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Real-time observation of dissipative soliton
formation in nonlinear polarization rotation mode-
locked fibre lasers
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Formation of coherent structures and patterns from unstable uniform state or noise is a

fundamental physical phenomenon that occurs in various areas of science ranging from

biology to astrophysics. Understanding of the underlying mechanisms of such processes can

both improve our general interdisciplinary knowledge about complex nonlinear systems and

lead to new practical engineering techniques. Modern optics with its high precision mea-

surements offers excellent test-beds for studying complex nonlinear dynamics, though

capturing transient rapid formation of optical solitons is technically challenging. Here we

unveil the build-up of dissipative soliton in mode-locked fibre lasers using dispersive Fourier

transform to measure spectral dynamics and employing autocorrelation analysis to investi-

gate temporal evolution. Numerical simulations corroborate experimental observations, and

indicate an underlying universality in the pulse formation. Statistical analysis identifies cor-

relations and dependencies during the build-up phase. Our study may open up possibilities

for real-time observation of various nonlinear structures in photonic systems.
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S
olitons, localized wave structures formed by the balance
between dispersion and nonlinearity, are ubiquitous in
nature and are used both as building blocks in theoretical

concepts and in various practical applications in many fields of
science and engineering, including optics, Bose–Einstein con-
densates (BEC), hydrodynamics, plasmas, field theory and many
others1–7. In addition to fascinating feature of maintaining its
shape during propagation, the continuous interest in soliton is
also stimulated by their unique properties upon interaction; that
is, they behave like particles exerting forces on each other.
Interactions between solitons give rise to rich soliton physics,
including phenomena such as soliton fusion8, fission9, full10 and
partial annihilation11, soliton turbulence and many others.

The problem of the soliton formation mechanisms is of a
fundamental physical interest. The soliton formation processes
are rather different in integrable and non-integrable nonlinear
models12. In the integrable systems, for instance, the
Korteweg–de Vries equation, soliton formation process can be
periodic (repetitive) when the process is coherently self-seeded
and refers to the well-known Fermi–Pasta–Ulam recurrence
phenomenon13. Such repetitive process can be readily observed in
experiments. For instance, periodic pulse collision leading to
soliton generation was observed experimentally in a passive fibre
ring oscillator14. In contrast, typical soliton formation dynamics
in non-integrable systems is non-repetitive and exhibit complex
behaviour before a stationary soliton settles down15. In contrast
to the large number of theoretical studies, experimental obser-
vations of soliton build-up dynamics are relatively rare. This is
due to the technical difficulties encountered in practice to record
such rapid non-repetitive evolution, especially in the realm of
ultrafast optical systems, as most of measurement tools only give
time-averaged data that washes out these transient dynamics.
Recently, through real-time imaging technique, the formation
process of matter-wave solitons was captured in BEC4. The role of
the modulation instability in the solitons formation was eluci-
dated. It is of particular interest to know whether the same
mechanism accounts for soliton formation in optics. Formation
of extreme optical waves through modulation instability in fibre-
optic systems have been studied in Refs 16,17.

The term soliton is often used to refer to localized coherent
structures in a wide range of nonlinear systems, varying from the
integrable (where the term was initially invented) and Hamilto-
nian systems to non-integrable and non-conservative ones. Many
real-world nonlinear systems are non-integrable, meaning the
strict mathematic definition of soliton as it was proposed for the
integrable systems is rarely met in practice. Therefore, a term
'dissipative soliton' is often used to refer to localized coherent
structures in systems with a balance of both conservatives effects
(e.g. dispersion and nonlinearity) and dissipative ones (gain and
loss)18–20. For example, a pulse generated from mode-locked
lasers is a dissipative soliton since a laser is intrinsically a dis-
sipative system. Mode-locked lasers provide a flexible platform
for studying dissipative soliton dynamics. Recently, by virtue of
the emerging real-time measurement technologies such as the
time-stretch dispersive Fourier transform (TS-DFT)
technique21–23 and ‘time microscope24,25, some important
dynamics of mode-locked lasers have been unveiled. These stu-
dies can be divided into two categories. One relates to repetitive
(periodic) processes such as internal motion of soliton mole-
cules26,27 and spectral modulation of a single pulse28. The other
refers to non-repetitive events such as rogue wave
generation29–31, soliton explosions32,33 and the build-up of a
dissipative soliton/pulse in ultrafast lasers34–36. Various types of
soliton interactions may exist during stationary soliton build-up
in fibre lasers15 and are yet to be seen in experiments. Recently,
multiple pulsing was observed in the build-up of mode locking in

a Ti: sapphire laser34, the origin of which remains an open
question.

