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Abstract—This paper proposes a novel approach to obstacle to provide depth estimates for a sparse set of matched pixels
?heteCtlon anr? afVOIdaf)CG using a hSD Sef;]SOf- Wed del;]aft from An active 3D sensor, such as the Xbox Kinect, overcomes all

e approach of previous researchers who use depth Images ,f thege |imitations by providing a fulcrum-based (ratteart
from 3D sensors prOJected. onto UV-qlspgirlty to detgct obstack lanar) set of densg paccuratge deoth readings (in real time
Instead, our approach relies on projecting 3D points onto the P ' P 9 :
ground plane, which is estimated during a calibration step. Moreover, the cost of such systems has recently dropped

A 2D occupancy map is then used to determine the presence tremendously, making them practical for robotic systems.
of obstacles, from which translation and rotation velocities

are computed to avoid the obstacles. Two innovations are [[ Speed] Cost [ Power [ Resolution| Planar |
introduced to overcome the limitations of the sensor: Arinfinite Laser Siow | High | High High Yes
pole approachis proposed to hypothesize infinitely tall, thin Sonar Fast | Low | Low Low Yes
obstacles when the sensor yields invalid readings, and a control Single camera East | Low Low High No
strategy is adopted to turn the robot away from scenes that yield Multiple cameras|[ Fast | Low | Low Low No
a high percentage of invalid readings. Together, these extensions 3D sensor Fast | Low | Low High No

enable the system to overcome the inherent limitations of the TABLE |
sensor. Experiments in a variety of environments, including
dynamic objects, obstacles of Varying heights, and dlm|y-|lt COMPARISON OF DIFFERENT SENSORS FOR OBSTACLE DETECTION
conditions, show the ability of the system to perform robust
obstacle avoidance in real time under realistic indoor conditions.

In this paper we propose to overcome the deficiencies
of current approaches for obstacle detection by using a
l. INTRODUCTION 3D depth sensor. Such depth sensors have recently become
Detecting and avoiding obstacles is an important prolwidely available, enabling affordable, accurate 3D semsin
lem in mobile robotics. In the parlance of Brooks’ well-The sensor is mounted on the front of a mobile robot base,
known subsumption architecture [4], obstacle avoidance @&d the dense 3D point cloud is transformed to a bird’s-eye
the lowest, or zeroth, level of competence, meaning it isccupancy map in order to detect the obstacles in the robot’s
the core functionality of a mobile robot system upon whichmmediate field of view. Two novel solutions are proposed to
everything else depends. If a robot can be made to avoityercome weaknesses of the 3D sensor. To overcome invalid
coming into contact with objects in the environment, themeadings due to specular surfaces, a projection scheme is
other higher-level capabilities can safely be incorpataméo  applied in which infinitely-tall phantom obstacles are pléc
the system. Yet, despite decades of research and develbpmanstrategic locations. To overcome invalid readings due to
on the topic, robust and reliable obstacle avoidance resmainbstacles being too close to the sensor, a control strategy
a delicate problem that is difficult to ensure. is adopted to cause the robot to turn when the percentage
The most common sensors for obstacle detection amd valid readings is insufficient. The combination of these
avoidance have been laser range finders, sonars, and cdwe solutions enables robust, real-time obstacle detectio
eras. Each of these has its own strengths and weakness#¥] avoidance in an indoor environment. Moreover, the 3D
as seen in Table I. Laser range finders, while providingensor facilitates capabilities impossible with planasdxd
a dense, accurate depth array, consume large amountssefisors, such as driving under obstacles if there is sufticie
power and are expensive. A ring of ultrasonic sonar sensdngight, or refusing to drive under obstacles low to the gdoun
is more economical, but the resulting depth readings akexperimental results are shown for a variety of challenging
more coarsely spaced and less accurate. Both approackesnarios such as thin obstacles, reflective obstaclese clo
suffer from only providing readings within a horizontal obstacles, and hanging obstacles, as well as dynamic and
plane parallel to the floor. Unlike sonars and laser scannedark environments.
cameras do not directly provide geometrical measurements
of an environment, which must instead be inferred from the
pixel data (a difficult problem). Due to the close spacing of A number of researchers over the years have used sonars
pixels, a camera captures raw data at a high spatial resojuti [22] and lasers [3] for obstacle avoidance. Departing froen t
but a multi-camera (e.g., stereo) system usually is onlg abtraditional sonar ring, Nourbakhsh et al. [19], [20] showed
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that a non-conventional arrangement of sonars including an

gled sensors leads to more robust behavior and, in panticula
prevents decapitation (i.e., collision with an object ataht
above the ring of sensors). An active vision system With @ s camera

