
1

*Su Liu completed this work during the period when she was a

visiting student at University of Illinois.

Real-Time Object Tracking System on FPGAs*

Su Liu
1
, Alexandros Papakonstantinou

2
, Hongjun Wang

1
, Deming Chen

2

1
School of Information Science and Engineering, Shandong University, Jinan, China

2
Electrical & Computer Engineering Department, University of Illinois, Urbana-Champaign, IL, USA

1
sueliu84@gmail.com,

2
{apapako2, dchen}@illinois.edu,

1
hjw@sdu.edu.cn

Abstract— Object tracking is an important task in computer

vision applications. One of the crucial challenges is the real-

time speed requirement. In this paper we implement an object

tracking system in reconfigurable hardware using an efficient

parallel architecture. In our implementation, we adopt a

background subtraction based algorithm. The designed object

tracker exploits hardware parallelism to achieve high system

speed. We also propose a dual object region search technique

to further boost the performance of our system under complex

tracking conditions. For our hardware implementation we use

the Altera Stratix III EP3SL340H1152C2 FPGA device. We

compare the proposed FPGA-based implementation with the

software implementation running on a 2.2 GHz processor. The

observed speedup can reach more than 100X for complex video

inputs.

Keywords - object tracking; FPGA; application acceleration.

I. INTRODUCTION

Computer vision has become an important application of
smart embedded systems used in a wide range of fields
ranging from human computer interaction to robotics. Object
tracking is a fundamental component of computer vision that
can be very beneficial in applications such as unmanned
vehicles, surveillance, automated traffic control, biomedical
image analysis and intelligent robots, to name a few. Object
tracking is used for identifying the trajectory of moving
objects in video frame sequences [1]. Like most computer
vision tasks, object tracking involves intensive computation
in order to extract the desired information from high-volume
video data. In addition, the real time processing requirements
of different computer vision applications stress the need for
high performance object tracking implementations. In this
work we propose the implementation of an efficient object-
tracking system on FPGA that could be employed in a wide
range of embedded systems providing high-performance and
low-power.

With shrinking process technologies enabling higher
transistor capacities per silicon die, FPGAs have become
attractive compute platforms for complex applications with
high-performance and low-power requirements. With
hundreds of thousands of configurable logic blocks along

with thousands of distributed memory and hard DSP
modules, they offer great flexibility for mapping applications
onto spatially parallel architectures. Nevertheless, exploiting
the advantages of their re-configurable and hard modules
requires efficient mapping of algorithms through careful
balancing of performance, area and power parameters. In this
paper we describe our object tracking implementation on the
Altera Stratix III FPGA. Through profiling and analysis of
the software implementation we identified the performance
bottlenecks and designed a hardware architecture which
leverages efficiently the spatial parallelism of the
reconfigurable fabric and exposes the different types of
inherent parallelism in the selected object tracking algorithm.
Our experimental results show that significant performance
improvement (over 100X) can be achieved compared to the
software execution for multi-objects video inputs.

The contributions of this work can be summarized as
follows:

 We propose a highly parallel hardware
implementation of an object tracking algorithm.

 We improve the object region identification
performance of the object tracking algorithm by
introducing a dual search technique.

 We provide experimental results that show that our
hardware implementation achieves up to 100X
speedup over the software execution.

In the next section we discuss related work and we
provide a detailed overview of the selected object tracking
algorithm in Section III. The proposed hardware
implementation on the Altera FPGA is presented in Section
IV followed by experimental results in Section V and
conclusions in Section VI.

II. RELATED WORK

Numerous algorithms for object tracking have been
proposed. It is a complex task which comprises two main
subtasks: i) object detection and ii) tracking. Object detection
algorithms can be classified according to Yilmaz et al [1]
into point-detection schemes [7], background subtraction
techniques [8], and supervised learning techniques [9-11].
Furthermore the tracking portion of object tracking can be
performed either separately or jointly with object detection.
Tracking aims to generate the trajectory of objects across
video frames and Yilmaz et al. [1] characterized tracking
algorithms across three main categories: i) point tracking
[12], ii) kernel tracking [13], and iii) silhouette tracking [14].