In this work, we unveil the build-up of dissipative solitons in
mode-locked fibre lasers by means of the TS-DFT technique. We
observe two different types of dynamics during dissipative soliton
build-up, depending on the length of the laser cavity. In a long
cavity, multiple processes are involved in the build-up phase,
including modulation instability (Benjamin–Feir instability),
mode locking, self-phase modulation (SPM)-induced instability,
dissipative soliton splitting and partial annihilation. In a short
cavity, only modulation instability and mode locking are
responsible for dissipative soliton formation. A long-standing
issue in the build-up of mode locking refers to the role of noise
involved: a randomly strong noise spike was assumed to evolve to
be a mode-locked pulse37. Here we show that the role of noise is
to stimulate modulation instability in nonlinear polarization
rotation (NPR) mode-locked fibre lasers. We employ advanced
statistical analysis to quantify the dependency and correlation
between the signals at various stages of dissipative soliton build-
up. We show that in complex non-stationary systems correlation
and dependency may differ from each other. Thus, their simul-
taneous application reveal underlying physical processes that can
be missed when a simplified analysis is used. Our work shows
significant difference to other works34–36. First, modulation
instability is firstly unveiled in the initial phase of dissipative
soliton formation in our work, in analogy with soliton formation
in BEC4; second, we observe interference patterns on the tran-
sient spectra, evidencing two critical phases: dissipative soliton
splitting and interactions of double solitons. These two phases
were not observed in other works34,35, as the cavities were short.
Soliton interactions were observed in another work36; however,
no soliton survived after such interactions, while our work shows
that a soliton survives after interactions. The multiple solitons
emerged from noisy field36, while double solitons are generated
from splitting of a large soliton in our work. It is worth to note
that full field measurements of the dissipative solitons are realized
in Ref 36. Finally, to the best of our knowledge, we firstly present a
numerical study on the build-up phase of dissipative soliton in a
laser, and show how our numerical study qualitatively agrees with
the experiments.

Results
Principle. As a test-bed system, we build a typical dissipative
soliton fibre laser as shown in Fig. 1a (see Supplementary Note 1
for details). Since fibre lasers are known to exhibit rich nonlinear
dynamics purely by extension of their cavity lengths, the build-up
dynamics of dissipative solitons in them are also expected to be
different. Hence, the laser cavity length is varied three times
during the experiment for a systematic study (see Supplementary
Fig. 1 for details). The detection system is shown in Fig. 1b. As
shown, the output of the laser is split into two ports by an output
coupler. One port (undispersed) is used for measuring the evo-
lution of the instantaneous intensity I(t), over many cavity round-
trip (RT) numbers N, in order to produce a two-dimensional
spatio-temporal intensity profile I(t, N). The signal from the other
port is fed into a long dispersive fibre segment (~11 km here) to
stretch the pulses and thus yield spectra measurements (TS-DFT).
Two identical photodetectors (PD1, PD2) with 50-GHz band-
width are used, and the signals are captured by a real-time
oscilloscope with bandwidth of 32 GHz (Agilent). It is important
to point out that by measuring the temporal delay between the
two photodetectors (53.651 µs), we could conduct simultaneous
measurements of the spectral and temporal intensity of the out-
put pulses. The temporal and spectral resolution of the detection
system are 30 ps and 0.1 nm, respectively (see Supplementary
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Note 2). The accuracy of TS-DFT is confirmed (see Supplemen-
tary Fig. 2). The routine to capture the rapid signal during dis-
sipative soliton build-up is as follows. First, by adjusting the
polarization controllers (PCs), stable mode-locked lasing is
obtained. Next, the pump is switched off, and then the pump is
switched on. Upon appearance of a signal, the oscilloscope trig-
gers and records the real-time signal. Although it takes typically
several seconds for the pump current to reach the set value, this
has no effect on the results since the trigger level is set to be the
pulse peak (i.e. the oscilloscope only records data when pulses are
formed). Gain relaxation oscillation can also be neglected which
has typical time of ~ ms, as here the RT time of the three lasers
studied are around 50–100 ns.

