Experimental results 

Experiments were performed on three cases. In the 

first case, a fast moving object on a simple 

background are segmented. Second experiment was 

carried out to test the proposed algorithm for 

segmenting a fast moving object on a complex 

background. In the third experiment, the performance 

was tested in the presence of camera motion. To 

demonstrate the performance, ACSM was compared 

with a conventional snake, and a snake with optical 

flow. Through the experiments, the effectiveness of 

ACSM was verified. 

Case 1: Large motion variance and simple 

background  

In case 1, the performance of segmentation and 

tracking in the case of a fast moving object on simple 

background was evaluated. This experiment was 

implemented in order to demonstrate that the motion 

information is essential for object tracking using 

active contours. In figure, yellow dots are the final 

snake points. 

Fig. 11 shows the results of conventional snake. A 

conventional snake was applied to object tracking 

without motion estimation such as optical flow or 

condensation algorithm. Since an object in this 

experiment moves fast, contour in the previous frame 

is not suitable for the initial contour of the present 

frame. It causes a mismatch between the object and 

the estimated contour. 

Fig. 12 shows the results of the conventional snake 

with motion information using an optical flow. To 

 

(a) Frame 1.  (b) Frame 2.    (c) Frame 5.   (d) Frame 7.

Fig. 11. Experimental results for conventional snake

in case 1. 

 

(a) Frame 1.  (b) Frame 5.   (c) Frame 9.  (d) Frame 13.

 (e) Frame 17.  (f) Frame 21.  (g) Frame 25.  (h) Frame 28.

Fig. 12. Experimental results for conventional snake

with optical flow in case 1. 

 

(a) Frame 1.  (b) Frame 5.   (c) Frame 9.  (d) Frame 13.

 (e) Frame 17.  (f) Frame 21.  (g) Frame 25.  (h) Frame 28.

Fig. 13. Experimental results for ACSM in case 1. 
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guarantee the tracking in the presence of large motion, 

the estimation of the object motion using optical flow 

was applied to the conventional snake. Compared to 

result of the conventional snake, object tracking is 

guaranteed as shown in Fig. 12. But, there still exists a 

problem as mentioned in Sec. 2.1. In frame 13 and 21, 

in the presence of illumination change, approximation 

errors and mismatch of snake around the target object 

are visible. In this experiment, as the background is 

very simple, the effect on this problem is not serious. 

Fig. 13 presents the results of ACSM. In this figure, 

blue dots are the samples by the condensation 

algorithm. From frame 1 to frame 28, The 

condensation algorithm tracks an object. Since ACSM 

considers the color information of the object 

stochastically, ACSM segments the object more 

accurately as shown in frame 13 and 21. Through all 

frames in a sequence, illumination condition was 

slightly changing. Though the change of illumination, 

color adaptation ability of ACSM has overcome the 

problem. 

Case 2: Large motion variance and complex 

background  

The performance of segmentation and tracking in 

the case of a fast moving object on a complex 

background is evaluated in case 2. In case 1, we have 

showed the effectiveness for using motion information. 

Experiments of case 2 showed that the color 

information is also essential for object tracking using 

active contours. 

As shown in Figs. 14 and 15, the target object 

moves across other objects, which are of different 

colors. Background objects with black color are used, 

because color difference between background object 

and the floor is larger than that between target object 

and the floor, or between target object and background 

objects. In this experiment, target object moves 

forward and rotates considerably. 

In general, optical flow-based approach to object 

tracking and segmentation needs the following 

assumptions [13]. 

• Object has a rigid body motion, and mainly 

translational motion. 

• No pure rotation at one point. 

• No divergence existence in the image plane. 

The above assumptions are needed to filter noisy 

components in processing of optical flow. In the 

image sequences, there are many noise factors such as 

sensor noise, illumination changes, and so on. Though 

these factors are not real motion information, optical 

flow may consider them as real motion information. 

