
NIST Internal Report (NISTIR) 5605, 1995 1

Real-time Obstacle Avoidance Using Central Flow
Divergence and Peripheral Flow

David Coombs, Martin Herman, Tsai Hong, Marilyn Nashman
National Institute of Standards and Technology

Intelligent Systems Division
Building 220 Room B-124
Gaithersburg MD 20899

ABSTRACT

The lure of using motion vision as a fundamental element in the perception of
space drives this effort to use flow features as the sole cues for robot mobility.
Real-time estimates of image flow and flow divergence provide the robot’s sense of
space. The robot steers down a conceptual corridor, comparing left and right
peripheral flows. Large central flow divergence warns the robot of impending col-
lisions at “dead ends.” When this occurs, the robot turns around and resumes
wandering. Behavior is generated by directly using flow-based information in the
2-D image sequence; no 3-D reconstruction is attempted. Active mechanical gaze
stabilization simplifies the visual interpretation problems by reducing camera rota-
tion. By combining corridor following and dead-end deflection, the robot has wan-
dered around the lab at 30 cm/s for as long as 20 minutes without collision. The
ability to support this behavior in real-time with current equipment promises
expanded capabilities as computational power increases in the future.

1. Introduction

Mobile robots that drive at reasonable speeds (e.g., 30 cm/s indoors) must robustly
sense and avoid obstacles in real-time. Image motion provides powerful cues for under-
standing scene structure. Divergence of image flow (the sum of image flow derivatives in
two perpendicular directions) is theoretically not affected by camera rotation, so it gives
a robust measure of scene structure for a moving observer. In the direction of the camera’s
heading, divergence is inversely related to time-to-contact ( ). The system described in

this paper avoids obstacles while it wanders. It uses time-to-contact estimates derived
from flow divergence to detect imminent head-on collision. This is combined with a cen-
tering behavior that compares left and right peripheral flows to steer the robot down a con-
ceptual corridor [6]. That is, the robot attempts to move straight ahead, but will adjust its
heading to maintain clearance on both sides. When the corridor-following behavior drives
the robot into a “dead end” in the “corridor,” the central time-to-contact predictions warn
the robot of the impending collision. The robot stops, turns, and resumes wandering, fol-
lowing a new “corridor.” These integrated behaviors have driven the robot around the lab
at 30 cm/s for as long as 20 minutes without collision. Because this wandering behavior
is already a real-time capability, there is promise that future increases in computational
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power will fuel development of both increasingly robust basic skills and additional behaviors for
robots.

Our approach achieves real-time intelligent behavior by using minimalist visually-derived rep-
resentations. In such representations, a minimal amount of information required to achieve the giv-
en task is extracted from the imagery [2][4]. The representations contain only task-relevant infor-
mation (i.e., relevant to obstacle avoidance) and the information is represented in 2-D image coor-
dinates only. The control algorithms directly use observable image information represented in the
2-D image sequence; a 3-D reconstruction is not required [16]. This approach requires fewer cali-
brations, fewer scene hypotheses, and less computation. It is therefore simpler and faster.

Figure 1 sketches the demonstration obstacle avoidance system. The system consists of five
processing modules. Video images are obtained from two on-board cameras. One of the cameras
is above the other, and both are mounted on a single pan motor. Neither camera is calibrated. Cen-
tral/peripheral visual sensing is achieved with narrow and wide lenses. The narrow central camera
has a  field of view. It is tilted downward so that its visual axis intersects the floor 2 or 3 meters

in front of the robot. The wide camera, mounted slightly below the narrow one, has a  field
of view. The robot’s view from these cameras is shown in Figure 2. The images from the two cam-
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eras are processed independently, and they are independently used to control behavior. The first
process in Figure 1 computes normal flow, the component of motion perpendicular to edges in the
images of the two cameras. In Figure 1, “C” represents video input from the narrow-angle central
camera and “P” represents video input from the wide-angle peripheral camera. The magnitude and
quantized direction of the normal flow are presented to the second processing module, which com-
putes divergence and time-to-contact in three overlapping windows of the central image. In the
wide image, the process estimates maximum flow in two peripheral visual fields (left and right).
Accuracy is sacrificed to achieve real-time performance. The resulting errors in normal flow esti-
mates produce errors in divergence and time-to-contact measurements as well. The third process
temporally filters maximum flow and  to reduce errors. Recursive estimation is used to update

current flow and  estimates and to predict flow and  at the next sample time.

