
     This work was sponsored (in part) by the Department of Energy Grant DE-FG02-86NE379671

     The material in this paper was partially presented at the Third International Symposium on Intelligent2

Control, Arlington, Virginia, August 24-26, 1988

D:\WP\PAPERS\P10., January 6, 1996

© 1989 IEEE.  Reprinted, with permission, from IEEE Transactions 
on Systems, Man, and Cybernetics, Vol. 19, No. 5, Sept./Oct. 1989, pp. 1179-1187

Real-time Obstacle Avoidance for Fast Mobile Robots12

by
J. Borenstein, Member, IEEE, and Y. Koren, Member, IEEE

ABSTRACT

A new real-time obstacle avoidance approach for mobile robots has been developed and
implemented. This approach permits the detection of unknown obstacles simultaneously with the
steering of the mobile robot to avoid collisions and advancing toward the target. The novelty of
this approach, entitled the Virtual Force Field, lies in the integration of two known concepts: Cer-
tainty Grids for obstacle representation, and Potential Fields for navigation. This combination is
especially suitable for the accommodation of inaccurate sensor data (such as produced by
ultrasonic sensors) as well as for sensor fusion, and enables continuous motion of the robot
without stopping in front of obstacles. This navigation algorithm also takes into account the
dynamic behavior of a fast mobile robot and solves the "local minimum trap" problem.

Experimental results from a mobile robot running at a maximum speed of 0.78 m/sec
demonstrate the power of the proposed algorithm.



2

1. Introduction

     Real-time obstacle avoidance is one of the key issues to successful applications of mobile
robot systems. All mobile robots feature some kind of collision avoidance, ranging from
primitive algorithms that detect an obstacle and stop the robot short of it in order to avoid a
collision, through sophisticated algorithms, that enable the robot to detour obstacles. The
latter algorithms are much more complex, since they involve not only the detection of an
obstacle, but also some kind of quantitative measurements concerning the obstacle's
dimensions. Once these have been determined, the obstacle avoidance algorithm needs to
steer the robot around the obstacle and resume motion toward the original target.

     Autonomous navigation represents a higher level of performance, since it applies obstacle
avoidance simultaneously with the robot steering toward a given target. Autonomous
navigation, in general, assumes an environment with known and unknown obstacles, and it
includes global path planning algorithms [3] to plan the robot's path among the known
obstacles, as well as local path planning for real-time obstacle avoidance. This article,
however, assumes motion in the presence of unknown obstacles, and therefore concentrates
only on the local obstacle avoidance aspect.

     One approach to autonomous navigation is the wall-following method [1,17,18]. Here the
robot navigation is based on moving alongside walls at a predefined distance. If an obstacle is
encountered, the robot regards the obstacle as just another wall, following the obstacle's
contour until it may resume its original course. This kind of navigation is technologically less
demanding, since one major problem of mobile robots ) the determination of their own
position ) is largely facilitated. Naturally, robot navigation by the wall-following method is
less versatile and is suitable only for very specific applications. One recently introduced
commercial system uses this method on a floor cleaning robot for long hallways [16].

     A more general and commonly employed method for obstacle avoidance is based on edge
detection. In this method, the algorithm tries to determine the position of the vertical edges of
the obstacle and consequently attempts to steer the robot around either edge. The line
connecting the two edges is considered to represent one of the obstacle's boundaries. This
method was used in our own previous research [5,6], as well as in several other research
projects, such as [9,11,28]. A disadvantage with obstacle avoidance based on edge detecting
is the need of the robot to stop in front of an obstacle in order to allow for a more accurate
measurement.

     A further drawback of edge-detection methods is their sensitivity to sensor accuracy.
Unfortunately, ultrasonic sensors, which are mostly used in mobile robot applications, offer
many shortcomings in this respect:



3

1. Poor directionality that limits the accuracy in determination of the spatial position of an
edge to 10-50 cm, depending on the distance to the obstacle and the angle between the
obstacle surface and the acoustic beam.

2. Frequent misreadings that are caused by either ultrasonic noise from external sources or
stray reflections from neighboring sensors ("crosstalk"). Misreadings cannot always be
filtered out and they cause the algorithm to "see" nonexisting edges.

3. Specular reflections which occur when the angle between the wave front and the normal to
a smooth surface is too large. In this case the surface reflects the  incoming ultra-sound
waves away from the sensor, and the obstacle is either not detected at all, or (since only
part of the surface is detected) "seen" much smaller than it is in reality.