Dissipative soliton formation dynamics. We first measure the
start-up of dissipative solitons in a fibre laser with cavity length of
16 m. The measured TS-DFT data exhibit drastic changes before a
static dissipative soliton is formed (Fig. 2a). Five distinct regimes
can be seen in the figure, representing different physical processes
involved in the build-up phase (see Fig. 1c for conceptual
representation of such phases). During the initial stage of the
evolution (up to RT number 100), well-defined intensity patterns
(marked by dashed arrows) are presented (Fig. 2a). Since TS-DFT
relies on dispersion to stretch pulses, it only works for wide-
bandwidth ultra-short pulses, and therefore these intensity pat-
terns represent temporal information of the laser outputs. Such
intensity patterns have also been observed in the build-up of
mode locking of Kerr-lens mode-locked solid-state lasers34, and
are seemingly universal. In fact, these intensity patterns are
reminiscent of modulation instability, and we will show that this
is indeed the mechanism that gives rise to the observed pattern
formations.

On the next stage of the evolution (RTs ~100–200), mode
locking starts and wide-bandwidth signal (dissipative soliton) is
generated, Fig. 2a, the spectra of which can now be measured by
TS-DFT. However, this dissipative soliton is not stable and it
explodes into soliton molecules (or bound solitons) subsequently,
indicated by the modulated spectra (stage 3). Although the
spectra seem chaotic from ~ 200 to 350 RTs, modulated
structures still exist, and the subsequent spectra (~350–700)
show well-defined interference pattern (stage 4). Finally, the
spectra are not modulated and keep stable, indicating a stationary
dissipative soliton is formed (stage 5). Figure 2b shows typical
cross-sections of the spectra at RT numbers of 50, 200, 300, 500
and 800.

The modulated spectra reflect complex temporal evolution of
the soliton molecules, which can be revealed by field autocorrela-
tion. It is well known that the Fourier transform of each single-
shot spectrum yields a field autocorrelation according to
Wiener–Khinchin theorem. Field autocorrelation traces can
measure the temporal durations of chirp-free pulses such as
dissipative solitons here, but fail to do so for chirped pulses.
Nevertheless, they can measure the temporal separations between
pulses independent of chirp. As real-time spectra measurement is
available by TS-DFT, the field autocorrelation function can be
obtained for each RT resolved measurement, where the informa-
tion about the temporal evolution of the pulses can be recovered.
Such a method has been used recently to probe evolving
separation between soliton molecules26,27. It is necessary to
briefly recall that, if the number of pulses is n, the corresponding
peaks of a field autocorrelation trace is 2n−1. The Fourier
transform of each single-shot spectrum in Fig. 2a gives field
autocorrelation traces shown in Fig. 2c. It is seen in Fig. 2c that
near RT 200 the single peak of the field autocorrelation breaks
into three peaks. These reveal that in the corresponding time-
domain evolution of the underlying field, the single dissipative
soliton explodes to be two. The separation between double
dissipative solitons changes quasi-periodically as shown in Box 1
(see Supplementary Fig. 3 for close-up). During later stages of
evolution (RT number 400), a third dissipative soliton is formed
as indicated by the five peaks of the field autocorrelation function.
The separation between the two higher-amplitude dissipative
solitons is increased until it reaches a maximum value of 10 ps
(Fig. 2c). Beyond this point, the two dissipative solitons start to
attract each other, showing decreasing separations between them.
They repel each other when the separation reaches its minimum,
and only one survives near a RT number 700 as shown in Box 2
(see Supplementary Fig. 3 for close-up), a process which
resembles partial annihilation10,11. Figure 2d shows typical
cross-sections of the field autocorrelation traces.

It is natural to ask whether the minimum separation is zero or
not in Box 2, since zero separation means the two pulses fully
overlap. The two dissipative solitons do not fully overlap (see
Supplementary Fig. 3 for close-up). Our simulations will also
confirm this. We note that this is similar to the scenario of
periodic collisions of dispersion-managed solitons, in which the
two solitons never fully overlap38. The dynamics of the build-up
of a single dissipative soliton under higher pump powers is
similar (Supplementary Fig. 4).