This interest on erroneous information may take more 

calculation time. Consideration on calculation time 

will be discussed in Sec. 6.3. 

Fig. 14 shows the results of conventional snake 

with motion information using optical flow. From 

frame 1 to 5, conventional snake works well. But, 

target object encounters background objects with 

larger edge intensity from frame 6. Since edge 

intensity of the background object is larger than that 

of the target object, snaxels tend to be attracted to the 

boundary of the background object. 

Fig. 15 presents the results of ACSM. In contrast to 

results of the conventional snake, ACSM is capable of 

tracking an object more accurately, since color 

information of the object is also used. Though the 

background object with high edge intensity is located 

near the target object, Ecs in (10) attracts snaxels to the 

object’s boundary. 

Case 3: With camera motion 

Third experiment was carried out in order to show 

the capability of ACSM in real-time tracking while 

the camera is in motion. The computation of the 

optical flow field for the entire area of interest 

requires considerable computational complexity. Thus, 

it may be effective only for a static camera. As the 

camera moves, the system generates considerable 

variation between two successive images. Therefore, 

optical flow-based approaches to real-time tracking 

system need longer calculation time. Therefore, in 

case 3, conventional snake with optical flow fails to 

operate in real-time at frame rate of 10 frame/sec as 

shown Table 2. 

We have tested the effectiveness of ACSM on a 

(a) Frame 1.  (b) Frame 3   (c) Frame 5.   (d) Frame 7.

 (e) Frame 9.  (f) Frame 11.  (g) Frame 13.  (h) Frame 15.

Fig. 14. Experimental results for conventional snake

with optical flow in case 2. 

 

(a) Frame 1.  (b) Frame 3.   (c) Frame 5.  (d) Frame 7. 

 (e) Frame 9.  (f) Frame 11.  (g) Frame 13.  (h) Frame 15.

Fig. 15. Experimental results for ACSM in case 2. 

 

(a) Frame 1. (b) Frame 5. (c) Frame 9. (d) Frame 13. (d) Frame 17.

Fig. 16. Experimental results for ACSM in case 3. 
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moving camera system. We have implemented the 

proposed algorithm on a typical pan-tilt camera 

system. Tracking and segmentation was performed 

from frame 1 to 17. Fig. 16 presents the results of 

ACSM. With the color information of the object, 

ACSM has accurately segmented the object. The 

condensation algorithm has not been affected by the 

camera motion. It only considers the probabilistic 

distribution of desired color information. 

 

6.3. Discussion 

In this section, two considerations are described to 

evaluate the performance of ACSM compared to other 

approaches. Those are segmentation error and 

calculation time. In real-time application, those are the 

most important factors. 

 

6.3.1 Remarks on segmentation error 

For comparing with other approaches, two kinds of 

error measure are accepted as measure for 

segmentation error. Following measures are the gauge 

to the accuracy of segmentation. First error measure is 

given as follows: 

( )
SCB

SCB n
E

n
= ,                       (16) 

where n is the number of snaxels, and ( )SCB ⋅  refers 

to the number of snaxels on the correct boundary. This 

measure converges to 100% when correct 

segmentation is done. Second segmentation error [24] 

is given by  

( ) ( )

( )

c c

card

card T B card T B
E

card T

∩ + ∩
= ,      (17) 

where T is the target object mask, B is the background 

object mask, and ( )card ⋅  is the cardinality (i.e., 

number of pixels) of a set. 

Table 1 shows the comparison between conventio-

nal snake and ACSM. In order to compare on the 

same condition, condensation algorithm for tracking 

method and 50 nodes for snaxels were used to 

evaluate measures on each frame. And, same initial 

positions for snaxels were used at each frame. Table 1 

says that ACSM is less disturbed than the 

conventional method, in the presence of background 

object with high edge intensity and camera motion. 