2

In this work we leverage an efficient algorithm which is
based on background subtraction detection and kernel
tracking of objects. The main focus of this work is on the
performance improvement achieved over a software
implementation from a carefully-crafted hardware
implementation on the FPGA.

Due to the advantages offered by FPGAs in compute
intensive applications, several object tracking algorithms
have been implemented on reconfigurable devices in
previous works. Nevertheless, one of the biggest challenges
of custom hardware implementations is mapping complex
algorithms onto reconfigurable fabric architectures that can
offer good performance under rigid resource constraints.
Jung et al. [3] implemented a multiple objects tracking
system on hardware based on particle filters [15]. However,
the tracking speed was below 57 frames per second (fps) and
no comparison with software execution was provided.
Usman et al. [4] adopted an FPGA software processor based
design to implement mean shift [1] based object tracking.
However, the biggest size of tracked objects is limited to
32X32 pixels and the performance does not exceed 25 fps.
Jinbo et al. [5] implemented a hardware detection system
based on the Active Shape Model (ASM) algorithm, and
they reported speedup of up to 15X compared to software
execution. However, their implementation does not include
tracking. A multi-camera object tracking system based on
multiple-Cam-shift algorithm is implemented by Sirisak [6],
but the reported speed is constrained to 25 fps.

Our FPGA implementation employs a carefully designed
parallel architecture which helps significantly boost tracking
performance over software execution. Moreover, we propose
a dual-search method to utilize resources in an efficient and
compact way. For the evaluation of our implementation, we
use an Altera Stratix-III EP3SL340H1152C2 FPGA device.
We achieve 21X to 104X speedup over the software
execution with performance that ranges between 70-690fps
for frames with 0-6 objects.

III. OBJECT TRACKING ALGORITHM

The algorithm employed in this work is based on the
background subtraction object tracking algorithm proposed
by Yuri [2]. This algorithm tracks moving objects in video
frames captured by fixed cameras (i.e. non moving cameras).
Initially the background scene is built through averaging of
several successive frames to handle time varying background
scenes, such as waves on the water, moving clouds etc. This
task is called background training and it helps build a
reference frame which can be used to classify object regions
during the actual object tracking processing. Generally, the
reference frame is formed based on a weighted averaging
function which takes as input N previous frames during
background training. After the reference scene has been
established, all subsequent frames will be classified in
relation to it. The reference frame is updated when the values
of all the frame pixels have changed significantly with
respect to the corresponding reference frame pixels.

Our hardware implementation takes VGA resolution
(640x480) video as input. The incoming video frames are

processed within three main stages: i) preprocessing stage, ii)
main detection and search stage and iii) tracking and display
stage. In the preprocessing stage, the VGA-resolution input
frames are downscaled to 80x60 resolution. Subsequently, in
the main detection and search stage classification of the
downscaled frame is performed with regard to the reference
frame and the object tracking map is generated. In addition,
further object region processing steps are implemented in
this stage. Finally, in the third stage, the locations of moving
objects are identified and marked on the screen. In the
following sub-sections we describe the three processing
stages in more detail.

A. Preprocessing Stage

During the preprocessing stage the resolution of input
frames is reduced from 640x480 to 80x60. Each frame is
downscaled by a factor of eight through 2D Haar transform.
Each 2D Haar transformation contains two 1D Haar
transformations that take place sequentially first along frame
rows and then along pixel columns. The dimensions of the
frame that is generated by one 2D Haar transform are half of
the original frame dimensions. We use three consecutive 2D
Haar transforms to get the 80x60 size frame on which the
rest of the object tracking processing is performed. The main
motivation for image compression in our design is related to
storage resource constraints as well as computation
throughput constraints. Through downscaling, a reduction of
the data volume per frame is achieved (i.e. from
9000Kbits/frame to 140.6Kbits/frame). Hence, the volume of
data that needs to be stored and processed is significantly cut
down. Subsequently, the new background reference frame,
Bn+1, is determined in the downscaled image resolution of
80x60, according to the following weighted averaging
function

