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Abstract 

This paper presents a new formulation of the artificial potential approach to the obstacle 
avoidance problem for a mobile robot or a manipulator in a known environment. Previous 
formulations of artificial potentials, for obstacle avoidance, have exhibited local minima in a 
cluttered environment. To build an artificial potential field, we use harmonic functions which 
completely eliminate local minima even for a cluttered environment. We use the panel method 
to represent arbitrarily shaped obstacles and to derive the potential over the whole space. Based 
on this potential function, we propose an elegant conml strategy for the real-time control of 
a robot. We test the harmonic potential, the panel method and the control strategy with a 
bar-shaped mobile robot and a 3 dof planar redundant manipulator. 
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1. Introduction 

The issue of obstacle avoidance in aknown environment has been addressed by many researchers[ 1, 
2, 5 ,  6, 9, 10, 11, 12. 191. The proposed strategies are applicable to both mobile robots and 
manipulators and can be divided into two broad classes: global and local. The global techniques[ 14, 
31 are guaranteed to give a free path if such a path exists. However, their computation time increases 
exponentially as the degrees of freedom (don of the robot increase [2]. This computational 
complexity limits their use for real-time obstacle avoidance to only very simple cases. Local 
strategies are typically based on the artificial potential function approach and can be implemented 
either in task space [ 10, 11, 12, 13,211 or in configuration space [ 17, 19,223. 

In the artificial potential approach, the obstacles to be avoided are represented by a repulsive 
artificial potential and the goal is represented by an attractive potential, so that a robot reaches the 
goal without colliding with obstacles. This approach is computationally much less expensive than 
the global approach and is therefore suited for real-time implementation. The artificial potential 
approach, however, has been limited due to the existence of local minima and its inability to 
deal with arbitrarily shaped obstacles. Recently, the superquadric potential function has been 
proposed to model obstacles with arbitrary shapes[ 12,211. In [ 191, it has been shown that the local 
minima can be removed with limited success in configuration space but at the cost of increased 
computational complexity. The advantage of fast computation of the potential function approach 
has been augmented with search methods to avoid local minima in complex environments [ 2 ] ,  but 
at the cost of increased precomputation time. 

In this paper, we introduce a novel artificial potential function, based on harmonic functions, 
that overcomes the limitations of previous formulations. The most important property of harmonic 
functions is that they are free from local minima [8]. This property was used in [ I ]  with limited 
success for simple environment and in [6] with numerical approach for planning. Our approach 
generalizes the previous approach and is composed of two steps. In the first step, we build an 
artificial potential and in the second step we develop a control strategy for navigating in the 
potential field. To build an artificial potential, we use harmonic functions, which do not have any 
local extrema in a space free from singularities. To derive the potential field for obstacle avoidance, 
we use the panel method with harmonic functions. The panel method has been used to solve the 
potential flow problem of a fluid around an arbitrarily shaped body in both 2 and 3 dimensional 
task spaces [4, 71. Even though the potential field obtained using harmonic functions and panel 
method is perfect for a point mobile robot, it does not guarantee success for non-point robots. 
To overcome this, we develop a control strategy for non-point robots. In this paper, we present 
simulation results demonstrating our approach using two examples: a bar-shaped mobile robot and 
a 3 degree-of-freedom (do0 planar redundant manipulator. 

This paper is organized as follows; In Section 2, we introduce properties of harmonic function, 
and compare harmonic function and non-harmonic function. In Section 3, we introduce panel 
method to build potential field over the whole task space. In Section 4, We discuss differences 
between real potential and potential used for obstacle avoidance. In Section 5 ,  we derive control 
strategy for non-point robots and simulation results are shown. In Section 6, we discuss limitation 
of our approach and this paper is concluded in Section 7. 



2. Potential Theory and Harmonic Function 

In this section, the theory of incompressible potential flow is introduced [4,7, 161. In the absence 
of viscous effects and rotational force, the originally irrotational flow far upstream will remain so 
in the region around a body inside the flow field. Letting V denote the velocity field in this region, 
the irrotahonality condition states that the vorticity vanishes. That is, 

Vorticity = curl V = VxV = 0. (1) 

This equation implies that the velocity field can be written as 

v =  -Vd, 

where 4 is a scalar velocity potential. 

Furthermore, when the fluid is incompressible, the velocity field must satisfy the continuity 
equation; 

V . V = O .  (3) 

Upon substitution of (2) into (3), we get 

VZd = 0 (4) 

where V2 = V V is the Laplacian operator. 

Equation (4) is called Laplace equation or potential equation, and its solutions are called 
harmonic functions or potential functions. In the real world, many physical problems are described 
by the Laplace equation. An example is the incompressible potential flow as mentioned above. 
A steady state temperature dismbution also follows this Laplace equation. For this case, the 
temperature becomes the potential function. A steady state electric charge distribution is another 
example. 