It is of significant interest to see whether the build-up phase of
dissipative solitons depends on the cavity length of a laser. To this
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end, the length of the laser is varied. In a longer cavity (19.6 m),
the essential features (Supplementary Fig. 5) are similar to those
observed in the laser described above (Fig. 2). In a shorter laser
cavity (10 m), soliton molecules are no longer present in the
build-up phase (Supplementary Fig. 6).

Simulations. To provide insight into the laser dynamics during
the build-up of dissipative solitons, we performed numerical
simulations of the laser based on the nonlinear Schrödinger
equation, using a non-distributed model considering every part of
the laser (see ‘Methods’). Since nonlinear systems are very sen-
sitive to initial conditions, the build-up dynamics varies sig-
nificantly for different initial conditions. The diversities are
beyond the scope of the current research. Nevertheless, we are
able to find the build-up dynamics in simulations which quali-
tatively agrees with the experimental results by varying the initial
conditions. The initial condition used is a weak pulse adding
random noise (see Supplementary Fig. 7 for the intensity profile).
The results are shown in Fig. 3a; Fig. 3b is the corresponding
autocorrelation traces of Fig. 3a. As one can see (Fig. 3a), in the
beginning, multiple pulses are formed from the initial conditions.
These multiple pulses are generated by modulation instability.
The initial conditions contain random noise which effectively
seeds modulation instability39. The spectra dynamics also confirm
such processes (see Supplementary Fig. 8). For comparison, we
performed another simulation in which no noise was added to the
initial pulse (therefore modulation instability cannot be trigged),
and in this case multiple pulses no longer appear, as expected; the
subsequent dynamics is similar to Fig. 3a (Supplementary Fig. 9).
We note that multiple pulses were also observed in the build-up
of mode locking in solid-state lasers34, the origin of which is still
unclear. As nonlinearity and anomalous dispersion are also pre-
sent in these lasers, those pulses could also be generated by
modulation instability.

After modulation instability-induced pulses are generated, the
central pulse eventually becomes stronger and only this pulse
survives to become a dissipative soliton evident by dispersive
wave component in the tail; here mode locking plays an
important role in selecting the central pulse and suppressing
others, owing to the nature of mode locking which has a larger
transmission coefficient for higher-intensity pulses. However, the
dissipative soliton is not stable, as indicated by its non-stationary
tails (for close-up see Fig. 3c); the origin of such instability caused
by SPM will be elaborated later. This instability finally leads to
pulse splitting which gives birth to soliton molecules, as shown in
the box of Fig. 3a, which is magnified in Fig. 3c. As seen in
Fig. 3c, the double dissipative solitons repel each other once they
are generated and attraction arises when the separation between
them reaches its maximum. However, the pulses cannot fully
overlap (merge), similar to experimental observations. The
intensity profile of the double pulses (at RT number of 602)
with closest separation is shown in the inset of Fig. 3c, and there
is no overlap. The pulses repel each other again afterwards. In
particular, the leading pulse gets stronger—the trailing one
becomes weaker and disappears finally, resulting from the mode-
locking mechanism that impose intensity dependent transmis-
sion coefficient on the pulses (the weak pulse undergoes higher
loss).

Direct soliton–soliton interaction arises from field overlap40.
The solitons periodically attract and repel each other depending
on their initial conditions. In particular, a full overlap (merge) can
happen if the two solitons have the same amplitude and
meanwhile the relative phase difference is zero. However, a
minor difference in the relative amplitude results in a rather
different scenario in which the two solitons no longer merge41.
The interactions between solitons are observed in the simulation
(Fig. 3c) and above in the experiments (Fig. 2c). Whereas the two
pulses exhibit difference in amplitude (Supplementary Fig. 10);
therefore, full overlap does not occur.
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Further analysis allows us to understand the origin of the
instability which leads to dissipative soliton splitting. Such
instability can be well understood by investigating its corre-
sponding spectral dynamics. Figure 4a shows the numerically
simulated spectra evolution of the non-stationary solitons from
520 to 580 RTs (data corresponds to the data shown on Fig. 3a).
It can be seen that quasi-periodic spectral evolution is present,
consistent with the temporal evolution. Specifically, the spectra
broaden and compress (breath) with drastic changes from one

