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Abstract— Object tracking is an important task in computer 

vision applications. One of the crucial challenges is the real-

time speed requirement. In this paper we implement an object 

tracking system in reconfigurable hardware using an efficient 

parallel architecture. In our implementation, we adopt a 

background subtraction based algorithm. The designed object 

tracker exploits hardware parallelism to achieve high system 

speed. We also propose a dual object region search technique 

to further boost the performance of our system under complex 

tracking conditions. For our hardware implementation we use 

the Altera Stratix III EP3SL340H1152C2 FPGA device. We 

compare the proposed FPGA-based implementation with the 

software implementation running on a 2.2 GHz processor. The 

observed speedup can reach more than 100X for complex video 

inputs.  

Keywords - object tracking; FPGA; application acceleration.  

 

I.  INTRODUCTION  

Computer vision has become an important application of 
smart embedded systems used in a wide range of fields 
ranging from human computer interaction to robotics. Object 
tracking is a fundamental component of computer vision that 
can be very beneficial in applications such as unmanned 
vehicles, surveillance, automated traffic control, biomedical 
image analysis and intelligent robots, to name a few. Object 
tracking is used for identifying the trajectory of moving 
objects in video frame sequences [1]. Like most computer 
vision tasks, object tracking involves intensive computation 
in order to extract the desired information from high-volume 
video data. In addition, the real time processing requirements 
of different computer vision applications stress the need for 
high performance object tracking implementations. In this 
work we propose the implementation of an efficient object-
tracking system on FPGA that could be employed in a wide 
range of embedded systems providing high-performance and 
low-power.  

With shrinking process technologies enabling higher 
transistor capacities per silicon die, FPGAs have become 
attractive compute platforms for complex applications with 
high-performance and low-power requirements. With 
hundreds of thousands of configurable logic blocks along 

with thousands of distributed memory and hard DSP 
modules, they offer great flexibility for mapping applications 
onto spatially parallel architectures. Nevertheless, exploiting 
the advantages of their re-configurable and hard modules 
requires efficient mapping of algorithms through careful 
balancing of performance, area and power parameters. In this 
paper we describe our object tracking implementation on the 
Altera Stratix III FPGA. Through profiling and analysis of 
the software implementation we identified the performance 
bottlenecks and designed a hardware architecture which 
leverages efficiently the spatial parallelism of the 
reconfigurable fabric and exposes the different types of 
inherent parallelism in the selected object tracking algorithm. 
Our experimental results show that significant performance 
improvement (over 100X) can be achieved compared to the 
software execution for multi-objects video inputs. 

The contributions of this work can be summarized as 
follows: 

 We propose a highly parallel hardware 
implementation of an object tracking algorithm.  

 We improve the object region identification 
performance of the object tracking algorithm by 
introducing a dual search technique. 

 We provide experimental results that show that our 
hardware implementation achieves up to 100X 
speedup over the software execution. 

In the next section we discuss related work and we 
provide a detailed overview of the selected object tracking 
algorithm in Section III. The proposed hardware 
implementation on the Altera FPGA is presented in Section 
IV followed by experimental results in Section V and 
conclusions in Section VI. 

 

II. RELATED WORK 

Numerous algorithms for object tracking have been 
proposed. It is a complex task which comprises two main 
subtasks: i) object detection and ii) tracking. Object detection 
algorithms can be classified according to Yilmaz et al [1] 
into point-detection schemes [7], background subtraction 
techniques [8], and supervised learning techniques [9-11]. 
Furthermore the tracking portion of object tracking can be 
performed either separately or jointly with object detection. 
Tracking aims to generate the trajectory of objects across 
video frames and Yilmaz et al. [1] characterized tracking 
algorithms across three main categories: i) point tracking 
[12], ii) kernel tracking [13], and iii) silhouette tracking [14]. 
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In this work we leverage an efficient algorithm which is 
based on background subtraction detection and kernel 
tracking of objects. The main focus of this work is on the 
performance improvement achieved over a software 
implementation from a carefully-crafted hardware 
implementation on the FPGA.  