2.1. Properties of Harmonic Function 

The first important property of a harmonic function is the principle of superposition, which follows 
from the linearity of the Laplace equation. That is, if 41 and & are harmonic, then any linear 
combination of ~ $ 1  and 4 2  is also harmonic and a solution of the Laplace equation. 

Other important properties of harmonic functions related to local minimum are as follows: . 
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Property 1 : Mean-Value Property 
For a 2 dimensional potentialfunction d(x,  y )  which is harmonic inside a circle centered at (xo.yo),  
there exists the mean-value property of 4; 

This property is independent of the radius r of the circle only if the potential function o is 
harmonic inside the circle. i l l  

The proof of this property can be found in [8 ] .  A similar result holds for an arbitrary number 
of dimensions. For example, in three dimensions, the potential at (xo,yo, ZO)  can be obtained by 
integration over the whole surface S of a sphere: 

The converse of Property 1 is also true. That is, if 4 ( x , y )  is continuous and has the mean-value 
property for every circle in a domain, then 4 is harmonic. The above mean-value property is an 
intrinsic property of a harmonic function. This property can be used to prove the maximum and 
minimum principle of harmonic funcrions. 

Property 2 : The Maximum Principle 
The maximum of a nonconstant harmonic function occurs on the boundary. 
Proof: Suppose that d is a nonconstant harmonic function and that the maximum M of 4 occurs at 
a non-boundary point P. By imogining a circle centered at P inside of the boundary, we can easily 
prove that the above assumption contradicts the mean-value property in Property 1, because the 
point P must have mean value of the integration along the contour of the circle. I l l  

Property 3 : The Minimum Principle 
The minimum of a nonconstant harmonic function also occurs on the boundary, 
Proof: Apply the proof of Property 2 to - 4. I l l  

The above properties of a harmonic function are very useful in building an artificial potential 
field for the obstacle avoidance problem because the harmonic function completely eliminates local 
minima. These properties were used for obstacle avoidance in [ 1,6]. The use of complex variable 
and conformal mapping in (11 may be useful for real-time control in a simple environment. 
However, the complex variable approach cannot be extended for 3 dimensional space and the 
conformal mapping method fails for multi obstacles and an arbitrarily shaped obstacle. The 
numerical approach in [6]  is suaightforward and appropriate for a global path planning problem 
and for a bounded environment. This gives artificial potential at finite number of points in a free 
space. On the other hand, our analytical approach in this paper is appropriate for both 2 and 3 
dimensional spaces and for both. real-time control and global path planning because it provides a 
closed form artificial potential over the whole space. Furthermore, our approach can be applied 
for both bounded and unbounded environments. 
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2.2. Examples of Harmonic Function 

In this section, we introduce examples of harmonic functions which will be used later to build an 
artificial potential. First, harmonic functions with spherical symmetry are introduced from [8]. 
These functions depend only on r (distance from the origin). The general n dimensional expression 
of the Laplace equation (4) in a polar coordinate can be written as: 

n - 1  
r v24 = dr, + + angular terms, 

where (brr is the second partial derivative of 4 with respect to r and d r  is the first partial derivative 
with respect to r. Since 4 = d(r), the angular terms in (5 )  become zero. Then, the Laplace equation 
becomes 

or 

dr r 
n - 1  + -  = 0. drr - 

Integrating (7) once, we obtain 

C1 dr=- P-’ 

For n=2, the solution of Equation (8) is 

4 = c1 logr + c2 

If n > 2, then the solution is 

( 7 )  

In Equations (8 ) ,  (9) and (lo), c,’s are constant. From Equations (9) and (lo), we observe that every 
harmonic function with spherical symmetry has its singularity at the origin and is not harmonic 
at this singular point. Since the origin can be placed anywhere (the Laplace equation is invariant 
under translation), we can always choose the ongin outside of the free space for a manipulator and 
a mobile robot. That is, by locating origins of the harmonic functions on the surface of obstacles 
or inside obstacles, we can build an artificial potential field with no local minimum and one global 
minimum in free space. 

In hydrodynamics, the above harmonic function with spherical symmetry is called source or 
sink depending on the sign of c1 in (9) and c3 in (10). A sink is like a drain in a bathtub and a 
source is like a faucet. In 2 dimensions, a source/sink at the origin can be represented by: 
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The magnitude of X is called the snength of the source ( A  c 0) or the sink ( A  > 0). Since 
both source and sink are singular at origin, they are called singularities. Note that the general n 
dimensional harmonic function in (10) enables the extension of our approach to n dimensional 
configuration spaces. 

Another harmonic function useful for building artificial potentials is uniform flow, whose 
potential varies linearly along the direction of flow. In 2 dimensions, when the fluid flows in a 
direction which makes an angle a with the x-axis, the potential function for this uniform flow is 

The magnitude of coefficient U is called the strength of uniform flow. 