RT to another (see Fig. 4b). The central spectrum of the
dissipative soliton exhibits multiple peaks at an RT number of
542, in contrast to the one at an RT number of 541. These
multiple peaks which are weak in the centre and pronounced in
the outmost are typical products of SPM41, indicating that SPM
contributes to the observed instability. The arrows in Fig. 4a
locate the positions of the SPM-induced broadened spectra. Note
that the narrow peaks in the spectrum wings (1550–1555 nm) are
Kelly sidebands42.
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Experimental observations also show such instability. Figure 4c
demonstrates the experimentally measured spectral dynamics
(the same data as in Fig. 2a, red box). The quasi-periodic
modulation qualitatively agrees with the simulation results. Note
that in experiments (Fig. 4d) the SPM effect is not as clear as in
numerical simulations, but still takes part in the dissipative
soliton dynamics: a nascent dissipative soliton suffers from
instability caused by SPM and eventually splits to soliton
molecules. Some differences are shown between numerical and
experimental results. For instance, the spectra of the bound
solitons show asymmetry between the red and blue sides in the
experiment (Fig. 4c), which is absent in the simulation. This could
be due to third-order dispersion (TOD) which for simplicity is
neglected in the simulation, and TOD is well known for inducing
spectra asymmetry of pulses43. We stress that the main aim of the
numerical analysis is here to validate the different nonlinear
processes observed experimentally during the build-up of
dissipative soliton including modulation instability, SPM-
induced instability, dissipative soliton splitting, transient soliton
molecule generation and partial annihilation. Indeed, all these
processes are confirmed by the simulation.

It is natural to ask how the dissipative soliton spectrum at an
RT number of 541 is shaped to be the one at that of 542 (Fig. 4b).
To answer this question, we investigate the intra-cavity evolution
of the dissipative soliton (from RTs 541 to 542), revealing that
indeed SPM is involved (Fig. 5). The input spectra is the one at an
RT of 541, which then propagates inside the laser and is shaped to
be the one at an RT of 542. The intra-cavity components include
in turn optical coupler (OC), saturable absorber (SA), SMF
(12 m), Nufern 980 fibre (2 m) from the pigtailed fibre of the
wavelength-division multiplexer, EDF and SMF (1 m). As shown
in Fig. 5a, c, the dissipative soliton spectral widths and durations
are nearly constant in the SMF (12 m) and Nufern 980 fibre.
When the pulse enters the EDF, its spectral and temporal widths
are then both broadened; the former is due to amplification and
the later results from the normal dispersion of the EDF. After the
pulse leaves the EDF, its spectral shape becomes concave around
1560 nm and develops further along the SMF (1 m), as shown in

Fig. 5a, indicating that stronger SPM is present in the SMF. In
fact, the concave spectrum already forms in the EDF due to
amplification as shown in Fig. 5b (red), while the spectrum is not
concave in the middle of the EDF due to lower energy there
(Fig. 5b, green). The spectrum becomes more concave as shown
in the blue (in the middle of the SMF) and black (end of the SMF)
curves in Fig. 5b, due to higher peak power resulting from
temporal compression of the dissipative soliton in the SMF, as
seen in Fig. 5d where the temporal profiles are shown.

Our experiments and simulations agree qualitatively with each
other and reveal the mechanisms of dissipative soliton formation
in NPR mode-locked fibre lasers. In contrast to short fibre lasers,
long fibre lasers are well known for complex dynamics arising
mainly from enhanced nonlinearity. Here we show that the two
systems exhibit considerable differences in the build-up of
stationary dissipative solitons. In a relatively long laser, first,
multiple pulses are generated by modulation instability. Second,
mode locking comes to play, which suppresses other pulses and
only the central pulse remains. Third, the nascent pulse is not
stable, which is evident by its non-stationary spectral evolution
due to excessive nonlinearity. Such instability leads to dissipative
soliton splitting, giving rise to the generation of soliton molecules.
Finally, partial annihilation occurs (only the stronger one
survives) since the amplitude of the double pulses are different
and this difference is ‘amplified’ by the mode-locking mechanism
which imposes higher loss on the weak pulses.