Due to the advantages offered by FPGAs in compute 
intensive applications, several object tracking algorithms 
have been implemented on reconfigurable devices in 
previous works. Nevertheless, one of the biggest challenges 
of custom hardware implementations is mapping complex 
algorithms onto reconfigurable fabric architectures that can 
offer good performance under rigid resource constraints. 
Jung et al. [3] implemented a multiple objects tracking 
system on hardware based on particle filters [15]. However, 
the tracking speed was below 57 frames per second (fps) and 
no comparison with software execution was provided. 
Usman et al. [4] adopted an FPGA software processor based 
design to implement mean shift [1] based object tracking. 
However, the biggest size of tracked objects is limited to 
32X32 pixels and the performance does not exceed 25 fps. 
Jinbo et al. [5] implemented a hardware detection system 
based on the Active Shape Model (ASM) algorithm, and 
they reported speedup of up to 15X compared to software 
execution. However, their implementation does not include 
tracking. A multi-camera object tracking system based on 
multiple-Cam-shift algorithm is implemented by Sirisak [6], 
but the reported speed is constrained to 25 fps.   

Our FPGA implementation employs a carefully designed 
parallel architecture which helps significantly boost tracking 
performance over software execution. Moreover, we propose 
a dual-search method to utilize resources in an efficient and 
compact way. For the evaluation of our implementation, we 
use an Altera Stratix-III EP3SL340H1152C2 FPGA device. 
We achieve 21X to 104X speedup over the software 
execution with performance that ranges between 70-690fps 
for frames with 0-6 objects. 

 

III. OBJECT TRACKING ALGORITHM 

The algorithm employed in this work is based on the 
background subtraction object tracking algorithm proposed 
by Yuri [2]. This algorithm tracks moving objects in video 
frames captured by fixed cameras (i.e. non moving cameras). 
Initially the background scene is built through averaging of 
several successive frames to handle time varying background 
scenes, such as waves on the water, moving clouds etc. This 
task is called background training and it helps build a 
reference frame which can be used to classify object regions 
during the actual object tracking processing. Generally, the 
reference frame is formed based on a weighted averaging 
function which takes as input N previous frames during 
background training. After the reference scene has been 
established, all subsequent frames will be classified in 
relation to it. The reference frame is updated when the values 
of all the frame pixels have changed significantly with 
respect to the corresponding reference frame pixels. 

Our hardware implementation takes VGA resolution 
(640x480) video as input. The incoming video frames are 

processed within three main stages: i) preprocessing stage, ii) 
main detection and search stage and iii) tracking and display 
stage. In the preprocessing stage, the VGA-resolution input 
frames are downscaled to 80x60 resolution. Subsequently, in 
the main detection and search stage classification of the 
downscaled frame is performed with regard to the reference 
frame and the object tracking map is generated. In addition, 
further object region processing steps are implemented in 
this stage. Finally, in the third stage, the locations of moving 
objects are identified and marked on the screen. In the 
following sub-sections we describe the three processing 
stages in more detail. 

A. Preprocessing Stage 

During the preprocessing stage the resolution of input 
frames is reduced from 640x480 to 80x60. Each frame is 
downscaled by a factor of eight through 2D Haar transform. 
Each 2D Haar transformation contains two 1D Haar 
transformations that take place sequentially first along frame 
rows and then along pixel columns. The dimensions of the 
frame that is generated by one 2D Haar transform are half of 
the original frame dimensions. We use three consecutive 2D 
Haar transforms to get the 80x60 size frame on which the 
rest of the object tracking processing is performed. The main 
motivation for image compression in our design is related to 
storage resource constraints as well as computation 
throughput constraints. Through downscaling, a reduction of 
the data volume per frame is achieved (i.e. from 
9000Kbits/frame to 140.6Kbits/frame). Hence, the volume of 
data that needs to be stored and processed is significantly cut 
down. Subsequently, the new background reference frame, 
Bn+1, is determined in the downscaled image resolution of 
80x60, according to the following weighted averaging 
function  

 
Bn+1 = α * Fn + (1 – α) * Bn,                       (1) 

 
where α is the background training rate (typically 0.05), Fn is 
the most recent input frame, Bn is the old reference frame and 
Bn+1 is the newly trained reference frame. Tracking proceeds 
as normal until significant difference is measured in the input 
frame with regard to the reference frame. In that case the 
reference scene image is updated to the weighted average 
reference calculated by (1).  