In this paper, we use sourcelsink singularities in (1 1) to derive the repulsive force (high potential) 
of obstacles and the attractive force (low potential) of a goal position, and the uniform flow in ( 12) 
to derive a more effective artificial potential field from a starting position to a goal position. This 
uniform flow provides a linearly decreasing potential in the direction from a starting position to a 
goal position for the unbounded environment. 

2.3. Harmonic Function vs. Non-Harmonic Function 

Harmonic and non-harmonic functions for the 2 dimensional case are compared in this subsection. 
One harmonic function with spherical symmetry for 2 dimensions is -1ogr. An example of a 
non-harmonic function for 2 dimensions is 1 / r .  Note that 1 / r  is harmonic for 3 dimensions but 
not harmonic for 2 dimensions as can be seen from (10). The function 1 / r  has been used for the 2 
dimensional case in [2, 121. 

Figure 1: Locations of Singularities 

Suppose that there are 4 point obstacles at (l,O), (-l,O), (0,l) and (0,-1) as shown in Figure 1. 
The distance rj is measured from point obstacle i to (x ,y) .  With a harmonic function, the artificial 

7 



potential field can be expressed as 

41(x,y) = -1ogrl - logrz - logr3 - logr4. 

And the artificial potential field with a non-harmonic function (1 / r )  is 

1 1 1 1  
r1 r2 r3 r4 

&(x,y)  = - +  - +  - +  -. 

+-c . 2  

(a) (b) 
Figure 2: (a) Harmonic Function (b) Non-Harmonic Function 

Figures 2(a) and 2(b) show the artificial potential field of 41 (harmonic function) and Q? (non- 
harmonic function), respectively. There exists a local minimum at (0,O) for the non-harmonic 
function but there does not exist a local minimum for the harmonic function. In Figure 2(a), the 
origin (0,O) is called a stagnation point in hydrodynamics, where the velocity of fluid particle 
becomes zero instantaneously. But this stagnation point is an unstable saddle point, not a local 
minim urn. 

To extend the observation from this comparison, we can conclude that the non-harmonic function 
is vulnerable to local minimum. Another example is the function 1 /? in [ 11 1, which is not harmonic 
for 2 dimensions, but harmonic for 4 dimensions. Here we assert that we have to use the proper 
harmonic function for a given dimension to remove local minima. 

3. Panel Method 

In this section, we introduce the panel method, which has been used to solve potential flow of 
a fluid around bodies of arbitrary shape[4, 71. In this method the surface of the body is first 
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covered by a finite number of small areas calledpanels, each of which is dismbuted with source 
or sink singularities which have uniform density. The dismbuted singularities are used to deflect 
the oncoming stream so that it will flow around the body. The requirement that the oncoming flow 
be tangent to every panel at a particular location gives a set of equations which is used to compute 
the singularity densities on every panel. This panel method has been successfully applied to solve 
potential flow problems involving two and three dimensional bodies of complex geometry. Note 
that the path of a point mobile robot matches the path of a single fluid particle through the stream. 

3.1. Single Panel 

In this subsection, we show how a single panel of dismbuted sources can deflect the oncoming 
stream. The oncoming stream in Figure 3 is represented by the uniform flow in (12). The single 
panel in Figure 3 is dmibuted with uniform sources, with the strength per unit length of X [4, 71. 
The potential at any point (x ,y ) ,  induced by the sources contained within a small element dl of the 
panel at (0, f )  is 

Ad1 Ad1 2 1/2 
dr#J = -1ogr = -log[? + (y - r )  ] . 2n 2n 

The induced potential function by the whole panel is 

U 

Figure 3: Single Panel 

'Y 

1 Panel 

L 1 X 

Differentiation with respect to x and y gives, respectively, the expressions for velocity compo- 

, Y - L  tan- -) u(x,y)  = -& = -(tan- - - 

nents: 

(171 
x , Y + L  
2n X X 
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The limiting value of normal velocity u(x,y)  in (17) is u(O',y) = -X/2 on the left face and 
u(O+,y) = X/2 on the right face of the panel when -L < y c L. This shows that the source panel 
of strength X per unit length creates an uniform outward normal velocity of magnitude X/2 at the 
surface. The tangential velocity v(x ,y)  on the panel starts from zero at the center of panel and 
increases along the panel surface towards both edges, where the normal velocity is not defined and 
the tangentid velocity becomes infinite. That is, a single panel has a singular point on each edge. 

The uniform flow of strength U in Figure 3 flows in the direction of the positive x axis; Q = 0 
in (12). The potential and velocity components of this uniform flow are 

A simple superposition of the two harmonic functions in (16) and (19) results in the uniform 
flow deflected by the source panel. The total, x-direction velocity component of a source panel 
and a uniform flow at the left face of panel (O',y) when -L < y c L, is 

u(o-,y) = u - x/2. ( 2 2 )  

We are interested in this normal velocity on the left face of panel, because the uniform flow is 
deflected on the left side, but not on the right side. If U equals X/2, then u(0- ,y)  becomes zero 
when -L < y c L. That is, the induced normal velocity from a source panel exactly cancels the 
velocity of oncoming uniform flow on the left face so that the resulting flow becomes tangential to 
the surface. Both normal and tangential velocities at origin (0-,0) are zero. This is a stagnation 
point, where velocity of a fluid particle becomes zero instantaneously and changes the duection of 
motion to -y or y direction. 