The fourth process uses flow to steer the robot down the conceptual corridor estimated by com-
paring peripheral flows in the wide camera. Using active gaze control, the cameras are rotationally
stabilized so that their motion is approximately a translation. If the flow is larger on one peripheral
side than the other, then objects in the scene are closer on that side, and the robot steers away. When
the camera points too far away from the heading, a saccade is made toward the heading. When

predictions in the central camera indicate imminent collision in a “dead end” in the conceptual cor-
ridor, the robot stops, turns away, and resumes wandering. The inputs to the body and gaze con-
trollers consist of driving, steering, and gaze velocities.

2. Real-Time Control System (RCS)

The obstacle avoidance system we describe in this paper is designed in accordance with the
Real-Time Control System (RCS) hierarchical architecture described in [1]. RCS decomposes
goals both spatially and temporally to meet system objectives. It monitors its environment with
sensors and updates models of the states of the system itself and the world. Figure 3 maps the func-
tionality of the obstacle avoidance system into the first three levels of the RCS hierarchy.

RCS is composed of three parallel legs, sensory processing (SP), world modelling (WM), and
behavior generation (BG) that interact to control complex systems. The hierarchical levels run in
parallel and are labelled, from highest to lowest, tribe, group, task, e-move (elemental-move), prim
(primitive) and servo. The BG modules control physical devices. The WM modules supply infor-
mation to both the BG hierarchy and the SP hierarchy. It maintains a database of system variables
and filters and analyzes data using support modules. The SP modules monitor and analyze sensory
information from multiple sources in order to recognize objects, detect events and filter and inte-
grate information. The world model uses this information to maintain the system’s best estimate of
the past and current states of the world and to predict future states of the world.

3. Computation of Normal Flow

Process 1 (Figure 1) computes the magnitude and quantized direction of normal flow in the im-
age sequences from each of the two cameras mounted on a mobile robot, as sketched in Figure 4.

These flow values are computed in real-time on PIPE1 (Pipelined Image Processing Engine) [11].

1. Certain commercial equipment, instruments, or materials are identified in this paper in order to adequately

specify the experimental procedure. Such identification does not imply recommendation or endorsement by

NIST, nor does it imply that the materials or equipment identified are necessarily best for the purpose.
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Normal flow is the component of image motion in the direction of the intensity gradient (i.e., per-
pendicular to intensity edges). Motion information is extracted from the sequences using temporal
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and spatial derivatives [10]. For each camera, sequential images (video fields not frames) , ,

and , are digitized and stored. To satisfy the continuity constraint for the gradient based flow

computation, each image is filtered with a Gaussian function (  pixel) using a  convo-
lution kernel. The temporal derivative is computed as:

(1)

It is important that alternate video fields are used to estimate the temporal derivative because the
interlacing of consecutive fields would distort the result. The spatial derivatives,  and , are
computed on image . For every point in , intensity gradient magnitude and orientation are
computed using spatial gradient operators [17]. The gradient direction, , of each point in
the image is

, for . (2)

 is quantized into four directions: north-south, northeast-southwest, east-west, and southeast-
northwest.

The gradient magnitude  is:

. (3)

Best flow estimates are obtained at local extrema of , so the  image is thinned by non-ex-
trema suppression [22]. The normal flow  is:

(4)

where  is a scaling factor that permits the result to be expressed in 8-bit integer format to meet
hardware constraints. In addition, because of noise, the temporal derivative, , is used only if
above a threshold. The gradient, , is also used only if above a threshold to reduce the differ-
ence between the motion field and the corresponding optical flow [10].  is chosen empirically to
allow representation of flows arising from obstacles between 1.5 and 2.5 meters from the camera
at robot speeds up to 30 cm/s. Closer objects give rise to image flows too large to represent. Ex-
tremely small flows can be noisy.

The result of this process is a histogram of the quantized gradient directions, a list of image
coordinates of each quantized direction, and the corresponding scaled flow values in each direc-
tion.