Bn+1 = α * Fn + (1 – α) * Bn, (1)

where α is the background training rate (typically 0.05), Fn is
the most recent input frame, Bn is the old reference frame and
Bn+1 is the newly trained reference frame. Tracking proceeds
as normal until significant difference is measured in the input
frame with regard to the reference frame. In that case the
reference scene image is updated to the weighted average
reference calculated by (1).

B. Main Detection Stage

An initial classification of each pixel in the current frame
is performed in this stage. Background subtraction based
object detection relies on the property that the color values of
pixels within the frame regions of moving objects, generally
differ greatly from those of the corresponding pixels in the
reference frame of the background scene. Thus, the absolute
difference of the RGB values between the corresponding
pixels in the current frame and the reference frame is used to
identify potential moving object locations. One difference
value is calculated for each color component in the RGB
representation of the frame. If the value for any of the R, G,
or B absolute differences exceeds a predetermined threshold,
the corresponding pixel is marked as foreground (i.e.

3

potential moving object region). Otherwise, it is marked as
background (i.e. reference scene region).

The frame classification generates an 80x60 binary
matrix, called object map. Each binary element in the object
map corresponds to one pixel in the 80x60 downscaled
frame, which is set to „1‟ or „0‟ depending on whether the
corresponding pixel is classified as foreground or
background, respectively. In particular the value of each
element in the object map is determined as follows:

ΔIt,R(x,y) = |It,R(x,y) - Ibg,R(x,y)| (2)
ΔIt,G(x,y) = |It,G(x,y) - Ibg,G(x,y)| (3)
ΔIt,B(x,y) = |It,B(x,y) - Ibg,B(x,y)| (4)

 (5)

where It,R(x,y) represents the Red color component of the
(x,y)

th
 pixel in the current frame and Ibg,R(x,y) represents the

Red color component of the (x,y)th pixel in the reference
image. L(x,y) is the classification value of the (x,y)

th
 element

in the object map.
Subsequently, the object map is processed through a

filtering phase which aims to smoothen the edges of the
identified object regions. The filtering phase comprises three
transformation steps which are applied to reduce the noise
and scratch-like artifacts in the object map. In particular,
dilation and erosion filters with structure sizes of 3x3 and
5x5 are used in a three-step dilation-erosion-dilation
sequence which generates a new object map.

The newly generated object map is used in the final
object region identification phase. In particular the binary
matrix of the object map is scanned to identify the exact
location of each individual object in the image. We have
improved the original algorithm of object region
identification to include two object identification modes: i)
single mode and ii) block mode. Moreover, we parallelize
the object region identification by splitting the binary matrix
of the object map into 12 sub-matrices. All the 12 sub-
matrices are processed concurrently. Details for both the dual
mode identification technique and the object map processing
parallelization are discussed in Section IV.B.

C. Tracking and Display Stage

In this stage, the object region identification results
generated in the previous stage for each sub-matrix are
combined to calculate object region results for the entire
frame. A boundary joiner module is used to build the final
object position information from the partial information
calculated for each sub-matrix of the object map. The object
regions at the frame level are built through a 5-stage filtering
process. Subsequently a bounding rectangle for each object
is superimposed over each video frame and sent to the video
output for display.

IV. HARDWARE IMPLEMENTATION

A. System Architecture Overview

 In our implementation we have used the Altera DE3
Development Board to take advantage of the different input

and output interfaces to implement and verify the object
tracking system. A daughter board with a video camera is
connected to the GPIO interface of the DE3 development
board to provide real-time video data, while a VGA display
is connected to the corresponding DVI output of the DE3
board to display the processed video with highlighted object
tracking results. Apart from the FPGA device the DE3
board contains abundant DRAM memory (2GB of DDR2).
The DDR2 memory is used to either temporally store the
streaming video data input or pre-load video frame sets that
need to be processed. To evaluate the performance of our
object tracking system, we explored in our experimental
study the second case. Thus, we were able to measure
processing throughputs beyond the real-time restrictions
imposed by the system camera. Such a scenario is useful to
process pre-recorded videos to identify and track certain
objects of interests.