The outward normal velocity of our interest in this example is -u(O-,y). In hydrodynamics, 
u(O-, y) is set to 0 to satisfy the requirement that the oncoming flow must be tangent to a panel. But 
for our problem of obstacle avoidance, this requirement must be modified as the normal velocity 
of a panel must be greater than or equal to zero. The requirement for obstacle avoidance can thus 
be represented as 

V" = -u(o-,y) 2 0 

Three examples of different Vn's are shown in Figure 4. Here U = 1, L = 1 and X is determined 
by the given V, as in 

x = 2(U + V,). 
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Figures 4-(a), (b), and (c) correspond to V,, = 0, V,, = 1 and V,, = 2, respectively. The 
corresponding strengths are X = 2,4 and 6 from (24). Figures 4-(al), (bl) and (cl) show the 
profiles of velocity function when y = 0 and -5 < x < 5;  the dotted line represents the x direction 
velocity induced by source panel along x axis, the dashed line is the velocity of uniform flow, and 
the solid line corresponds to summation of these TWO flows. Figures 4-(a2), (b2) and (c2) show 
trajectories of two fluid particles which start at (-5.0, -0.1) and (- 5  .O, 0.1). Again, note that the 
motion of a fluid particle can be thought of as the navigation of a point mobile robot which avoids 
a panel obstacle. 

Three important observations can be made from the comparison of these figures. First, the 
location of the stagnation point moves to the left as V,, increases. The stagnation points for these 
three cases are at (O’,O), (-1,O) and (-1.8,O). The stagnation point is where the total velocity 
(solid line in Figure 4-(al), (bl), and (cl)) becomes zero. Second, the fluid particle moves further 
away from the panel as V,, increases. This provides a tradeoff between economy and safety. As 
V,  becomes larger, a point mobile robot will generally have a longer but a safer path further away 
from obstacles. Third, the potentials we tested in this section are solutions of Laplace equation 
for unbounded case. For this unbounded problem, the uniform flow is essential to make a fluid 
particle move effectively in a desired direction. In this paper, we focus on this unbounded obstacle 
avoidance problem, even though the potential function can be easily extended to the bounded 
problem. In the bounded case, the strategy for building an artificial potential is slightly different 
because the flow of a fluid particle is bounded. We choose to implement the unbounded case only 
for the sake of convenience. 

The two main differences between hydrodynamics and our obstacle avoidance problem are: 
First, for obstacle avoidance, the normal velocity on the left face of a panel is recommended to 
be greater than zero to avoid a path which is very close to the obstacle; and second, the obstacle 
avoidance problem has a final goal point that the robot must reach. We want to move a mobile 
robot or a manipulator from a starting point to a goal point while avoiding obstacles successfully. 
Thus, the potential for the obstacle avoidance will be composed of a uniform flow, distributed 
singularities on panels and a goal singuIarity (typically sink). In the next section, we discuss the 
use of multi panels for representing complex obstacles and cluttered environments. 

3.2. Multi Panels 

The use of a set of source/sink panels for representing an arbitrarily shaped obstacle in 2 dimensions 
is illustrated in Figure 5. The obstacle is approximated by a set of panels, which are numbered in 
the clockwise direction. The details of the panel geometry are shown in Figure 6 .  Each panel has 
its own center point with a desired outward normal velocity as an input variable. The boundary 
points are the intersections of neighboring panels. The angle between panel i and the x axis is 8, and 
the angle between the outward normal vector ni of panel i and the x axis is PI. Then, 0; = 8, + n/2 .  

Let rn be the total number of panels. On each of the m panels, whose lengths are usually not 
equal, sources/sinks of uniform density are distributed. Let XI, X2, ... A,,, represent the source/sink 
strengths per unit length on these panels. The velocity potential at any point (x .y )  in space caused 
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Figure 4: Single Panel (a) Vn = 0, (b) Vn = 1 and (c) Vn = 2; dotted line = velocity by panel source, 
dashed line = velocity by uniform flow, and solid line = dotted line + dashed line in (al),(b 1 )  and 
(Cl). 
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Figure 5 :  Panel Method 

Goal 
0 

where RJ = J(x - x ~ ) ~  + Cy - yj)’ 

Figure 6: Panel Geometry 

The obstacle avoidance problem is to move a robot to a goal while the robot avoids obstacles. 
We need an attractive potential at this goal, where the potential has only one global minimum. This 
attractive goal can be represented by a single point singularity of a sink. This sink is like a point 
drain in a bathtub. Let the goal sink have a strength of A, > 0. Then the potential is 

@gf.Ml(X,Y) = - lo@,, 
2n 
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where R, = , / (x  - xg)2 + (y - yg)2 is the distance between the point (x ,  y )  and the goal point (xs, ys) .  