B. Main Detection Stage 

An initial classification of each pixel in the current frame 
is performed in this stage. Background subtraction based 
object detection relies on the property that the color values of 
pixels within the frame regions of moving objects, generally 
differ greatly from those of the corresponding pixels in the 
reference frame of the background scene. Thus, the absolute 
difference of the RGB values between the corresponding 
pixels in the current frame and the reference frame is used to 
identify potential moving object locations. One difference 
value is calculated for each color component in the RGB 
representation of the frame. If the value for any of the R, G, 
or B absolute differences exceeds a predetermined threshold, 
the corresponding pixel is marked as foreground (i.e. 
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potential moving object region). Otherwise, it is marked as 
background (i.e. reference scene region).  

The frame classification generates an 80x60 binary 
matrix, called object map. Each binary element in the object 
map corresponds to one pixel in the 80x60 downscaled 
frame, which is set to „1‟ or „0‟ depending on whether the 
corresponding pixel is classified as foreground or 
background, respectively. In particular the value of each 
element in the object map is determined as follows: 

 
ΔIt,R(x,y) = |It,R(x,y) - Ibg,R(x,y)|                   (2) 
ΔIt,G(x,y) = |It,G(x,y) - Ibg,G(x,y)|                   (3) 
ΔIt,B(x,y) = |It,B(x,y) - Ibg,B(x,y)|                   (4) 

         
                
               

                 (5) 

 
where It,R(x,y) represents the Red color component of the 
(x,y)

th
 pixel in the current frame and Ibg,R(x,y) represents the 

Red color component of  the (x,y)th pixel in the reference 
image. L(x,y) is the classification value of the (x,y)

th
 element 

in the object map. 
Subsequently, the object map is processed through a 

filtering phase which aims to smoothen the edges of the 
identified object regions. The filtering phase comprises three 
transformation steps which are applied to reduce the noise 
and scratch-like artifacts in the object map. In particular, 
dilation and erosion filters with structure sizes of 3x3 and 
5x5 are used in a three-step dilation-erosion-dilation 
sequence which generates a new object map.  

The newly generated object map is used in the final 
object region identification phase. In particular the binary 
matrix of the object map is scanned to identify the exact 
location of each individual object in the image. We have 
improved the original algorithm of object region 
identification to include two object identification modes: i) 
single mode and ii) block mode. Moreover, we parallelize 
the object region identification by splitting the binary matrix 
of the object map into 12 sub-matrices. All the 12 sub-
matrices are processed concurrently. Details for both the dual 
mode identification technique and the object map processing 
parallelization are discussed in Section IV.B. 

C. Tracking and Display Stage 

In this stage, the object region identification results 
generated in the previous stage for each sub-matrix are 
combined to calculate object region results for the entire 
frame. A boundary joiner module is used to build the final 
object position information from the partial information 
calculated for each sub-matrix of the object map. The object 
regions at the frame level are built through a 5-stage filtering 
process. Subsequently a bounding rectangle for each object 
is superimposed over each video frame and sent to the video 
output for display. 

IV. HARDWARE IMPLEMENTATION 

A. System Architecture Overview 

    In our implementation we have used the Altera DE3 
Development Board to take advantage of the different input 

and output interfaces to implement and verify the object 
tracking system. A daughter board with a video camera is 
connected to the GPIO interface of the DE3 development 
board to provide real-time video data, while a VGA display 
is connected to the corresponding DVI output of the DE3 
board to display the processed video with highlighted object 
tracking results. Apart from the FPGA device the DE3 
board contains abundant DRAM memory (2GB of DDR2). 
The DDR2 memory is used to either temporally store the 
streaming video data input or pre-load video frame sets that 
need to be processed. To evaluate the performance of our 
object tracking system, we explored in our experimental 
study the second case. Thus, we were able to measure 
processing throughputs beyond the real-time restrictions 
imposed by the system camera. Such a scenario is useful to 
process pre-recorded videos to identify and track certain 
objects of interests. 