A control button on the DE3 board allows the user to
select between training and tracking modes in the system
operation. In both modes the pre-processing stage converts
the raw video frames to downscaled RGB frames. This is
achieved with the use of a frame grabber module and a 2D
Haar module. The frame grabber module converts raw data
captured with a CCD camera into standard RGB image
values for a 640x480 frame. Then the RGB data are stored in
the DDR2 memory of the DE3 board. Due to the high
compute density of the 2D Haar transform, the system
employs a pipelined architecture for processing the Haar
transform and the subsequent tracking computations without
impacting throughput. That is, 2D Haar transform operates
on the (N+1)

th
 frame while the rest of the tracking hardware

is processing the (N)
th
 frame. Furthermore, the rich memory

resource on the DE3 board is leveraged to build a quadruple
buffering scheme to enhance performance (Fig. 2).

One of the most important compute throughput boosters
in our hardware implementation is the architecture of the
object region identification subsystem. This hardware
subsystem integrates 12 object map processing modules
(marked as P1–P12 in Fig. 2). Each of these modules
processes one sub-matrix of the object map binary matrix.
By processing the object map matrix with 12 parallel
processing modules the FPGA implementation achieves
significant speedup compared to the software
implementation, which processes the object map elements in
a sequential fashion.

As mentioned in the previous section, the proposed
FPGA implementation incorporates a new object region
identification technique which helps enhance the algorithm
efficiency. In the proposed technique, there are two region
identification modes: i) single mode and ii) block mode. The
software version uses only the single mode which expands
the identified object region by four neighboring points in the
horizontal and vertical dimension, during each step. By
introducing the block mode for object region identification,
16 points can be explored concurrently. By combining both
modes, the proposed implementation achieves high
processing throughput during the object region identification
stage, especially for video inputs with large objects. The dual

4

mode region identification technique is further detailed in
Section IV.C.

The 12 object map processing modules are
complemented with a five-stage cascaded boundary joiner in
the tracking and display stage. The boundary joiner module
is responsible for combining the results of the parallel object
map processing modules to get the accurate position
information of all moving objects. In particular, the boundary
joiner decides which objects are sub-parts of larger objects in
order to correctly identify the frame-level objects and
highlight them in the output video stream. More details on
the boundary joiner are provided in Section IV.D.

B. Parallel Object Map Processing

Based on execution latency profiling we have observed
that the object region identification computation constitutes a
big part of the total execution latency. The object region
identification initially scans for foreground elements in the
object map. Then a set of new elements to be examined is
selected based on a 2D wavefront originating from the
foreground elements which are stored in a BRAM.
Therefore, the object region identification process entails an
linearly growing set of elements with slope equals to 1 that
have to be examined in each step. The computation density
of each exploration step increases accordingly. In the
original software version the exploration process is done in a
sequential fashion, which results in high execution latencies.
For example, a thousand comparisons need to be performed
for a single exploration step in the worst case for the selected
resolution. To improve execution latency we distribute the
compute load to 12 parallel object exploration engines. We
split the object map into 12 20x20 sub-matrices (in a 3x4
layout), which constrains the critical path latency to the time
needed to examine 400 points in every sub-matrix. The
advantage of this parallelism exposure is particularly useful
in the case of large foreground regions.

As shown in Fig. 1, each object map processing module
keeps track of foreground point by storing their coordinates
into a BRAM of size 400x13 bits. There are 12 such BRAMs
in our design.