The potential of uniform flow in (12), which tends to push the robot to the goal, is rewritten as 

where a is the angle between the direction of uniform flow and the x axis. 

The total potential due to the obstacles, goal, and uniform flow is 
m 

$(x ,Y)  = $uniform + 4ggwl+ $j 
j=1 

Assuming that the strength of the uniform flow U and the strength of the goal sink A, are given, 
our objective is to derive the strengths of the rn panels. We need at least rn independent equations 
to solve this problem. These rn equations are derived from the given outward normal velocities on 
the rn panels. For a single panel, which is normal to uniform flow, and without goal sink, we have 
derived the relationship between normal velocity on panel and panel strength in (24). A similar, 
but a little more complicated, expression for the general case can be derived with given desired 
outward normal velocity on each panel. Let Vi > 0 be the desired outward normal velocity at the 
cenrer point of panel i. Then the resulting m equations are 

i =  1,2 ,..., rn. 

These provide rn linearly independent equations with variables of XI, XZ, ..., A,. Note thar this 
outward normal velocity 
center point (xic, yiC) is 

is satisfied only at the center point of each panel. The potential ar the 

where Rig is the distance between the goal and the center point of panel i, (Xic,yk), and R, is the 
distance between ( x ~ ,  y , )  and a point on panel j as shown in Figure 6.  

By substitution of (30) into (29) and from the property that the contribution to the normal 
velocity on panel i by itself is Xi/2 (as shown with single panel in previous section), Equation (29) 
becomes : 
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where 

By the use of geomemc relations 

X j  = xp + I, cos e, and y j  = yp + lj sin e,, 

Z;i can be integrated as [4]: 

L , + A  - cos(8; - 8,) [tan-' I E - tan-' 

i f E = O  (34) 

where 
A = -(xlc - x p )  cos BJ - (ylc - y p )  sin 6" 

C = sin@, - OJ) 
D = - ( x , ~  - x P )  sin 8, + & - y p )  COS 8, 
E = (xlc - x p )  sin OJ - (ylc - yp )  COS eJ 

= (Xlc  - xp)2 + (YE - Y j d 2  

The parameter E becomes zero when the center point of panel i is on the extension of panel j 

Now (31) can be written as: 

P A  = q ( 3 5 )  

where A is a mxl vector of A,, P is an mxm mamx and q is an mxl vector. 

We must solve (35) to determine the strengths of the panels. Once these are obtained, we use 
the following velocity equations to derive a trajectory for real time control. 

These equations are integrable and the derivation of closed form solutions is omitted for the sake 
of brevity 
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4. Panel Method for Obstacle Avoidance 

In the previous section, we assumed that the strength of the uniform flow and the strength of 
the goal sink are given. In this section, we discuss these two potential functions, the stagnation 
point, and the possible existence of a structural local minimum for a non-point mobile robot and 
manipulator. 

4.1. Uniform Flow 

The uniform flow is added to derive a more effective potential field from a starting position of a 
mobile robot or a manipulator to a goal position. Consider a simple example with a single panel 
obstacle (L  = 1) in Figure (3), the goal position at the infinity on the positivex axis and the starting 
position at (O., 2.). Without an uniform flow, a point mobile robot would move to the positive y 
direction, because the repulsive force of the obstacle is much stronger than the negligible attractive 
force from the goal. With an uniform flow, the potential around (O., 2.) will be determined by the 
strength of the uniform flow plus the strength of a panel source, resulting in a more effective path 
to the positive x direction. 

The direction of the uniform flow a can be determined as follows: 

Then, the direction of the uniform flow is a straight line connecting the start and goal positions. 
The relationship between the strength of an uniform flow and the strength of a single source panel 
is discussed in Section 3.1. Increasing the strength of an uniform flow has the same effect on 
the resulting trajectory as decreasing the strength of a source panel. Note that the strength of an 
uniform flow is an input variable but the strengths of panels are determined by (35). If we increase 
the strength of an uniform flow, the increased strengths of obstacle panels are obtained from (35) 
to satisfy the given normal velocity V,. 

4.2. Goal Sink 

The role of the god sink is to provide a single global minimum over the whole space. In other 
words, the potential function of (28) has only one global minimum at the location of this goal sink. 
For a robot to reach this goal, the strength of this goal sink must be large enough. If not, a robot 
can miss this goal and move to the right in Figure 5, following the uniform flow. To minimize 
the possibility of collision of the robot with obstacles and the possibility of missing the goal, the 
strength of the goal sink and the source/sink panels of the obstacle .must satisfy the following 
inequality. 