4. Maximum Flow in the Visual Periphery

One of the tasks of process 2 (Figure 1) is to compute maximum flows in the left and right pe-
ripheral visual fields of the wide-angle camera. As described in Section 8, the cameras are rotation-
ally stabilized using active gaze control so that their motion is approximately a translation. For
comparing clearance to obstacles on each side of the path, the maximum flow value in each periph-
eral receptive field indicates the distance to the nearest object in that field [6]. The optical flow pro-
cessing in each field is implemented in two parts: first, dense normal flow is estimated as described
above, then the maximum magnitude flow in each receptive field is identified by examining the
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histogram of flows in each field. The histogram is transferred from PIPE to a host processor, where
the largest magnitude flow is determined. Spurious outlying high magnitude data are avoided by
ignoring a small fraction of the highest magnitude flows (e.g., 4%). The maximum flows are also
recursively estimated and predicted (Section 6).

It should be noted that this implementation does not attempt to compute range for objects in the
image. To do so would require calibrating the focal length, the wide-angle lens distortion, and the
vehicle velocity in order to compensate for the eccentricity from the heading at each flow estimate.
An object near the focus of expansion (FOE) or contraction (FOC) will generate less optical flow
than an object at the same range to the side of the robot’s path. For these reasons, the control system
is designed to keep the gaze nearly aligned with the heading (Section 8).

5. Divergence and Time-to-contact for Obstacle Detection

A second task of process 2 (Figure 1) is to compute flow divergence in the central camera. Di-
vergence of flow can be used to estimate time-to-contact (Tc). Both theory and implementation are

discussed here as well as considerations for employing  estimated from divergence for obstacle

detection by a moving robot.

The equations for the  and  components of optical flow  due to general camera

motion (arbitrary translation and rotation) in a stationary environment are

(5)

(6)

where  is the depth of the object in the environment relative to the camera, and
 are the translational and rotational motion of the environment relative to the cam-

era[23]. The divergence of an optical flow field is defined as:

. (7)

Note that

(8)

(9)

where  = . From equations (7) through (9), at (x, y) = (0, 0):

(10)

From equation (10),
(11)

whenever the imaged surface is a mostly perpendicular surface or the gradient of the imaged sur-
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Time-to-contact (Tc) or nearness in time, can be estimated directly from divergence (Equation
(11))

. (12)

This measurement is particularly useful for obstacle avoidance during visual navigation be-
cause divergence is invariant under the rotational motion of the sensor that is inevitable due to im-
perfect stabilization.

Equation (12) suggests that Tc has only time as its dimension. The values of Tc over any signif-

icant area represent the time needed to reach an object at distance  with velocity  in the  di-

rection. Tc is twice the inverse of divergence. Therefore, a family of simple fixed flow divergence
templates can be applied to any image sequence to estimate divergence [15]. Each template is sym-
metrically divided into positive and negative halves (Figure 5). Flow divergence is calculated by
convolving the template with a window in the flow image and computing the sum of the image
flow derivatives in perpendicular directions. Since there are few accurate flow values in the imple-
mentation, a large window is needed to accumulate multiple samples. (The estimates are inaccurate
particularly because they are only normal flow and their directions are quantized.) Each time-to-
contact value has an associated confidence, which is the number of points in the window that have
measurable flow values. In order to improve the consistency of the estimation of Tc, we apply a
recursive least squares update procedure.

6. Recursive Least Squares Update of Time-to-Contact and Maximum Flows

Process 3 (Figure 1) computes updates and predictions of time-to-contact and flow values. One
of the significant contributions of our approach is its use of a temporal model to estimate and pre-
dict Tc values. A linear model is maintained for the time-to-contact in each of the three windows:

(13)

where t = 0, -1, -2,... For each measurement of time-to-contact, model parameters and are
updated by a weighted recursive least squares computation with exponential decay [5][9][13][19].
This involves determining and such that the residual is minimized:

(14)

where ;  is the present;  is the forgetting factor; and  is the confi-
dence of the measurement (the number of flow data points in the window).

In order to solve for a1, a2, the square root information filter (SRIF) algorithm [5] is used. The
SRIF provides an efficient, numerically stable, closed form solution to the least squares problem.
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It is also a recursive algorithm, i.e. the model is updated as new data becomes available without
having to explicitly store old data. The SRIF algorithm is described in [5][13].

Since the camera is approximately aligned with the robot’s heading, the objects viewed in the
estimation windows change as the robot steers away from obstacles. Recursive estimates derived
over time are sensitive to the underlying data, which should ideally consist of the same sample
points for the estimation period. However, the windows’ sample data change constantly when the
vehicle is turning, e.g., old obstacles disappear from view and new obstacles become visible. The
forgetting factor, , adjusts for this behavior by controlling the relative weighting of new and old

data.  is changed dynamically as a function of the control system’s commanded angular velocity.
In this way, the weight of past events is reduced when the robot turns faster and a new scene be-
comes visible. Similarly, past observations weigh more heavily when the robot moves straight
ahead.