C. Dual-Mode Object Identification

In our implementation, we combine the single mode and
block modes to search the object map in a more efficient
way. While in the single mode, the object region is built by
starting from the first identified object element and then
progressing to the four neighboring elements. Conversely, in
the block mode, a four-element block is used as the object
exploration unit, with neighboring blocks scanned in each
step. Rather than 4 new pixels as in the single mode, the
block mode examines up to 16 new pixels during each step;
therefore, it is particularly suitable for video inputs with high
ratios of object-to-frame area (i.e. objects cover a big
percentage of the video frame area). By combining the single
and block modes, object region identification gains
considerable efficiency improvement. We evaluated the
latency improvement with dual-mode object region
identification over single mode for video input with dense
distribution of objects. With single mode execution latency

reached 13.4 ms while with dual-mode execution latency
dropped to 9.8ms (i.e. a reduction of 26.9%).

Figure 1. FPGA-based object tracking system – Block diagram

Figure 2. System task-level parallelism

5

Fig. 3(a) shows the single mode exploration whereas Fig.
3(b) shows the block mode exploration. As depicted in Fig.
4, we can see that the single mode is based on exploring four
neighboring elements from the current object map element
across the vertical and horizontal dimensions; the block
mode is based on a similar exploration strategy but with the
difference that exploration is performed on neighboring
block regions instead of single elements. The numbers in
both figures represent the exploration order: for example, if
the top-left corner element x1 is the first foreground element
detected in the object map, we examine its right neighbor
element which is marked as x2 and the lower neighbor x3
(there are no left and upper neighbors for x1). After x1, we
start examining neighbors of x2. Fig. 4 depicts the pseudo
code for the single mode and block mode search algorithms
which were implemented in Verilog in our hardware
implementation. The pseudo code also describes how the
system switched between the two modes.

D. Cascade Boundary Joiner

Due to the parallelization of the object map processing
across 12 object exploration engines, the object region
information for the entire frame is separated into 12 parts.
Each part corresponds to one object map sub-matrix and it is
stored in a separate on-chip buffer called sub-frame object
RAM (SFORAM). Initially, the actual frame-wise physical
information of the foreground elements contained in each
SFORAM is recovered and stored into a frame object RAM
(FORAM). Subsequently, a five-stage boundary joiner
processes the physical position information in the FORAM
(Fig. 5). Every partial object is represented as a rectangle
window in the frame. The joiner algorithm first consolidates
the object boundary information across row-wise
neighboring sub-frames. As shown in Fig. 6(a), during the
first three filtering steps, all the sub-frames across the
horizontal axis are merged into frame-wide sub-frames.
Subsequently, during the last two filtering steps, column-
wise merging is performed to obtain the frame-wide object
region boundaries. Fig. 6(b) lists the sub-frames being
merged in each stage of the boundary joiner. Merging is
performed for each neighboring pair of sub-frames, hence,
generating larger and potentially overlapping sub-frames.
Redundant and overlapping object boundaries are identified
and removed. At the output of the joiner, the complete object
tracking information is collected and used to highlight the
identified objects in the output video stream. Details of filters
are depicted in Fig. 6(b).

V. EXPERIMENTAL RESULTS

The employed object tracking algorithm is based on
Chesnokov Yuriy's [2] framework which achieves tracking
rates between 0.5-35 fps on a 2.2 GHz processor. In this
section, we compare the performance between the hardware
implementation and the original software version. The
algorithm executed in both implementations is equivalent in
terms of functionality. The software implementation is

(a) Single mode (b) Block mode

Figure 3. Dual-mode search overview

Single mode:

if(right_neighbor&down_neighbor&diag_neighbor)

 block_mode <=1;

 single_mode<=0;

else begin

 add_left_neighbor;

 add_right_neighbor;

 add_up_neighbor;

 add_down_neighbor;

end

 search_order <= search_order+1;