-A, < A, < 0, 
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where the obstacle strength A, is defined as: 

rn 

A positive obstacle strength (A, > 0) implies that there is more sink than source. Then the net 
effect of obstacle panels is attractive and with the resulting potential function, we cannot prevent 
a robot from colliding with obstacles. If Vi in (29) is very small, this positive obstacle strength 
can be derived. But for an obstacle to provide an repulsive potential, obstacle panels must have 
more source that sink. On the contrary, if Vi is very large, it is possible that -A, > A,. Then, fluid 
panicles created by obstacles may prevent fluid particles of uniform flow from going into goal 
sink. This implies that a mobile robot cannot reach the goal and will move to infinity following the 
uniform flow. To conclude, the above inequality gives the bounds of Vi, which we input to derive 
the strengths of panels. The tradeoff is that a large V; implies a safer but less economical (longer 
trajectory) trajectory away from obstacles. 

4.3. Stagnation Point 

A stagnation point is apoint where the velocity of afluidparticle becomes zero, but this is an unstable 
saddle point. We have shown in Section 3.1 that the location of the stagnation point moves away 
from panel as the strength of source panel increases. Even though a harmonic function does not 
have local minimum, the harmonic function and the panel method cannot guarantee rhe obstacle 
avoidance for a cluttered environment. The panel method we introduced is an approximation, 
because the given normal velocity is satisfied only on the center point on each panel. This implies 
that the outward normal velocity may become negative on some points on a panel. We want this 
negative normal velocity to be caused by only the fluid particles created by panel sources, not by 
the uniform flow. To satisfy this requirement, the potential must have one stagnation point for 
every obstacle. Two or more stagnation points imply that there exist fluid particles of uniform 
flow going into an obstacle. Therefore, the more cluttered environment, the more need rhere is 
to ascertain that one obstacle has only one stagnation point. The stagnation points can be found 
numerically where the following equation is satisfied: 

where 4 is called the rate of flow. At Stagnation point, the rate of flow 4 has a local minimum. The 
stagnation points are typically in the front of each obstacle. This property can reduce the search 
space to find stagnation points. If an obstacle has more than two stagnation points, the desired 
normal velocities on the center points of every panel of that obstacle must be increased until there 
exists only one stagnation point for each obstacle. 

Two alternative solutions to have one stagnation point are to increase the number of panels m and 
to use a higher order distribution of singularities on each panel. As the number of panels increases, 
the computation time increases linearly. Infinite number of panels implies a guaranteed solution 
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but infinite computation time. In this paper, we used the uniform distribution of a singularity on 
each panel, which is the simplest form of distributions. The higher order dismbution implies that 
the outward normal velocity on each panel can be inputed and satisfied at more than two locations 
on each panel. For instance, the linearly v"ying distribution has two independent variables which 
allow to input the desired normal velocities at two locations on each panel. In the following section, 
we derive control strategy for non-point robots. 

5. Control Strategy for Non-Point Robots 

For a point mobile robot, which could be thought of as a fluid particle, there is no need to calculate 
the distance from obstacles, since we have a closed form potential function which can generate a 
trajectory successfully. But this potential cannot guarantee a collision free trajectory for a non-point 
mobile robot or a manipulator without an elegant control strategy. These robots are represented 
as a straight line or a set of straight lines. The end-effector of a manipulator or the leading point 
of a mobile robot i s  called the primary control point in Figure 7 .  This primary control point is 
always under the control of artificial potential and can be considered as a point mobile robot. For 
the other parts of a robot, we need to calculate the distance from obstacles. The distance can be 
easily obtained without increasing computational time much, since all obstacles are approximated 
by polygons (sets of panels) [21]. 

If the part of a robot is within a minimum allowable distance b from obstacles, the location of 
the closest point on that part of a robot become a secondary control point, and the corresponding 
point on a panel of obstacles becomes an obstacle point. This minimum distance 6 is an input 
variable. A robot can have more than one secondary control point when it is between more than 
two obstacles as in Figure 7 or when it is interacting with a concave obstacle. 

A : Primary Control Point 
B and C : Secondary Control Points 
D and E : Obstacle Points 

Figure 7: Control Point and Obstacle point 

Depending on the number of secondary control points, our strategy for real time control of a 

(1) Potential Operation: 

robot is divided into two different operations. 

When there is no secondary control point, the primary control point is controlled by the artificial 
potential derived in Section 3; while the other parts of a robot are controlled by the same potential 
or are used to optimize some performance criteria in 1231. 
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(2) Obstacle Operation: 
When the number of secondary control points is nonzero, then a new harmonic function with point 
sources at obstacle points is used to repel secondary control points while the primary control point 
is controlled by the same potential function as used in the potential operation. That is, we have two 
different potential fields. The second potential function c $ ~  to controi the secondary conaol points 
is 

where n, is number of the secondary control points, A,; is the strength of the point source at obstacle 
point i, and Rci is the distance from obstacle point i to (x ,y) .  Note that the secondary control point 
is the closest point from the obstacle within the minimum allowable distance 6. The secondary 
control point is updated every period until it goes out of the minimum allowable distance from 
obstacle. 