Statistical analysis of the recursive least squares predictions has produced a robust indicator for
imminent collision. Figure 9 plots a history of time-to-contact predictions for straight line motion
of the robot. The last entries in the plot are decreasing and approaching zero. However, although
the general trend is downward, the progression is non-monotonic. No single time-to-contact datum
provides sufficient confidence to conclude that collision is likely. There appears to be a correlation
between collision, the time-to-contact value ( ), the slope of the predicted line ( ), and the con-

fidence ( ) which represents the number of normal flow pixels contributing to the current diver-

gence estimate. A combination of short predicted time-to-contact ( ), negative slope of

predictions ( ), and at least a moderate number of current data ( ) seem to reliably in-

dicate imminent collision.  represents a measure of time-to-contact, but because of repeated

scaling operations, it is expressed only in terms of  units which are not calibrated to standard time
units. We have empirically found that at least 10 Tc samples are necessary for reasonable accuracy
of recursive estimates.

In our approach to filtering maximum flows, we use a temporal linear model similar to equation
(14) in each receptor field. The forgetting factor, λ, is a constant which controls the degree of
smoothing and the length of past history.

7. Driving Control

Processes 4 and 5 (Figure 1) are used to control driving and gaze. The robot’s task is to avoid
obstacles while achieving mobility goals. In general, such goals might be specified by coordinates
in a map, features that uniquely identify a location, or simply features that satisfy a precondition
required for the next subtask (i.e. the mobility goal might be positioning the robot to pick up an
object.) Ideally, the robot would survey the visual data to identify the direction nearest its desired
path that is also a safe direction in which to travel. In these experiments, the goal is to develop the
ability to maneuver without collision using only visual image flow to sense the environment. The
robot’s behavioral goal is simply to drive forward, steering away from obstacles, and to stop and
turn when it senses that collision is imminent.

The robot begins driving at 30 cm/s. Driving at a fixed speed allows the use of a lookup table
to estimate time-to-contact. Hardware constraints on the real-time processing machine prevent the
use of multiple tables which could be used for different velocities. The centering behavior uses the
peripheral flows to steer the robot down its conceptual corridor. Indication of imminent collision
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(based on time-to-contact) in any of the central receptive fields causes the robot to stop, turn away
and resume wandering. This is implemented with a finite state automaton, with a command asso-
ciated with each state (Figure 6). Some state transitions are triggered by sensed events, and others
merely provide command sequencing.

The robot steers smoothly to the new desired heading with saturated negative visual feedback
controls [7]. The desired heading attempts to balance the peripheral flows by choosing a desired
heading, , in retinotopic (visual) coordinates.

(15)

and  are the left and right maximal normal flows in the peripheral visual fields. The gain
 is chosen empirically to produce a sensible desired heading in the visual space. Desired

change in heading, , is then calculated, accounting for the current gaze angle, , with respect
to heading.

(16)

The steering control policy is simply a saturated steering velocity proportional to the desired
heading.

(17)

The gain  (usually <1) determines how quickly the steering is servoed to the desired heading.
Time is normalized to seconds by dividing by the body control cycle time, . Thus angular ve-
locity is expressed in degrees/s rather than degrees/cycle. For instance, setting  will
command a velocity that would reduce the error by 30% in the next control cycle (assuming near-
ly instantaneous acceleration). The angular velocity is saturated at  deg/s to limit the peak rota-
tion rate to reasonable levels. There are three reasons for this limit. First, the latency of robot
command execution is quite large, and the command cycle is not entirely uniform. Therefore it is
possible to overshoot the desired heading if the rotational velocity is too high, since the controller
might not be able to stop steering at the right time. Second, motion estimation suffers if the cam-

Figure 6. Body Control Automaton
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era rotates too fast, since our computation of flow is based on the gradient method which
limits motion to less than two pixels per frame. Poor flow measurements degrade  es-
timates. This impacts the quality of steering and stopping. Third, slower steering im-
proves the temporal consistency of flow data for recursive estimation. The second and
third issues would not be of concern if gaze were perfectly stabilized, but stabilization is
not perfect and the residual camera rotation is correlated with the steering rate.