     To reduce the effects listed above we have decided to represent obstacles with the
Certainty Grid method. This method of obstacle representation allows adding and retrieving
data on the fly and enables easy integration of multiple sensors.

     The representation of obstacles by certainty levels in a grid model has been suggested by
Elfes [15], who used the Certainty Grid for off-line global path planning. Moravec and Elfes
[23], and Moravec [24] also describe the use of Certainty Grids for map-building. Since our
obstacle avoidance approach makes use of this method, we will briefly describe the basic idea
of the Certainty Grid.

     In order to create a Certainty Grid, the robot's work area is divided into many square
elements (denoted as cells), which form a grid (in our implementation the cell size is 10 cm
by 10 cm). Each cell (i,j) contains a Certainty Value C(i,j) that indicates the measure of
confidence that an obstacle exists within the cell area. The greater C(i,j), the greater the level
of confidence that the cell is occupied by an obstacle. 

     In our system the ultrasonic sensors are continuously sampled while the robot is moving. If
an obstacle produces an echo (within the predefined maximum range limit of  2 meters), the
corresponding cell contents C(i,j) are incremented. A solid, motionless obstacle eventually
causes a high count in the corresponding cells. Misreadings, on the other hand, occur
randomly, and do not cause high counts in any particular cell. This method yields a more
reliable obstacle representation in spite of the ultrasonic sensors' inaccuracies.

     The novelty of our approach lies in the combination of Certainty Grids for obstacle
representation with the Potential Field method for local path planning. Section 2 explains our
basic Virtual Force Field (VFF) obstacle avoidance approach in which we apply the Potential
Field method to a Certainty Grid. The VFF method is further enhanced by taking into account
the dynamic behavior of a mobile robot at high speeds and by a comprehensive heuristic
solution to the "trap" problem (which is associated with the Potential Field method). A
discussion on these two algorithms is included in Sections 3 and 4. The described algorithms



F(i,j)
FcrC(i,j)

d 2(i,j)

xt x0

d(i,j)
x̂

yt y0

d(i,j)
ŷ

4

(1)

have been implemented and tested on our mobile robot, CARMEL (Computer-Aided
Robotics for Maintenance, Emergency, and Life support).

II. The Virtual Force Field (VFF) Method

     The idea of having obstacles conceptually exerting forces onto a mobile robot has been
suggested by Khatib [20]. Krogh [21] has enhanced this concept further by taking into
consideration the robot"s velocity in the vicinity of obstacles. Thorpe [26] has applied the
Potential Fields Method to off-line path planning. Krogh and Thorpe [22] suggested a
combined method for global and local path planning, which uses Krogh"s Generalized
Potential Field (GPF) approach. These methods, however, assume a known and prescribed
world model of the obstacles. Furthermore, none of the above methods has been implemented
on a mobile robot that uses real sensory data. The closest project to ours is that of Brooks
[7,8], who uses a Force Field method in an experimental robot equipped with a ring of 12
ultrasonic sensors. Brooks"s implementation treats each ultrasonic range reading as a
repulsive force vector. If the magnitude of the sum of the repulsive forces exceeds a certain
threshold, the robot stops, turns into the direction of the resultant force vector, and moves on.

2.1 The Basic VFF Method

     This section explains the combination of the Potential Field method with a Certainty Grid.
This combination produces a powerful and robust control scheme for mobile robots, denoted
as the Virtual Force Field (VFF) method.

     As the robot moves around, range readings are taken and projected into the Certainty Grid,
as explained above. Simultaneously, the algorithm scans a small square window of the grid.
The size of the window is 33x33 cells (i.e., 3.30x3.30m) and its location is such that the robot
is always at its center.

     Each occupied cell inside the window applies a repulsive force to the robot, "pushing" the
robot away from the cell. The magnitude of this force is proportional to the cell contents,
C(i,j), and is inversely proportional to the square of the distance between the cell and the
robot:

where



F r
i,j

F(i,j)

F(i,j) Fct

xt x0

d(t)
x̂

yt y0

d(t)
ŷ

5

(2)

(3)

F = Force constant (repelling)cr

d(i,j) = Distance between cell (i,j) and the robot
C(i,j) = Certainty level of cell (i,j)
x , y = Robot"s present coordinates0 0

x , y = Coordinates of cell (i,j)i j

     Notice that in Eq. 1 the force constant is divided by d . By this method, occupied cells2

exert strong repulsive forces when they are in the immediate vicinity of the robot, and weak
forces when they are further away.