Block_mode:

 if(all_left_unit)

 add_left_unit;

 else if(~ all_left_unit)

 add_ones_in_left_unit;

 suspend_left <=1;

 if(all_right_unit)

 add_right_unit;

else if(~ all_right_unit)

 add_ones_in_right_unit;

 suspend_right<=1;

 if(all_up_unit)

 add_up_unit;

 else if(~ all_up_unit)

 add_ones_in_up_unit;

 suspend_up <=1;

 if(all_down_unit)

 add_down_unit;

 else if(~all_down_unit)

 add_ones_in_down_unit;

 suspend_down<=1;

 if(suspend_left || suspend_right || suspend_up ||suspend_down)

 single_mode<=1;

 block_mode<=0;

if(~suspend_left&&suspend_right&&suspend_up&&suspend_down)

 search_order<= search_order+1;

Figure 4. Single and Block mode search algorithms

6

written in Visual C++ with SSE optimizations. Its
performance is measured on an AMD Turion processor with
2.2 GHz frequency. The proposed hardware implementation
is designed for the Altera DE3 board, which features the
Stratix III (EP3SL340H1152C2) FPGA device, and it can
run at a clock rate of 182.88MHz. Table I shows the
hardware resource utilization on the FPGA device.

To evaluate the performance of the hardware
implementation we compared different video inputs that
contain frames with different number of objects. For each
experiment the same video input was tested in both
implementations. The second and third columns in Table II
show the average processing time per frame and the
corresponding throughput (in fps) for the software
implementation. The corresponding hardware

 (a) Visual overview of five-stage boundary joiner

Filter1:

 Merge (1,2); Merge (2,3); Merge (3,4);

 Merge (5,6); Merge (6,7); Merge (7,8);

 Merge (9,10); Merge(10,11); Merge(11,12)

Filter2 [1]:

 Merge (A, B) in Row 1; Merge (B, C) in Row 1;

 Merge (A, B) in Row 2; Merge (B, C) in Row 2;

 Merge (A, B) in Row 3; Merge (B, C) in Row 3;

Filter3:

 Merge (A1', B1');

 Merge (A2', B2');

 Merge (A3', B3');

Filter4:

 Merge (A1'', A2'');

 Merge (A2'', A3'');

Filter5:

 Merge (A1''', A2''');

Note [1]: Even though A, B and C sub-frames are marked in

different rows for clarity purposes, they exist in every row.

(b) Sub-frame merging in each stage of the boundary joiner

Figure 6. Boundary Joiner

Figure 5. Frame-level foreground information composition

TABLE I. FPGA RESOURCE UTILIZATION SUMMARY

Resource Used Resources Utilization

Registers 32880 12%

LUTs 73794 22%

Block Memory 847 Kbits 5%

Figure 7. Object tracking testing

7

implementation performance results are listed in the fourth
and fifth columns of Table II. Finally the sixth column of
Table II lists the speedup of the proposed FPGA
implementation over the software version. We can see that
the speedup of the FPGA-based tracker is higher for video
inputs with higher number of objects. This further
demonstrates the advantages of the proposed architecture in
scenarios with video input that depicts dense traffic
environments.

Fig. 7 depicts frames of the video output for two different
examples. The left frame, in both examples, shows the
background scene during the initial background training and
the right frame shows the objects tracking result with
highlighted object regions. The algorithm is able to identify
both moving and static objects.

VI. CONCLUSIONS

In this work, we implemented an FPGA-based object
tracking system which employs a background subtraction
algorithm. The design was carried out using Verilog HDL
and the implementation was based on the Altera DE3
development board. We studied and profiled the object
tracking algorithm implemented in the software version and
designed a highly-parallel architecture to achieve high
throughput. We measured the hardware system performance
through different experiments and observed more than 100X
speedup compared to the software version for complex video
inputs. As future work we plan to improve the sensitivity of
the tracking algorithm to the luminance of the scene. This
can be achieved by more accurate background training as
well as using techniques based on hidden Markov models.