A control button on the DE3 board allows the user to 
select between training and tracking modes in the system 
operation. In both modes the pre-processing stage converts 
the raw video frames to downscaled RGB frames. This is 
achieved with the use of a frame grabber module and a 2D 
Haar module. The frame grabber module converts raw data 
captured with a CCD camera into standard RGB image 
values for a 640x480 frame. Then the RGB data are stored in 
the DDR2 memory of the DE3 board. Due to the high 
compute density of the 2D Haar transform, the system 
employs a pipelined architecture for processing the Haar 
transform and the subsequent tracking computations without 
impacting throughput. That is, 2D Haar transform operates 
on the (N+1)

th
 frame while the rest of the tracking hardware 

is processing the (N)
th
 frame. Furthermore, the rich memory 

resource on the DE3 board is leveraged to build a quadruple 
buffering scheme to enhance performance (Fig. 2).  

One of the most important compute throughput boosters 
in our hardware implementation is the architecture of the 
object region identification subsystem. This hardware 
subsystem integrates 12 object map processing modules 
(marked as P1–P12 in Fig. 2). Each of these modules 
processes one sub-matrix of the object map binary matrix. 
By processing the object map matrix with 12 parallel 
processing modules the FPGA implementation achieves 
significant speedup compared to the software 
implementation, which processes the object map elements in 
a sequential fashion.  

As mentioned in the previous section, the proposed 
FPGA implementation incorporates a new object region 
identification technique which helps enhance the algorithm 
efficiency. In the proposed technique, there are two region 
identification modes: i) single mode and ii) block mode. The 
software version uses only the single mode which expands 
the identified object region by four neighboring points in the 
horizontal and vertical dimension, during each step. By 
introducing the block mode for object region identification, 
16 points can be explored concurrently. By combining both 
modes, the proposed implementation achieves high 
processing throughput during the object region identification 
stage, especially for video inputs with large objects. The dual 
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mode region identification technique is further detailed in 
Section IV.C.  

The 12 object map processing modules are 
complemented with a five-stage cascaded boundary joiner in 
the tracking and display stage. The boundary joiner module 
is responsible for combining the results of the parallel object 
map processing modules to get the accurate position 
information of all moving objects. In particular, the boundary 
joiner decides which objects are sub-parts of larger objects in 
order to correctly identify the frame-level objects and 
highlight them in the output video stream. More details on 
the boundary joiner are provided in Section IV.D. 

B. Parallel Object Map Processing 

Based on execution latency profiling we have observed 
that the object region identification computation constitutes a 
big part of the total execution latency. The object region 
identification initially scans for foreground elements in the 
object map. Then a set of new elements to be examined is 
selected based on a 2D wavefront originating from the 
foreground elements which are stored in a BRAM. 
Therefore, the object region identification process entails an 
linearly growing set of elements with slope equals to 1 that 
have to be examined in each step. The computation density 
of each exploration step increases accordingly. In the 
original software version the exploration process is done in a 
sequential fashion, which results in high execution latencies. 
For example, a thousand comparisons need to be performed 
for a single exploration step in the worst case for the selected 
resolution. To improve execution latency we distribute the 
compute load to 12 parallel object exploration engines. We 
split the object map into 12 20x20 sub-matrices (in a 3x4 
layout), which constrains the critical path latency to the time 
needed to examine 400 points in every sub-matrix. The 
advantage of this parallelism exposure is particularly useful 
in the case of large foreground regions.  

As shown in Fig. 1, each object map processing module 
keeps track of foreground point by storing their coordinates 
into a BRAM of size 400x13 bits. There are 12 such BRAMs 
in our design. 

C. Dual-Mode Object Identification 

In our implementation, we combine the single mode and 
block modes to search the object map in a more efficient 
way. While in the single mode, the object region is built by 
starting from the first identified object element and then 
progressing to the four neighboring elements. Conversely, in 
the block mode, a four-element block is used as the object 
exploration unit, with neighboring blocks scanned in each 
step. Rather than 4 new pixels as in the single mode, the 
block mode examines up to 16 new pixels during each step; 
therefore, it is particularly suitable for video inputs with high 
ratios of object-to-frame area (i.e. objects cover a big 
percentage of the video frame area). By combining the single 
and block modes, object region identification gains 
considerable efficiency improvement. We evaluated the 
latency improvement with dual-mode object region 
identification over single mode for video input with dense 
distribution of objects. With single mode execution latency 

reached 13.4 ms while with dual-mode execution latency 
dropped to 9.8ms (i.e. a reduction of 26.9%).  