     The resultant repulsive force, F , is the vectorial sum of the individual forces from all cells:r

At any time during the motion, a constant-magnitude attracting force, F , pulls the robott

toward the target. F  is generated by the target point T, whose coordinates are known to thet

robot. The target-attracting force F  is given byt

where
F = Force constant (attraction to the target)ct

d  = Distance between the target and the robott

x , y = Target coordinatest t

Notice that F  is independent of the absolute distance to the target.t

     As shown in Fig. 1, the vectorial sum of all forces, repulsive from occupied cells and
attractive from the target position, produces a resultant force vector R: 

R =  F  + F (4)t r

The direction of R,  = R/|R| (in degrees), is used as the reference for the robot's steering-rate
command  

 = K [  (-) ] (5)s

where
K = Proportional constant for steering (in sec )s

-1

= Current direction of travel (in degrees)



Object

Robot

Object

6

Figure 1: The Virtual Force Field (VFF) concept: Occupied cells
exert repulsive forces onto the robot; the magnitude is
proportional to the certainty value c  of the cell and inverselyi,j

proportional to d .2

(-) is a specially defined operator for two operands,  and  (in degrees), and is used in the
form  
c =  (-)  . The result, c (in degrees), is the shortest rotational difference between  and .
Therefore, c is always in the range -180  < c < 180 .o o

     A typical obstacle map in Certainty Grid representation shows obstacle-boundaries as
clusters of cells with  high certainty values.  Misreadings, on the other hand, occur at random
and therefore produce mostly isolated cells with low certainty values. Summation of repulsive
forces from occupied cells (Eq. 2) makes the robot highly responsive to clusters of filled cells,
while almost completely ignoring isolated cells.

2.2 Advantages Over Conventional Methods

     The VFF algorithm has several
advantages over edge detecting
methods, which are presently used
in many mobile robot applications:

1. In edge detection methods,
misreadings or inaccurate range
measurements may be misin-
terpreted as part of an obstacle
contour, thereby gravely
distorting the perceived shape
of the obstacle. The sharply
defined contour required by
these methods cannot
accommodate the blurry and
inaccurate information provided
by ultrasonic sensors. Edge
detection methods require
binary knowledge about the
obstacle contour (exists or does
not exist), and therefore cannot
implement certainty methods, in
which the data is weighted. The
VFF method, on the other hand,
does not utilize sharp contours
in the world model, but rather
responds to clusters of high
likelihood for the existence of
an obstacle. This results in



7

increased robustness of the algorithm in the presence of misreadings.

2. The VFF method does not require the robot to stop for data acquisition and evaluation, or
for corner negotiation (as in the cases reported in [6,8,9,11,12,19]). Except for the
artificially introduced effect of damping (see discussion in Section 3.1), the VFF method
allows the robot to negotiate all obstacles while it travels at up to its maximum velocity. 

3. Updating the grid-map with sensor information and using the grid-map for navigation are
two independent tasks that are performed asynchronously, each at its optimal pace. The
edge detection method, by contrast, requires the following activities to be performed in
sequence: detect an obstacle, stop the robot, measure the obstacle (find its edges),
recalculate path, and resume motion.

4. The grid representation for obstacles lends itself easily to the integration of data from
groups of similar, as well as from different types of sensors (such as vision, touch, and
proximity), in addition to data from previous runs or from preprogrammed stationary
obstacles (such as walls).

III. Dynamic Motion Enhancements for Robots Running at High Speeds

     This section discusses the main enhancements that have been incorporated in the VFF
method in order to account for the dynamic properties of a mobile robot [2,4]moving at
higher speeds (up to 0.78 m/sec). 

     The mobile robot used in all experiments is a commercially available CYBERMATION
K2A mobile platform [13]. The K2A has a maximum travel speed of V  = 0.78 m/sec, amax

maximum 
steering rate of =120 deg/sec, and weights (in its current configuration) about W=125 kg.
This platform has a unique 3-wheel drive (synchro-drive) that permits omnidirectional
steering. In order to control this mobile platform, two data items must be sent (through a serial
link) to its onboard computer: a velocity command, V, and a steering-rate command, 
(computed in Eq. 5 above).