RGB Camera

vertical laser slit is presented in [21]. Proximity and oisi
sensors were combined to demonstrate the utility of paknti
field concepts in [12].

Because cameras do not directly yield depth measure-
ments, a myriad of approaches to exploit visual information
have been pursued by various researchers. Probably the mo
common and straightforward approach is to match pixels in
stereo images, then to triangulate to recover depth [14], [1
A related approach is to measure the flow field divergence
from the optical flow in an image [18], or optical flow in an
omnidirectional image [13]. A real-time system combining
intensity edge and color outputs was developed by Lorigo g
et al. [15], and machine learning techniques were used to
estimate real-time depth from a single image by Michels et
al. [16]. Other researchers have explored the possibility o
mapping 3D sensor depth data to UV-disparity to allow for

non-planar surfaces [11], [9]. Our approach, in contrastsu _ _
Fig. 1. The 3D Kinect sensor showing the two cameras and lzssad IR

3D point clouds pl’OjeCted to the grognd plane. projector (top left). The sensor provides, in real time, anBR®lor image
A few researchers have used the Kinect sensor for obstagle, right), a depth map (middle left), and a 3D point cloud oted by

detection and/or avoidance. A collision-avoidance sydtam combining the Imhage a?g depdt_h malob(m_ldd(ljef right). The i;NO lm(ﬂgtlﬂlof

. . . . e sensor are the invalid rea Ings o tained from Specursces ottom

huma_n mteraCtlon_ with a robot mampUIator_ mounted t_O %ﬂ, shown in black) and the inability to obtain readings ébstacles closer

table is presented in [6] and a method to localize and na¥igaghan about 0.4 m right (bottom right, black indicates lomasi yielding

a building from a depth image is presented in [5]. A Kinecinvalid readings).

sensor has also been used for obstacle detection (but not

avoidance) for a flying quadrotor craft [2]; in this system

most of the data is removed rather than using the entire poiyeling toward a static object, this limitation is not ofiah
cloud in order to speed computation. In more closely relategbncern, since the robot should turn away from the object
work, a mobile robot equipped with a Kinect sensor detectsefore the limit is reached. However, in the case of dynamic
and avoids obstacles by projecting the point cloud onto thghstacles that suddenly place themselves in front of thetyob
ground plane [17]. Our approach differs in that we present@ when the robot suddenly encounters a close obstacle
reactionary system that addresses specific limitationsi®f tque to a turn, such a blind spot can lead to a collision.
Kinect sensor. Thankfully the invalid readings in both cases are not simply
erroneous but rather are flagged as invalid, enabling post-

ocessing algorithms to make educated guesses about the

r
The Xbox Kinect is a 3D depth camera consisting OEﬂssing data. In later sections we propose solutions to both
two cameras and a laser-based infrared (IR) projector. ORe these problems.

of the cameras is a standard RGB camera, while the other

camera is an IR camera which looks for a specific pattern IV. APPROACH

projected onto a scene by the laser-based IR projector. AnThe obstacle detection algorithm involves four main steps.

image of the sensor along with example output can be seeirst, the depth image from the Kinect sensor is transformed

in Figure 1. This sensor calculates the disparity of eacklpixto a 3D point cloud using the calibration information embed-

by comparing the appearance of the projected pattern witted in the sensor. Secondly, the ground plane is segmented

the expected pattern at various depths. from the point cloud, and points belonging to the ground
There are two primary issues with using the Kinect sens@lane are removed. Thirdly, a 2D occupancy map is created

for obstacle detection. First, any object with reflectivet@ra by projecting the points to a top-down view. Finally, an

rial such as shiny metal may prevent the reflected light frorgbstacle avoidance control algorithm uses the occupanpy ma

the IR projector from reaching the IR camera, thus causing decide how to move the robot. We now describe these steps

invalid depth readings at those locations. Secondly, sinee in greater detail.