The robot steering and collision detection improve when the robot turns relatively
slowly for two reasons: (1) temporal consistency of spatial samples, and (2) accuracy of
motion estimates. Also, in order for the centering behavior to work properly, the cameras
should be translating approximately along the heading. In this way, the relationship be-
tween flow and range in the two peripheral fields will be the same. Therefore, the behavior
and motor control systems must minimize rotation of the cameras. This is accomplished
by stabilizing the cameras with active motor commands and by limiting rotation of the
body so the gaze stabilization is not overstressed. Despite these precautions, gaze stabili-
zation is imperfect and some data are contaminated. The sensory signals must be exam-
ined to detect corrupted estimates that should not be used to control driving. For instance,
poor gaze stabilization injects a smooth flow (arising from rotation) across the visual
field. These flow patterns are not consistent with pure forward translation of the camera.
This condition can be detected, and such data can safely be ignored for short periods.

8. Gaze Control

The nonlinear gaze control is a nystagmus, a repetitive eye motion of slow phase ro-
tations punctuated by quick phase rapid returns. It is also implemented as a finite state au-

tomaton (Figure 7). The camera is rotated at velocity  to counter the body rotation
and stabilize the camera images. The gaze control also checks the deviation of the gaze
angle, , from the robot’s heading and snaps the camera back to the heading if the limit

Tc

Figure 7. Gaze Control Automaton

init

stabilize
infinity

saccade and
stabilize

gaze angle
exceeds limit

center
gaze

halt

halt signal
or

communications
time-out

body stops
to turn

φ̇ θ̇–=

θg



11

is exceeded. With the cameras rotationally stabilized near the heading, the peripheral flow
estimates can be interpreted as relative distances to obstacles.

9. Experiments and Results

Experiments with the obstacle avoidance system were performed in a laboratory con-
taining office furniture and robot and computing equipment. Furniture and equipment
lined the walls and there was free space roughly 5 m by 3 m in the center of the lab. Office
chairs provided obstacles.

In typical experiments, the robot began the trial at one end of the lab. Obstacles were
placed in the camera’s view (Figure 8a). The camera has a  field of view. The robot
drove forward at 30 cm/s. As images were processed, time-to-contact was estimated. Fig-
ure 8 shows a sequence of images from the robot’s viewpoint as it approached a stack of
chairs. Figure 8b was captured midway through the experiment, and Figure 8c shows the
view when the robot detected imminent collision. Figure 9 plots the Tc recorded during

40°

Figure 8. Sequence of Images As Robot Approaches Obstacles
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such a trial against time, represented by sampling numbers. The time-to-contact dimen-
sion is not calibrated.

The collision trend seems apparent to our eyes by  since the general slope of
the line seems to be approaching zero. Our real-time image processing system can accu-
rately compute and represent a narrow range of normal flow values. Driving at 30 cm/s,
normal flow can be estimated arising from objects located between 1.5 m and 2.5 m ahead
of the camera. This range corresponds to time values from 292 to 298 in the plot starting
when the robot is approximately 2.5 m from the obstacle.

Figure 10 is a graph of range (in cm on the y axis) versus time-to-contact (in arbitrary
time units on the x axis) estimated at the time the robot stopped to avoid collision in each
of 20 trials. In this experiment, centering behavior was deactivated and the robot was pro-
grammed to stop (rather than turn) when it detected an obstacle. The distance between the
robot and the obstacle was physically measured.The corresponding time-to-contact value
represents the last value predicted by the system before the robot was commanded to halt.
The graphed points plot raw data; the line represents a least square linear fit of measured
range versus time-to-contact value. The stopping distance varied between 101 cm. and
150 cm. and the time-to-contact values varied between 43 and 66. Ideally, we would ex-
pect the computed time-to-contact values and the measured values to be linear. The stan-
dard deviation of this fit is 4.75 cm.

A typical trace of the robot’s path using obstacle avoidance and wandering behaviors
is plotted in Figure 11. The lab was lined with chairs forming a free space roughly 5 m by
3 m. As the dead-reckoned trace shows, the robot traversed most of the space in these five
minutes of recorded data. Variability in steering and stopping depends in part on the tex-
tures visible from a particular approach. Stopping distances may vary just because the an-
gle of approach varies. In an average run, robot motion starts at any open area of the lab.
As time-to-contact and peripheral flows are computed, the robot moves forward toward
open areas while centering itself in the open space. Upon detection of an imminent colli-
sion, it turns to avoid the obstacle and continues its wandering behavior. The system has
run successfully for up to 20 minutes.