     Our mobile platform has been equipped with a ring of 24 Polaroid ultrasonic sensors [25]
and an additional computer (a PC-compatible single board computer, running at 7.16 MHz),
to control the sensors. Similar sensor configurations have been designed for other mobile
robots, such as [14] or [27].

     Since the remaining part of this paper focuses on various aspects of motion performance, 
we have chosen to simulate obstacles in the Certainty Grid, rather than use real sensory data.
The undeterministic nature of actual ultrasonic range information makes it difficult to
reproduce test-runs or compare them with each other. The VFF algorithm, however, works



i

T i 1 ( T) i 1

8

(7)

equally well with real obstacles, as is demonstrated in the last experimental result in this paper
(Fig. 8).

     All of the following examples and plots have been obtained from actual runs of our robot
(with its sensors disabled). Although the maximum speed of V =0.78 m/sec was used, themax

average speed in each run was lower, since the algorithm reduces the robot"s speed under
certain conditions (as will be explained below).

3.1. Low Pass Filter for Steering Control

     For smooth operation of the VFF method, the following condition between the grid
resolution s and the sampling period T must be satisfied:

s > TV (6)max

     In our case s = 0.1 m and TV  = 0.1*0.78 = 0.078 m, and therefore the above conditionmax

is satisfied.

     Since the distance dependent repulsive force vector F  (see Eq. 2) is quantized to the gridr

resolution (10x10 cm), rather drastic changes in the resultant force vector R may occur as the
robot moves from one cell to another (even with condition (6) satisfied). This results in an
overly vivacious steering control, as the robot tries to adjust its direction to the rapidly
changing direction of R. To avoid this problem, a digital low-pass filter, approximated in the
algorithm by  = 0.4 sec, has been added at the steering-rate command. The resulting steering-
rate command is given by

where
= Steering-rate command to the robot (after low-pass filtering)i

= Previous steering-rate command i-1

' = Steering-rate command (before low-pass filtering)i

T = Sampling time (here: T = 0.1 sec)
= Time constant of the low pass filter

     The filter smoothes the robot"s motion when moving alongside obstacles. However, it also
introduces a time delay , which deteriorates the steering response of the robot by the
displacement delay .



cos
VxFrx VyFry

|V| |Fr|

9

Figure 2:
a. Highly oscillatory motion in undamped force field.
b.The robot"s path is  effectively smoothed as force
and speed damping are applied.

(9)

3.2 Damping (for Speed Command)

     Ideally, when the robot encounters an obstacle, it would move smoothly alongside the
obstacle until it can turn again toward the target. At higher speeds (e.g., V > 0.5 m/sec),
however, the robot introduces a considerable relative delay in responding to changes in
steering commands caused by the combined effects of its inertia and the low-pass filter
mentioned above. Due to this delay, the robot might approach an obstacle very closely, even
if the algorithm produces very strong repulsive forces. When the robot finally turns around to
face away from the obstacle, it will depart more than necessary, for the same reason. The
resulting path is highly oscillatory, as shown in Fig. 2a.

     One way to dampen this oscillatory motion is
to increase the strength of the repulsive forces
when the robot moves toward an obstacle, and
reduce it when the robot moves alongside the
obstacle. The general methodology calls for
variations in the magnitude of the sum of the
repulsive forces F  as a function of the relativer

directions of F  and the velocity vector V.r

Mathematically, this is achieved by multiplying
the sum of the  repulsive forces by the directional
cosine (cos ) of the two vectors, F  and V, andr
using the product as follows:

F'  = wF  + (1-w) F (-cos ) (8)r r r

where F'  is the adjusted sum of the repulsiver

forces and w is a weighting factor that was set to
w = 0.25 in our system. 

The directional cosine in Eq. 8 is computed by

where
V , V = x and y components of velocity vectorx y

V
F , F = x and y components of the sum of therx ry

repulsive forces, Fr



V
Vmax for |F r| 0 (i.e. in the absence of obstacles)

Vmax(1 |cos |) for |F r| > 0

10

(10)

     The effect of this damping method is that the robot experiences the repulsive forces at their
full magnitude, as it approaches the obstacle frontally (with -cos =1). As the robot turns
toward a direction alongside the obstacle"s boundary, the repulsive forces are weakened by
the factor 0.75*cos , and will be at their minimum value when the robot runs parallel to the
boundary. Notice that setting w=0 is undesirable, since the robot will eventually run into an
obstacle as it approaches it at a very small angle.