In the next two subsections, we show simulation results with a bar-shaped mobile robot and a 
3 dof redundant planar manipularor, respectively. 

5.1. Mobile Robot 

A bar-shaped mobile robot has three degrees of freedom (x ,y ,  77)  in a plane, where ( x . y )  is the 
location of the leading point (primary control point) on the bar and 77 is the angle between the bar 
and the x axis. We want this robot to move from (x0,yo) to (xg,yg). This robot has one redundant 
dof for the given task and this redundancy is used to avoid obstacles. 

During the potential operation, the displacement of the primary control point and the angle per 
period can be obtained as 

where u(x,y) and v(x, y) are derived in (36) and (37). As a fluid particle gets closer to the obstacle, 
a larger velocity is induced. This is because a fluid particle close to an obstacle has a longer 
trajectory to travel in the same time than particles away from an obstacle. Therefore, we cannot 
use the value obtained from (43). The displacements are adjusted by the directional information 
and the maximum possible displacement d,, per period according to: 

AX = d,,  COS(^ + Av) 
Ay = d,-sin(q+Aq). 

(44) 
(45) 

where d,, is the maximum possible displacement per period. This normalizanon does not change 
7. Assuming that the angle change has a maximum saturation value per period, we need to readjust 
the normalized displacement if A77 is larger than Aq-; 
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h : = A X * H  
Ay := Ay * H 
All := All * H 

For the obstacle operation, the second potential q& to control secondary control points is obtained 
from (42). The displacement of primary control point is determined the same way as in (44) and 
(45), but the angle 7 is determined by the new potential &o. Assuming the primary control point is 
fixed, we can obtain A7 by the potential on the secondary control points. 

The obstacle and the panel numbering (clockwise and rn = 16) for an example problem are 
shown in Figure 8, and the simulation result is shown in Figure 9. The initial position of the 
primary point is at (XO = 1.2,yo = 8.5,qo = 0.0) and final goal is at (x8 = 8 . 0 , ~ ~  = 2.0). Note that 
the unit of distance is meter and the unit of angle is radian. Other input variables are 

The strengths of panels obtained from (35) are shown in Table 1. Table 1 shows that panels which 
confront the uniform flow become sources to deflect the uniform flow and other panels become 
sinks to absorb flows created by source panels, but they satisfy the given normal velocity at the 
center points of each panel. Note that the derived obstacle strength A, satisfies the inequality 
condition in (39). 

With a concave obstacle, the bar-shaped mobile robot successfully navigated to the goal as 
shown in Figure 9. This result is not a surprise since we used the harmonic potential. The resulting 
potential has one stagnation point around (2.5,6.5). If the robot gets to this stagnation point, then 
it will make a sharp left or right turn. We have to make the robot choose one direction. For most 
obstacles, the stagnation point implies that either direction is fine because both trajectories have 
almost the same length. With the minimum allowable distance 6 from obstacle surface equal to 
0.2, this example shows only the potential operation. Obstacle operation will be shown in the next 
example with a redundant manipulator. 

Table 1: Panel Strengths of Obstacle-1 (obstacle strength = -7.503) 

5.2. Redundant Manipulator 

A 3 dof redundant manipulator is used as another example of obstacle avoidance in an environment 
of multiple obstacles in Figure 10. The total number of panels is rn = 24 (each obstacle has 12 
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V I  

2 t 
Figure 8: Obstacle-1 (rn = 16) 

l R  t 
i 

Figure 9: ABar-shaped Mobile Robot (The average CPU ame per period on VAX 780 is about 10 
msec.) 
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panels). The task is to move end-effector from (-2.0,8.0) to the god at (5.079.0). The base of 
manipulator is at (-2.0,2.0). The initial angle between the third link and the x axis is 10 degrees. 
To perform this task, the end-effector has to pass through the aperture between the two rectangular 
obstacles. The input variables are given as: 

Table 2 shows the strengths of panels obtained from (35). Here again, we observe that panels that 
confront the uniform flow become sources and others become sinks. The obstacle strengths A, of 
both obstacles and their summation satisfy the inequality condition in (39). 

1 9  

20 

2 1  

22 

23 

x 

Figure 10: Obstacle-2 (rn = 24) 

For the potential and the obstacle operation, the displacement of the end-effector (the primary 
control point) is determined by 

After normalization of the above displacements, the displacement of the joint angles (net motion) 
to satisfy this end-effector displacement is determined by 

where J: is a Moore-Penrose pseudoinverse of end-effector Jacobian Jemd A X e  = [Ax,. Aye]? 