 
 

Figure 1.  FPGA-based object tracking system – Block diagram 

 

 
 

Figure 2.  System task-level parallelism 
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Fig. 3(a) shows the single mode exploration whereas Fig. 
3(b) shows the block mode exploration. As depicted in Fig. 
4, we can see that the single mode is based on exploring four 
neighboring elements from the current object map element 
across the vertical and horizontal dimensions; the block 
mode is based on a similar exploration strategy but with the 
difference that exploration is performed on neighboring 
block regions instead of single elements. The numbers in 
both figures represent the exploration order: for example, if 
the top-left corner element x1 is the first foreground element 
detected in the object map, we examine its right neighbor 
element which is marked as x2 and the lower neighbor x3 
(there are no left and upper neighbors for x1). After x1, we 
start examining neighbors of x2. Fig. 4 depicts the pseudo 
code for the single mode and block mode search algorithms 
which were implemented in Verilog in our hardware 
implementation. The pseudo code also describes how the 
system switched between the two modes.  

D. Cascade Boundary Joiner 

Due to the parallelization of the object map processing 
across 12 object exploration engines, the object region 
information for the entire frame is separated into 12 parts. 
Each part corresponds to one object map sub-matrix and it is 
stored in a separate on-chip buffer called sub-frame object 
RAM (SFORAM). Initially, the actual frame-wise physical 
information of the foreground elements contained in each 
SFORAM is recovered and stored into a frame object RAM 
(FORAM). Subsequently, a five-stage boundary joiner 
processes the physical position information in the FORAM 
(Fig. 5). Every partial object is represented as a rectangle 
window in the frame. The joiner algorithm first consolidates 
the object boundary information across row-wise 
neighboring sub-frames. As shown in Fig. 6(a), during the 
first three filtering steps, all the sub-frames across the 
horizontal axis are merged into frame-wide sub-frames. 
Subsequently, during the last two filtering steps, column-
wise merging is performed to obtain the frame-wide object 
region boundaries. Fig. 6(b) lists the sub-frames being 
merged in each stage of the boundary joiner. Merging is 
performed for each neighboring pair of sub-frames, hence, 
generating larger and potentially overlapping sub-frames. 
Redundant and overlapping object boundaries are identified 
and removed. At the output of the joiner, the complete object 
tracking information is collected and used to highlight the 
identified objects in the output video stream. Details of filters 
are depicted in Fig. 6(b). 

 

V. EXPERIMENTAL RESULTS 

The employed object tracking algorithm is based on 
Chesnokov Yuriy's [2] framework which achieves tracking 
rates between 0.5-35 fps on a 2.2 GHz processor. In this 
section, we compare the performance between the hardware 
implementation and the original software version. The 
algorithm executed in both implementations is equivalent in 
terms of functionality. The software implementation is 

 
(a) Single mode                                         (b) Block mode 

Figure 3.  Dual-mode search overview 

Single mode:                  

if(right_neighbor&down_neighbor&diag_neighbor) 

    block_mode <=1; 

    single_mode<=0; 

else begin 

    add_left_neighbor; 

    add_right_neighbor; 

    add_up_neighbor; 

    add_down_neighbor; 

end 

 search_order <= search_order+1; 

 

Block_mode:  

  if(all_left_unit) 

    add_left_unit; 

 else if(~ all_left_unit) 

    add_ones_in_left_unit; 

    suspend_left <=1; 

 if(all_right_unit) 

    add_right_unit; 

else if(~ all_right_unit) 

    add_ones_in_right_unit; 

    suspend_right<=1; 

 if(all_up_unit) 

     add_up_unit; 

 else if(~ all_up_unit) 

     add_ones_in_up_unit; 

     suspend_up <=1; 

  if(all_down_unit) 

      add_down_unit; 

 else if(~all_down_unit) 

      add_ones_in_down_unit; 

      suspend_down<=1; 

 if(suspend_left || suspend_right || suspend_up ||suspend_down) 

      single_mode<=1; 

      block_mode<=0;   

if(~suspend_left&&suspend_right&&suspend_up&&suspend_down) 

     search_order<= search_order+1; 