     Careful examination of Eq. 8 reveals the fact that the damped sum of repulsive forces, F' ,r
may  become negative (thereby actually attracting the robot), as the robot moves away from
the obstacle (and cos >0). We found the attraction-effect to improve damping and reduce
oscillatory motion.

3.3 Speed Control

     The intuitive way to control the speed of a mobile robot in the VFF environment is to set it
proportional to the magnitude of the sum of all forces, R = F  + F . Thus, if the path was clear,r t

the robot would be subjected only to the target force and would move toward the target, at its
maximum speed. Repulsive forces from obstacles, naturally opposed to the direction of Ft

(with disregard to the damping effect discussed above), would reduce the magnitude of the
resultant R, thereby effectively reducing the robot"s speed in the presence of obstacles.

     However, we have found that the overall performance can be substantially improved by
setting the speed command  proportional to cos  (see Eq. 9). This function is given by:

     With this function, the robot still runs at its maximum speed if no obstacles are present.
However, in the presence of obstacles, speed is reduced only if the robot is heading toward
the obstacle (or away from it), thus creating an additional damping effect. If, however, the
robot moved alongside an obstacle boundary, its speed is almost not reduced at all and it
moves at its maximum speed, thereby greatly reducing the overall travel-time.

     Fig. 2b shows the joint effect of both damping measures on the resulting path.



11

Figure 3:
a. The robot is caught in a "local minimum
trap".
b. As the robot finds itself 90  off target, it goeso

into wall-following mode (at "A") and reaims at
the target (at "B").

IV. Recovery from "Local Minimum Traps"

     One problem inherent to the basic VFF method is the possibility for the robot to get
"trapped." This situation may occur when the robot runs into a dead end (e.g., inside a U-
shaped obstacle). Traps can be created by a variety of different obstacle configurations, and
different types of traps can be distinguished. This section presents a  comprehensive set of
heuristic rules to recover from different trap conditions. Chattergy [10] presented some
heuristic local path planning solutions for various obstacle configurations (and trap
conditions), based on distance measurements to the obstacle. While his approach to recovery
from a single trap is similar to ours (through wall-following, see discussion below), his
solution to the problem of multiple traps differs completely from ours. Also, Chattergy offers
no solution to the inside-wall problem (as discussed in section 4.2).

4.1 Trap-state Detection 

    In an ideal, non-inertial  system, trap-states may
be discovered by simply monitoring the speed of
the robot. If caught in a trap, the robot"s speed
will become zero as the robot converges to the
equilibrium position with R = 0. In a dynamic
system, however, the robot overshoots the equi-
librium position and will either oscillate or run in a
closed loop, as shown in Fig. 3a for an actual run.
Therefore, it is impractical to monitor the
magnitude of the resultant force |R| for trap-state
detection. Our method for trap-state detection
compares the Robot-To-Target direction, , witht

the actual instantaneous direction of travel, . If0
the robot"s direction of travel is more than 90  off-o

target, namely, if

|  - | > 90 (12)t 0
o

the robot starts to move away from the target and
is very likely about to get trapped. Therefore, to
avoid trap-situations, the controller monitors the
condition in Eq. 12. If Eq. 12 is satisfied, the sys-
tem switches to the recovery algorithm discussed
below. Notice that Eq. 12 expresses an over-
conservative condition, and under certain
circumstances this condition may be satisfied
without the robot being subsequently trapped.



12

Figure 4: Robot successfully recovers from a
labyrinth-like obstacle course.

Figure 5: Derivation of the virtual attractive
force F"  for the wall-following mode.t

However, this test is computationally simple, and the evoked recovery algorithm does not
reduce the overall performance (if evoked only temporarily), even if the robot would not be
trapped.