During the potentid operation, due to the self motion or null motion of a redundant manipulator, 
there are an infinite number of ways for the end-effector to follow the gradient of the potential 
field obtained. This self motion can be controlled by some optimizing function. For instance, it  
is possible to maximize the manipulability [23] while the end-effector follows the gradient of the 
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Table 2: Panel Strengths of Obstacle-2 (lower obstacle strength = -11.040 and upper obstacle 
strength = - 11 -332) 

artificial potential. In this example, the self motion is controlled by the same potentia1 fieId where 
motion of the end point of each link is determined by the potential on that point. 

For the obstacle operation, an additional potential is obtained from (42). The null motion 
which moves the secondary control points away from the obstacle points is calculated based on the 
algorithm proposed in [15]. The joint displacement for this null motion is 

where A X c ;  is the desired displacement at the ith secondary control point, I is a 3x3 identity mamx, 
and Jci is a 2x3 secondary control point Jacobian mamx. Note that the above A&, is in the null 
space of the Jacobian J,. 

Now we have the total motion A@ which is a sum of the net motion to reach the goal and the 
null motion for obstacle avoidance. 

Assuming the total energy consumption per period of the manipulator is fixed, we adjust the net 
and the null motions in (55)  as follows: 

H = A@mux/llAell (56 )  
A@, := A@, * H  (57) 
A@h := Ash * H  ( 5 8 )  

In Figure 11, the end-effector motion is very small in the middle of trajectory after passing the 
aperture. This is because there is a large null motion to avoid the upper obstacle in the obstacle 
operation. The minimum allowable distance 6 from obstacle was set to 0.2. The simulation shows 
that the end-effector of the manipulator reaches the goal successfully while the links avoid the 
obstacles. 

In the following section, we discuss the structural local minimum which appears for non-point 
robots. 

23 



I 

Figurc 11: A Redundant Manipulator (The average CPU time per period on VAX 780 is about 26 
msec.) 

6. Structural Local Minimum 

An artificial potential of harmonic functions does not have a local minimum other than one global 
minimum at the goal position. This implies that for a point mobile robot, there exists only one 
global minimum at the goal. However, this does not imply that a mobile robot and a manipulator, 
which cannot be approximated as a point, can move to the goal without failure. This is because 
the artificial potential approach for real time control is local and not global. The structural local 
minimum for a non-point robot can be defined as: 

with a current am3cial potential. 
The structural local minimum is a static equilibrium where the robot cannot move any more 

Two examples of this structural local minimum are shown in Figure 12, where the goal sink 
attracts a robot while the obstacle panels repel a robot. This is not a deficiency of a robot. For 
instance, even a rope manipulator, which has infinite dof, cannot reach the goal if it chooses a 
wrong trajectory derived by artificial potential. Increasing the degrces of freedom of a manipulator 
helps but cannot be an ultimate solution [21]. If the goal is located out of reachable space, it cannot 
be reached by any trajectory. This is not a structural local minimum. Only when there exists at least 
one possible trajectory and the robot is in static equilibrium with repulsive forces from obstacles 
and attractive force from the goal sink, do we say that the robot is in a structural local minimum. 

This structural local minimum results from all local approaches. Therefore, one solution is to 
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Robot I Goal a Fail 

I 
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3 DOF Planar Manipulator 

Goal + 

(B) 
Figure 12: Structural Local Minimum 

make it global by using artificial potential in configuration space as in [17, 19, 221. The other 
solution is based on a mal and enor approach and involves incorporating an artificial obstacle 
[ 131. The artificial obstacle is used to remove one possible trajectory that causes structural local 
minimum. With this method, several paths may be tested until a robot reaches the goal. 

7. Conclusion 

In this paper, we introduced the harmonic potential function for building potential fields for 
obstacle avoidance. We proposed the use of harmonic functions to eliminate local minima even 
for a cluttered environment and for concave obstacles. We also introduced the panel method 
for modeling obstacles. A point mobile robot is treated like a fluid particle in a potential flow. 
For a point mobile robot, if we use the panel method, we don’t need to calculate the distance 
from obstacles. The panel method provides a closed form potential function and can be easily 
implemented. Its computation time increases linearly as the number of obstacles and the number 
of dof of a robot increase. The shape of a robot can be easily considered during real-time control. 

For non-point robots, we developed control strategy under the potential field obtained by panel 
method and harmonic functions and it was tested with a mobile robot and a redundant manipulator 
for a 2 dimensional problem. Application of our approach to 3 dimensions is also possible with 
3 dimensional harmonic functions. Furthermore, OUT potential based approach can be applied 
to the global path planning problem in task space as well as configuration space. We showed 
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with an example that trajectory of a point mobile robot changes as the strength of panel changes. 
The problem of finding the best trajectory which optimizes some criterion (say, energy) can be 
formulated as a problem of finding the best strengths of panels whch optimizes the same criterion. 
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