ACKNOWLEDGMENT

This work is partly supported by the Chinese Scholarship
Council and GSRC (Gigascale Systems Research Center).
The authors would like to thank Altera Inc. for the FPGA
board donation. Meanwhile, the authors thank Sai Ma of
University of Illinois for helpful discussions.

REFERENCES

[1] A. Yilmaz, O. Javed and M. Shah, “Object tracking: A survey,” ACM
Computing Surveys (CSUR), Vol. 38, No. 4, 2006.

[2] C. Yuriy, “Real-time object tracker in C++,” http://www.code
project.com/KB/audio-video/object_tracker.aspx, 2007.

[3] J. U. Cho, S. H. Jin, X. D. Pham, and J. W. Jeon, “Multiple Objects
Tracking Circuit using Particle Filters with Multiple Features,” Proc.
IEEE Int’l Conference on Robotics and Automation, 2007.

[4] U. Ali, M. B. Malik and K. Munawar, “FPGA/Soft-processor based
real-time object tracking system”, Proc. IEEE Southern Conference
on Programmable Logic (SPL‟09), 2009.

[5] J. Xu , Y. Dou , J. Li, X. Zhou and Q. Dou, “FPGA Accelerating
Algorithms of Active Shape Model in People Tracking Applications,”
Proc. 10th IEEE Euromicro Conference on Digital System Design
Architectures, Methods and Tools (DSD‟07), 2007.

[6] S. Leephokhanon and T. Wiangtong, “Object Tracking and Motion
Capturing in Hardware-Accelerated Multi-camera System,” Proc.
ACM Int’l Workshop on Reconfigurable computing: Architectures,
Tools and Applications (ARC‟09), 2009.

[7] K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descriptors,” Proc. IEEE Conference on Computer Vision and Pattern
Recognition (CVPR‟03), 2003.

[8] C. Wren, A. Azarbayejani, and A. Pentland, “Pfinder: Real-time
tracking of the human body,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol 19, No 7, pp 780–785, 1997.

[9] H. Rowley, S. Baluja, and T. Andkanade, “Neural network-based face
detection,” IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol 20, No 1, pp. 23–38, 1998.

[10] P. Viola, M. Jones, and D. Snow, “Detecting pedestrians using
patterns of motion and appearance”, Proc IEEE Int’l Conference on
Computer Vision (ICCV‟03), pp 734–741, 2003.

[11] C. Papageorgiou, M. Oren, and T. Poggio, “A general framework for
object detection”, Proc. IEEE Int’l Conference on Computer Vision
(ICCV‟98), pp 555–562, 1998.

[12] C. Veenman, M. Reinders, and E. Backer, “Resolving motion
correspondence for densely moving points,” IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol 23, No 1, pp 54–72, 2001.

[13] P. Fieguth, and D. Terzopoulos, “Color-based tracking of heads and
other mobile objects at video frame rates,” Proc. IEEE Conference on
Computer Vision and Pattern Recognition (CVPR‟97), pp. 21–27,
1997.

[14] I. Haritaoglu, D. Harwood, and L. Davis, “W4: real-time surveillance
of people and their activities,” IEEE Trans. on Pattern Analysis and
Machine Intelligence, Vol. 22, No 8, pp. 809–830, 2000.

[15] H. Tanizaki, “Non-gaussian state-space modeling of nonstationary
time series,” Journal of the American Statististical Association, Vol.
82, pp. 1032–1063, 1987.

TABLE II. PERFORMANCE COMPARISON: SW VERSUS HW

Object # SW Exec. Time SW fps HW Exec. Time HW. fps Speedup

0 30ms 33.3 1.45ms 689.6 20.69X

1 79 ms 12.66 3.53 ms 283.3 22.38X

2 252 ms 3.97 3.87ms 258.4 65.12X

3 392ms 2.55 5.17ms 193.4 75.82X

4 546ms 1.83 5.27ms 189.7 103.6X

5 857ms 1.17 8.73ms 114.5 98.16X

6 1489 ms 0.67 14.4 ms 69.4 103.4X