4.2 Recovery Through Wall-following

     The recovery algorithm, referred to as the wall-
following method (WFM), steers the robot such as
to follow the current obstacle contour. The current
obstacle contour is the boundary of the obstacle that
"pushed" the robot away and made it assume a
heading more than 90  off the target direction. Witho

the WFM, the robot follows the contour until it
starts heading back into a direction less than 90o

off-target (i.e., |  - | < 90 ). Subsequently, thet 0
o

robot resumes its (normal) VFF mode, and heads
toward the target. The joint operation of the WFM
and the VFF mode is demonstrated in Fig. 3b, in
which the robot reaches the target in 16 sec at an
average speed of 0.44 m/sec. At point A, the
algorithm detects a trap situation, and switches into
WFM. At point B the off-angle becomes less than
90 , and the algorithm switches back into VFF mode. This recovery algorithm works even foro

extreme constellations of obstacles, such as the labyrinth-like obstacle course in Fig. 4. Again,
at point A the system activates the WFM algorithm, and at point B it switches back to VFF
mode.

The WFM algorithm is implemented in the
following manner: First, the robot calculates the sum
of all repulsive forces, F , in order to determine ther

direction of F , . Next, as is depicted in Fig. 5 (forr r
following a wall to the left of the robot), the
algorithm adds an angle  to , where 90 < <180  r

o o

(or subtracts  from , if following a wall to ther
right of the robot). In our system =145 . Then, theo

algorithm projects a new virtual attractive force F"t

in the resulting direction, which temporarily replaces
the attractive force from the target location, F . The0

new resultant R will now point (or eventually
converge) into a direction parallel to the obstacle boundary. While wall-following could also
be implemented through controlling a fixed distance to the wall, our method is preferable,



13

Figure 6:
a. Robot oscillates between multiple traps.
b. Remedy of multiple trap oscillations by
adherence to original wall-following mode.

since it is less sensitive to misreadings of the ultrasonic sensors.  A similar implementation for
wall-following has been suggested by Brooks and Connell [8], with  = 120 . o

     There is, however, one catch to the WFM,
which may occur if more than one trap is present.
Figure 6a shows one such case. Here the robot
switches to WFM at point A and follows a wall to
its left. Then, at point B, it switches back to VFF
mode, since its heading is now less than 90  offo

the target direction. At point C, a new trap-
condition is detected, and the robot goes again
into WFM (notice that at this time the robot
follows the obstacle at its right).
This pattern repeats itself at points D, E, and F,
inside the second and third trap. Subsequently,
the robot returns and oscillates between the traps.
To solve this problem, two possible wall-
following modes must be distinguished: L-mode,
where the robot follows a wall to its left, and R-
mode, where the robot follows a wall to its right.
This distinction is utilized in the implementation
of the WFM in our system, as is explained below.

     In a given run the robot might select either L-
or R-mode at the first trap-situation, but then it
must stick always to this mode within the given
run. The result of running this algorithm is
depicted  in Fig. 6b (for the same obstacle
configuration as in Fig. 6a). The robot encounters
a trap at point A and chooses L-mode. At point B
the trap-situation is resolved and the robot returns
to VFF mode. However, a new obstacle is
encountered, which "pushes" the robot into R-mode (at point C). Since the robot has to stick
to the original WFM, it slows down and performs a U-turn (at point D). Subsequently, the
robot resumes motion in VFF mode (at point E). A new trap is detected at point F, but this
trap can be resolved by running in (the original) L-mode. At point G the robot resumes
motion in VFF mode and reaches the target. The average speed for this run was 0.5 m/sec.

     One last exception that needs to be addressed occurs when the robot is in WFM on an
inside wall of a closed room (with the target in the same room). In this case, the robot will
follow that wall indefinitely, since the condition for exiting WFM (| - | < 90 ) will not bet 0

o

satisfied (Note that  is updated absolutely and not by modulus 360 , so that, e.g.,0
o

420  =/  60 ).o o



14

Figure 7: Wall-following on the inner wall of a
room may result in an idefinite loop. However,
a full loop around the target can be identified
and used to remedy the situation. 

     However, the above situation may be detected by monitoring the sum  of the changes of
the target direction, , between sampling intervals i.t

 = [ (i) - (i-1)] (13)t t

  >360  indicates that the robot has traveled at least one full loop around the target. Thiso

only happens when the robot follows an inside wall completely surrounding the target.