 

6.3.2 Remarks on calculation time 

In real-time systems, calculation time for the 

proposed algorithm is of great importance. The 

computational burden in the real-time implementation 

of the algorithm for object tracking system is the 

motion estimation. For the better performance of 

tracking, several advanced algorithms for motion 

estimation has been employed in the snake model. 

Optical flow algorithm has been applied to estimate 

the object’s motion. But, the computation of the 

optical flow field for the entire area of interest 

requires considerable computational complexity. It 

may be only effective for a static camera. As the 

camera moves, the system generates a considerable 

variation between two successive images. In presence 

of camera motion, Condensation algorithm shows the 

robust tracking of object’s motion. 

It is hard to compare the performance between the 

proposed algorithm and other approaches directly. The 

proposed system is designed to operate at the frame 

rate of 10 frame/sec. The same parameters of the 

snake such as the number of node, greedy search 

space in each iteration is used for conventional snake. 

Table 2 shows the average calculation time for 

processing each frame. Tests with conventional snake 

only in case 2 and 3 are included, because it doesn’t 

satisfy the segmentation performance in case 1. This 

table includes the comparison between tracking 

methods: optical flow and condensation algorithm. As 

shown in case 2 and 3, in the case of considerably 

rotating object or camera motion, calculation time for 

extracting motion vector is too large to operate in real-

time. But, ACSM with condensation algorithm is 

suitable for real-time application. 
 

7. CONCLUSION 
 

In this paper, we have introduced a real-time object 

tracking scheme using a new snake model, called 

“adaptive color snake model (ACSM)” which can be 

applied to color image segmentation and object 

tracking. Through experiments, the effectiveness of 

the proposed algorithm was verified. 

Table 2. Results of calculation time. 

 
Segmentation 

method 

Tracking 

method 

Time 

(ms/frame)

Case 1

CS 

ACSM 

ACSM 

OF 

OF 

CA 

86 

98 

63 

Case 2
ACSM 

ACSM 

OF 

CA 

157 

89 

Case 3
ACSM 

ACSM 

OF 

CA 

373 

94 
* CS: conventional snake, OF: optical flow, CA: condensation

 

Table 1. Results of segmentation error. 

 Segmentation method ESCB (%) Ecard (%)

Case 1 
Conventional Snake 

ACSM 

97.32 

100.00 

3.43 

0.00 

Case 2 
Conventional Snake 

ACSM 

70.70 

98.58 

69.31 

3.29 

Case 3 
Conventional Snake 

ACSM 

63.02 

98.23 

115.85

2.94 
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Considerable works have been done during the past 

decade in tracking and motion analysis of objects in 

the context of snake models. Active contour models 

have been developed as useful tools for segmenting 

and tracking objects. Snake provides high-level 

information related to the contour shape and image 

features. These image features are usually based on 

intensity edges. When using intensity edges as image 

features, the image segmentation results obtained by 

use of snake may be negatively affected by the 

disturbances (e.g. shadows, shading and neighboring 

objects). Because intensity-based snake cannot 

distinguish between various transition types, our 

attention is directed towards the use of color and 

motion information. This consideration provides more 

accurate results compared to conventional algorithms, 

in which objects are tracked by exploiting motion 

information; this is more evident in sequences with 

complicated content, where there are fast motion, 

complex background, special camera effects (zooming, 

pan-tilting), etc. 

When active contour model is applied under above 

conditions, advanced motion estimation algorithm 

should also be used for better performance. Usually, 

optical flow method is used for motion estimation. 

But, as shown in our experiments, it takes much 

calculation time in sequences where complex 

background and camera motion exist. Especially, in 

real-time applications, calculation time as well as 

segmentation performance are the most important 

factors. 

Experimental results show the potential of the 

proposed ACSM and tracking scheme. Despite the fast 

motion, complex background, special camera effects, 

ACSM can also operate in real time. Therefore, 

proposed tracking scheme is more suitable than 

intensity-based or optical flow-based approaches. 
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