t 292=

100

110

120

130

140

150

160

170

40 45 50 55 60 65 70

Figure 10. Range (cm) versus Time-to-Contact



13

There are three primary factors that lead to system failure. First, there is a variable
time delay between detection of an event and the behavioral response to this event. The
variability is a function of inter-communication delays caused by processes (eye and robot
controls) running in a Unix environment. The effect of this variability can delay the robot
from reacting quickly enough to avoid an obstacle. Second, the flow computation assumes
that there will be sufficient texture in the field of view from which to compute flow. If this
is not the case, e.g., the robot is steering toward a blank wall, no flow is detected and the
robot collides with the wall. The third cause of failure is the rectangular geometry of the
robot base and the presence of bumpers which trigger stopping upon contact. There are
instances where the robot is turning to avoid an obstacle, and in so doing, brushes its
bumper against a close-by object. This is not a short-coming of the system per say, but
nevertheless, results in a system shut-down.

10. Discussion

Some researchers [12][20][21] have proposed using divergence or flow derivatives
for visual cues, but they do not provide real-time implementations of these ideas. Nelson
and Aloimonos [14][15] used directional flow divergence for stop-and-look obstacle
avoidance (not real-time smooth driving). Also, their system did not simultaneously han-
dle forward and lateral obstacle avoidance, under both translational and rotational robot
motion. Finally, their environments were much simpler than ours and they did not dem-
onstrate extensive robust behavior over extended periods of time.

Corridor following behaviors using wide field peripheral flow have been demonstrat-
ed with [6] and without [18] gaze stabilization. The choice depends on several factors. As
noted, a rotationally stabilized visual frame may improve temporal integration of data. In
addition, image flows may be interpreted directly as proximity estimates because the cam-
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era is approximately translating. In principle, steering based on differences of peripheral
flows should be independent of rotational flow components due to egorotation. Assuming
egomotion in a static environment, the rotational flow components would simply cancel.
In practice, however, most flow estimators have limited spatiotemporal range, and rapid
camera rotation could easily dominate the image flows observed by a freely rotating ob-
server. This would significantly degrade the resulting steering of a system using flow es-
timators with limited dynamic range, as it does in this demonstration system.

All these systems suffered from a gaping central blind spot. Our work combines cen-
tral and peripheral vision to avoid collision over the entire field for vision-based mobility.

System performance depends on many factors. Underlying the instantaneous  esti-

mates are image flow measurements. Although divergence is theoretically unaffected by
camera rotation, rotation contributes directly to image flow. The system calculates image
flow using the gradient method, which, like all techniques, has limited spatiotemporal
sensitivity. In particular, large flows are not estimated accurately, so fast camera rotation
can corrupt the image flow estimates on which the divergence and  estimates rely.

In addition, image flow depends on the field of view and scene texture.The obstacle
must appear in the field of view in order to be detected. A logical extension would be con-
struction of a local map of space, though this introduces new problems. Also, since the
normal flow computation performs best on textured scenes, the system fails in the absence
of texture. Further, the real-time estimation of image flow on PIPE suffers from limited
resolution in flow estimates. The translational components of the flow which indicate the
scene structure are very small near the heading direction, where  is directly related to

divergence. Therefore  estimates are noisy, and it becomes necessary to detect trends

in the data since we cannot base behavioral decisions on any single datum.
Sensorimotor interactions affect overall performance. There are significant latencies

in the sensing, estimation, and control modules. These modules are distributed and to
some extent asynchronous. Although in general the latency equals the cycle time, in some
cases the latency is a bit greater. The modules produce and consume data at various rates,
and the interactions of the unequal cycle times have considerable consequences. Normal
flow estimates are produced at 7.5 Hz. In parallel, the divergence estimation task runs at
a mean rate of 7 Hz, though the rate varies with the density of the normal flow data. On
the same processor, the recursive estimator executes in 12 ms. The robot accepts speed
and steering commands at about 3 Hz. Hence, at a robot velocity of 30 cm/s, visual data
become available about every 5 cm of robot travel and steering is adjusted about every
10cm. To avoid losing valuable data, especially time-critical impending collision indica-
tions, the behavior controller runs at 20 Hz, evaluating any fresh data and writing appro-
priate steering and speed commands. These commands are only single buffered, so only
the most recent command is read by the robot controller when it is ready for a new one.
This minimizes the overall latency in the system. However, it also means the behavior
controller does not know exactly which command is being executed unless the robot con-
troller sends an acknowledgment that identifies the accepted command. This condition,
coupled with considerable latencies in actually effecting a robot command, means it is dif-

Tc

Tc

Tc

Tc
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ficult for the control (and sensing) systems to know precisely what the robot is doing,
short of installing high-speed low-latency feedback sensors. Consequently, the systems
are designed to require only approximate knowledge of the robot’s current motion state if
they use any at all.