     Once detected, there are several ways to remedy
the situation. In our algorithm, the robot is simply
forced out of the WFM and back into normal target
pursuit. Fig. 7 shows an example: At point A the
algorithm detects the trap condition and switches
into WFM with R-mode. At point B the robot has
completed one full revolution about the target
(since A) and the loop condition ( >360 ) iso

detected. The robot slows down and stops at point
C. Theoretically, there is no need to stop at C, but
for the trivial purpose of untangling the umbilical
cord (note that the robot has spun almost 720  byo

the time it reaches C) the robot does stop at C. It
then rotates on the spot until its heading is directed
toward the target again, and resumes motion in
VFF mode.

     Fig. 8 shows a run of the robot with actual ultrasonic data, obtained in real-time during
the robot"s motion. Partitions were set up in the lab such as to resemble the simulated
obstacles in Fig. 3. The robot ran at a maximum speed of 0.78 m/sec and achieved an average
speed of 0.53 m/sec. The maximal range for the sensors was set to 2 m, which is why only
part of the rightmost wall is shown, whereas the rear wall and most of the leftmost wall
remained undetected. 

Each dot in Fig. 8 represents one cell in the Certainty Grid. In our current implementation,
Certainty Values (CVs) range only from 0 to 3. CV = 0 means no sensor reading has been
projected into the cell during the run (no dot at all). CV = 1 (or CV = 2) means that one (or
two) readings have been projected into the cell, and this is shown in Fig. 8 with dots
comprising of 1 (or 2) pixels. CV = 3 means that 3 or more readings have been projected into
the same cell, and this is represented by a 4-pixel dot in Fig. 8.

At least two misreadings can be identified in Fig. 8, which have been encircled for
emphasis.



15

Figure 8: Robot run with actual ultrasonic data obtained
in real-time during the robot"s motion. Maximum speed =
0.78 m/sec and average speed = 0.53 m/sec.

V. Conclusions

     A comprehensive obstacle avoidance
approach for fast-running mobile robots,
denoted as the VFF method, has been
developed and tested on our experimental
mobile robot CARMEL. The VFF method
is based on the following principles:

1. A Certainty Grid for representation of
(inaccurate) sensory data about
obstacles provides a robust real-time
world model.

2. A field of virtual attractive and repulsive
forces determines the direction and
speed of the mobile robot. 

3. The combination of 1. and 2. results in the characteristic behavior of the robot: The robot
responds to clusters of high-likelihood for the existence of an obstacle, while ignoring
single (possibly erroneous) data points.

4. Trap states are automatically detected and recovery routines are activated. These routines
distinguish among several different situations and take appropriate action for each
situation. 

5. Oscillatory robot motion is resolved by damping algorithms (which only marginally com-
promise the robot"s average speed).

Based on the VFF method for autonomous obstacle avoidance, we are currently
developing a new mode of operation for the remote guidance of mobile robots. Under this
mode of operation, the mobile robot follows the general direction prescribed by the operator.
If the robot encounters an obstacle, it autonomously avoids collision with that obstacle, trying
to match the prescribed direction as good as possible. With this integrated self-protection
mechanism, robots can be steered at high speeds and in cluttered environments, even by
inexperienced operators.



16

IV. References

[ 1] Bauzil, G., Briot, M. and Ribes, P., "A Navigation Sub-System Using Ultrasonic
Sensors for the Mobile Robot HILARE." 1st In.. Conf. on Robot Vision and Sensory
Controls, Stratford-upon-Avon, UK., 1981, pp. 47-58 and pp. 681-698.

[ 2] Borenstein, J. and Koren, Y., "A Mobile Platform For Nursing Robots." IEEE
Transactions on Industrial Electronics, Vol. 32, No. 2, 1985, pp. 158-165.

[ 3] Borenstein, J. and Koren, Y., "Optimal Path Algorithms For Autonomous Vehicles."
Proceedings of the 18th CIRP Manufacturing Systems Seminar, June 5-6, 1986,
Stuttgart.

[ 4] Borenstein, J. and Koren, Y., "Motion Control Analysis of a Mobile Robot."
Transactions of ASME, Journal of Dynamics, Measurement and Control, Vol. 109, No.
2, 1987, pp. 73-79.

[ 5] Borenstein, J., "The Nursing Robot System." Ph. D. Thesis, Technion, Haifa, Israel,
1987,.

[ 6] Borenstein, J. and Koren, Y., "Obstacle Avoidance With Ultrasonic Sensors." IEEE
Journal of Robotics and Automation., Vol. RA-4, No. 2, 1988, pp. 213-218.