 

Figure 4.  Single and Block mode search algorithms 
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written in Visual C++ with SSE optimizations. Its 
performance is measured on an AMD Turion processor with 
2.2 GHz frequency. The proposed hardware implementation 
is designed for the Altera DE3 board, which features the 
Stratix III (EP3SL340H1152C2) FPGA device, and it can 
run at a clock rate of 182.88MHz. Table I shows the 
hardware resource utilization on the FPGA device.  

To evaluate the performance of the hardware 
implementation we compared different video inputs that 
contain frames with different number of objects. For each 
experiment the same video input was tested in both 
implementations.  The second and third columns in Table II 
show the average processing time per frame and the 
corresponding throughput (in fps) for the software 
implementation. The corresponding hardware 

 
 

     (a) Visual overview of five-stage boundary joiner 

 
 

Filter1: 

   Merge (1,2);  Merge (2,3);   Merge (3,4); 

   Merge (5,6);  Merge (6,7);   Merge (7,8); 

   Merge (9,10); Merge(10,11);  Merge(11,12) 

    

Filter2 [1]:  

   Merge (A, B) in Row 1; Merge (B, C) in Row 1; 

   Merge (A, B) in Row 2; Merge (B, C) in Row 2; 

   Merge (A, B) in Row 3; Merge (B, C) in Row 3; 

 

Filter3: 

   Merge (A1', B1'); 

   Merge (A2', B2'); 

   Merge (A3', B3'); 

 

Filter4: 

   Merge (A1'', A2''); 

   Merge (A2'', A3''); 

 

Filter5: 

   Merge (A1''', A2'''); 

 

Note [1]: Even though A, B and C sub-frames are marked in 

different rows for clarity purposes, they exist in every row. 

 

 

(b)  Sub-frame merging in each stage of the boundary joiner 

Figure 6. Boundary Joiner 

 
 

Figure 5.  Frame-level foreground information composition 

 

TABLE I.  FPGA RESOURCE UTILIZATION SUMMARY 

Resource Used Resources Utilization 

Registers 32880 12% 

LUTs 73794 22% 

Block Memory 847 Kbits 5% 

 

 

 
 

 
 

Figure 7. Object tracking testing 

 

 



7 

 

implementation performance results are listed in the fourth 
and fifth columns of Table II. Finally the sixth column of 
Table II lists the speedup of the proposed FPGA 
implementation over the software version. We can see that 
the speedup of the FPGA-based tracker is higher for video 
inputs with higher number of objects. This further 
demonstrates the advantages of the proposed architecture in 
scenarios with video input that depicts dense traffic 
environments.  

Fig. 7 depicts frames of the video output for two different 
examples. The left frame, in both examples, shows the 
background scene during the initial background training and 
the right frame shows the objects tracking result with 
highlighted object regions. The algorithm is able to identify 
both moving and static objects.  

 

VI. CONCLUSIONS 

In this work, we implemented an FPGA-based object 
tracking system which employs a background subtraction 
algorithm. The design was carried out using Verilog HDL 
and the implementation was based on the Altera DE3 
development board. We studied and profiled the object 
tracking algorithm implemented in the software version and 
designed a highly-parallel architecture to achieve high 
throughput. We measured the hardware system performance 
through different experiments and observed more than 100X 
speedup compared to the software version for complex video 
inputs. As future work we plan to improve the sensitivity of 
the tracking algorithm to the luminance of the scene. This 
can be achieved by more accurate background training as 
well as using techniques based on hidden Markov models. 
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TABLE II.  PERFORMANCE COMPARISON: SW VERSUS HW 
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0 30ms 33.3 1.45ms 689.6 20.69X 

1 79 ms 12.66 3.53 ms 283.3 22.38X 
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