11. Conclusions and Future Plans

A demonstrated system is presented that uses only real-time motion cues to wander
while avoiding obstacles in a lab containing office furniture and robot and computing
equipment. The robot has wandered around the lab at 30 cm/s for as long as 20 minutes
without collision. To our knowledge, this is the first such demonstration of real-time wan-
dering using only image motion cues.

The paper describes how flow, divergence of flow, and maximal flows are computed
in real-time to provide the robot’s sense of space, and how steering, collision detection,
and camera gaze control together accomplish safe wandering. The major contribution of
this work is in developing and demonstrating this integrated system that robustly coordi-
nates real-time behaviors in a complex environment.

Although image motion has long been considered a fundamental element in the per-
ception of space, attempts to use it in real-world mobility tasks have always been ham-
pered by problems such as noise, brittleness, and computational complexity. We demon-
strate for the first time that robust image motion cues can be extracted and used as the sole
perceptual cues to safely move about a complex environment in real-time for extended pe-
riods.

This work includes the integration of several visual mobility behaviors, including for-
ward obstacle avoidance, lateral obstacle avoidance, and camera gaze control. It also dem-
onstrates the integration of foveal/peripheral visual processing, image motion processing,
retinal 2-D representations and behavior control. The manner in which this integration is
achieved is unique and represents an important contribution in integration methods. The
approach requires fewer calibrations, fewer scene hypotheses, and less computation than
standard techniques. It is therefore simpler and faster.

Future work will benefit from a number of additions or modifications to our system.
Among these factors is the need for a wider visual field of view. Motion planning for
smooth trajectories will benefit from having as much visual information from the scene
as possible. Faster update rates and reduced lag time are also necessary for more robust
performance.

We plan to install all computing capabilities on-board the robot. This will allow ex-
perimentation in larger areas. We also plan to explore more robust real-time flow algo-
rithms in order to overcome the problems caused by limited numerical precision in our
present system. The current robot behavior will be extended to include the ability to go to
a goal position while avoiding obstacles.
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A1. Implementation Details

Our development environment includes a Labmate mobile robot, a Sun SPARC2
workstation, a Pipelined Image Processing Engine (PIPE), and a VME-based multipro-
cessor system. Figure 11 shows the breakdown of processing across hardware. In this fig-
ure, the large gray rectangles represent distinct software modules. Each of these modules
is labelled by its functionality (SP = sensory processing, WM = world modeling, BG =
behavior generation) and level within RCS. A complete control system architecture pro-
posed for intelligent machines is found in [1].

Video input is read into PIPE from CCD cameras mounted on the mobile robot body.
The incoming images are digitized to provide 8-bit gray-scale images that are 242x256
pixels in size. Normal flow is extracted from the image sequences. In addition, the quan-
tized flow orientation values are computed and passed to the Iconic-to-Symbolic Mapper
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(ISMAP) stage of PIPE. ISMAP converts this information from an image format to a sym-
bolic list and stores the quantized orientation data as a list of pixel positions. The corre-
sponding flow values are stored in the ISMAP iconic buffer where they are mapped onto
the memory of one of the microprocessors via a specialized PIPE-VME interface board.
The normal flow extraction and symbolic mapping operations are indicated by black par-
allelograms in Figure 12. For additional information on PIPE, see [3].

The remaining processing is divided among microprocessors in the VME backplane.
Most computations are pipelined and are implemented on designated processors. Inter-
processor communication is done through semaphored global memory. For a detailed de-
scription of our software engineering practices refer to [8]. Program development for the
VME-based multiprocessor system is done on a Sun SPARC2 workstation. Code for the
PIPE communication process and the least squares recursive filtering process is written in
the Ada programming language. Program development for PIPE is done on a personal
computer using the PIPE graphical programming language, ASPIPE [3]. The remaining
processes are written in the C programming language and, except for the motion control-
ler and eye controller processes which run on the SPARCstation 2, operate in a VxWorks
operating system environment.
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