[ 7] Brooks, R. A., "A Robust Layered Control System for a Mobile Robot." IEEE Journal
of Robotics and Automation, Vol. RA-2, No. 1, 1986, pp. 14-23.

[ 8] Brooks, R. A. and Connell, J. H., "Asynchronous Distributed Control System for a
Mobile Robot", Proceedings of the SPIE, Vol. 727, Mobile Robots, 1986, pp. 77-84. 

[ 9] Cooke, R. A., "Microcomputer Control of Free Ranging Robots." Proc. of the 13th Int.
Symp. on Industrial Robots and Robots, Chicago, Ill., April, 1983, pp. 13.109-13.120.

[10] Chattergy, R., "Some Heuristics for the Navigation of a Robot"." The International
Journal of Robotics Research, Vol. 4, No. 1, 1985, pp. 59-66.

[11] Crowley, J. L., "Dynamic World Modeling for an Intelligent Mobile Robot." IEEE
Seventh International Conference on Pattern Recognition, Proceedings July 30-August
2, Montreal, Canada, 1984, pp. 207-210.

[12] Crowley, J. L., "Navigation for an Intelligent Mobile Robot." Carnegie-Mellon
University, The Robotics Institute, Technical Report, August, 1984.



17

[13] Cybermation, "K2A Mobile Platform." Commercial Offer, 5457 JAE Valley Road,
Roanoke, Virginia 24014, 1987.

[14] Denning Mobile Robotics, Inc., "Securing the Future." Commercial Offer, 21
Cummings Park, Woburn, MA 01801, 1985.

[15] Elfes, A., "A Sonar-Based Mapping and Navigation System."  Carnegie-Mellon
University, The Robotics Institute, Technical Report, 1985, pp. 25-30.

[16] Engelberger, J., Transitions Research Corporation, private communication, 1986.

[17] Giralt, G., "Mobile Robots." NATO ASI Series, Vol. F11, Robotics and Artificial Intel-
ligence, Springer-Verlag, 1984, pp. 365-393.

[18] Iijima, J., Yuta, S., and Kanayama, Y., "Elementary Functions of a Self-Contained
Robot "YAMABICO 3.1" ." Proc. of the 11th Int. Symp. on Industrial Robots, Tokyo,
1983, pp. 211-218.

[19] Jorgensen, C., Hamel, W., and Weisbin. C. "Autonomous Robot Navigation." BYTE,
January, 1986, pp. 223-235.

[20] Khatib, O., "Real-Time Obstacle Avoidance for Manipulators and Mobile Robots."
1985 IEEE International Conference on Robotics and Automation, March 25-28, 1985,
St. Louis, pp. 500-505.

[21] Krogh, B. H., "A Generalized Potential Field Approach to Obstacle Avoidance
Control." International Robotics Research Conference, Bethlehem, PA, August, 1984.

[22] Krogh, B. H. and Thorpe, C. E., "Integrated Path Planning and Dynamic Steering
Control for Autonomous Vehicles." Proceedings of the 1986 IEEE International
Conference on 
Robotics and Automation, San Francisco, California, April 7-10, 1986, pp. 1664-1669.

[23] Moravec, H. P. and Elfes, A., "High Resolution Maps from Wide Angle Sonar." IEEE
Conference on Robotics and Automation, Washington, D.C., 1985, pp. 116-121.

[24] Moravec, H. P., "Certainty Grids for Mobile Robots." Preprint of Carnegie-Mellon
University, The Robotics Institute, Technical Report, 1986.

[25] Polaroid Corporation, Ultrasonic Ranging Marketing, 1 Upland Road, MA 02062, 1982.



18

[26] Thorpe, C. F., "Path Relaxation: Path Planning for a Mobile Robot." Carnegie-Mellon
University, The Robotics Institute, Mobile Robots Laboratory, Autonomous Mobile
Robots, Annual Report 1985, pp. 39-42.

[27] Walter, S. A., "The Sonar Ring: Obstacle Detection for a Mobile Robot."  Proceedings
of the IEEE International Conference on Robotics and Automation, Raleigh, North
Carolina, March 31 - April 3, 1987, pp. 1574-1579.

[28] Weisbin, C. R., de Saussure, G., and Kammer, D., "SELF-CONTROLLED. A Real-
Time Expert System for an Autonomous Mobile Robot." Computers in Mechanical
Engineering, 
September, 1986, pp. 12-19.