Statistical analysis of dependency and correlation. To investi-
gate an intrinsic dependence and build-up of correlation during
pulse propagation, we employ both mutual information and
correlation analysis. The concept of mutual information origi-
nated from the communication theory and was introduced by C
Shannon44. It is based on the concept of entropy as a measure of
uncertainty–information content associated with the variable.
The mutual information in turn gives a quantitative characteristic
of the information shared between the variables. Mutual infor-
mation found applications beyond communications and is
actively used in time-series analysis to quantify dependence
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between variables45,46. The mutual information is zero when and
only when the two variables are independent. This differentiates
mutual information from correlation function, as zero correlation
does not imply independence. Indeed, mutual information can
capture nonlinear or higher-order dependencies, which can be
overlooked by analysis of standard correlations47.

Here we employ both tools and show when mutual
information can provide extra insights not available by using
standard correlation analysis. The set of measured DFT data in
Fig. 2a can be represented as a set of variables–intensities I (λ,
τ), where λ stands for the wavelength and τ describes the RT
value. The mutual information between two variables τx, τy is
defined as MIðτx; τyÞ ¼ HðτxÞ þ HðτyÞ � Hðτx; τyÞ, where

HðτÞ ¼ �
P

pðIðλ; τÞÞ ln pðIðλ; τÞÞ is the Shannon entropy of
the variable and Hðτx; τyÞ is the entropy of a joint set of

variables. See Supplementary Note 3 for the calculated mutual
information and Pearson's correlations. The most interesting
observation, however, is for the stage where mutual information
and correlation differ (Supplementary Fig. 11). This highlights
complex dynamics and importance of the unstable region on
the final soliton solution, which cannot be captured by the
correlation function alone.

Discussion
Real-time measurements allow us to access transient fast dis-
sipative soliton dynamics beyond the speed of traditional equip-
ment. We have shown the build-up of dissipative solitons in
mode-locked fibre lasers and revealed related nontrivial laser
dynamics leading to stable mode-locking regime of a dissipative
soliton fibre laser. We find that the nonlinear mechanism of
modulation instability leads to the generation of multiple pulses
prior to mode locking. Potentially, the same mechanism could
attribute to mode-locking build-up in other types of laser systems
such as Ti:sapphire laser. Complex laser dynamics is observed
during dissipative soliton build-up in a fibre laser with relatively
longer cavity, including SPM-induced instability, dissipative
soliton splitting, transient soliton molecules and partial annihi-
lation. The experimental observations are confirmed by numer-
ical simulations.

Our study shows that rich nonlinear dynamics can be
embedded in nascent evolution of pulses in nonlinear systems.
We note that recently universality of the Peregrine soliton for-
mation was demonstrated, during the initial nonlinear evolution
stage of high power pulses in fibre48. Hence, investigation on
nascent stages of pulse evolution in nonlinear systems provides an
important way to understand underlying mechanisms governing
the dynamics of the systems. On the other hand, we anticipate
our work will also stimulate experimental studies of localized
structure build-up in other optical systems such as micro-
resonators49 and semiconductor lasers.

Methods
Pulse propagation within the fibre sections is modelled with a modified nonlinear
Schrödinger equation for the slowly varying pulse envelope:

∂ψ

∂z
¼ �

i

2
β2 þ i

g

Ω
2

� �

∂
2ψ

∂t2
þ iγ ψj j2ψ þ

1

2
gψ: ð1Þ

Here β2 is the group-velocity delay parameter and γ is the coefficient of cubic
nonlinearity for the fibre section. The dissipative terms represent linear gain as well
as a Gaussian approximation to the gain profile with the bandwidth Ω. The gain is

described byg ¼ g0 exp �
Ep
Es

� �

, where g0 is the small-signal gain, which is non-zero

only for the gain fibre, Ep is the pulse energy and Es is the gain saturation energy
determined by the pump power. To initiate and sustain mode locking of the fibre
laser, NPR technique is used in our experiment. Here the mode-locking technique
for the sake of clarity is modelled by a simple transfer function:

T¼R0 þ ΔR 1� 1
1þP=P0

� �

, where R0 is the unsaturable reflectance, ΔR is the

saturable reflectance, P is the pulse instantaneous power and P0 is the saturable
power. The parameters used in the numerical simulations are similar to their
nominal or estimated experimental values (see Supplementary Table 1 for the
parameters used). We use this simple model to highlight the main features of the
dynamics upon dissipative soliton build-up.

Data availability. The data that support the findings of this study are available
from the corresponding author on request.
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