sensor requires triangulation between the IR projectoriBnd o _

camera, which are separated in space, there is a blind spotfypFloor Plane Estimation and Segmentation

to approximately0.4 meters directly in front of the sensor. Our approach is designed for indoor environments and

Therefore, anything closer than this range will not be seetherefore makes use of the so-caltgdund plane constraint

by the sensor, leading to invalid readings. When the robot iTamely, that the robot moves on a flat ground plane. All

1. THE KINECT SENSOR AND ITSLIMITATIONS



points that are above the ground plane are potential olestacl
The position and pitch of the sensor with respect to the robot
base is assumed fixed, so that calculating the ground plane
parameters involves a simple calibration step. The equatio
of the ground plane, in the camera coordinate system, can
be modeled as

Pz = —Qpg — pr - 5» (1)

where p..,p,,p.) are the 3D coordinates of a point on the
ground plane. We assume that the area of the floor just in
front of the sensor remains clear of obstacles during the cal
ibration, which requires simply capturing a single instéant

neous point cloud. Given 3D pointsp® = (p”, p{, pt),

i1 =1,...,n, in this uncluttered region, the parameters of the
plane can be found by solving the following least squares
problem: Fig. 2. Tor. An RGB image from the sensor. BTOM-LEFT: The
occupancy map obtained by projecting all the non-floor poiota top-
M (Y 1 (1) down coordinate system. Note that the desk is impassible imtq® even
Dz by P> though the robot is short enough to pass under @TBOM-RIGHT: The
2 _ 2 ! (2) ; N K _
Pz Dy 1 3 22 @ occupancy map obtained by projecting only the obstacle pdiatow,.
: : : ) :
_p(n) _p(n) 1 p(”) NV
* v ? transform an obstacle poinp(”, into the 2D ground coor-
A b dinate system, we calculate
or O(i) — p(l) _ h(i)n’ (5)
a - - .
B | = (ATA)"1ATD. ?) wheren is the normal to the ground plane. Similarly, the

point c = —h(*)n yields the projection of the sensors center
of projection,[0 0 0] .

Once «, B, and § have been determined, the signed A binary occupancy map is created, where each obstacle
distance from any poinp® to the plane, or equivalently, point p(*) causes the cell atz,y) to be set to 1, where
the height of the point above the ground plane, is given by = d(¥ cos8/p, andy = d¥sin6/p,, where

0

i i i ()R- _o®
o oS +8py) +p + 4 d le—o™ (6)
W= /o2 2 ' ) ol _ ¢
o®+p 6 = arctan # ; 7
0y’ — ¢y

If () > 0, then theith point is above the ground plane, _ ) .
otherwise it is on or below the plane. To account for nois¥/N€ré p. = p, = 12.5 cm is the spatial resolution of the
and harmless flat objects resting on the floor (e.g., a pie€id- An example occupancy map is shown in Figure 2,

of paper), we declare a point to be above the ground plar‘f@ere the importance of taking the height information into
only if it is greater than a threshold{?) > 7, where we set account is seen; otherwise the robot would not be allowed to

r—5cm. pass under the desk even though there is enough head space
for it to do so.

B. Map Construction C. Handling Reflective Materials and the Blind Spot

One of the significant advantages of a 3D sensor over aWe now describe two innovations for overcoming the
laser or sonar is the ability is examine the height of obstacl limitations of the Kinect sensor. Because the sensor uses
After segmenting the ground plane, the remaining points aee laser-based IR projector to obtain a depth map of the
potential obstacles, but some of these potential obstadles environment, certain types of materials (such as glass or
be too high above the ground to cause the robot concern.dfiiny metal) can cause invalid depth readings. For an destac
r® > 7, wherer, = 0.5 meters in our case, then the robotavoidance system, it is crucial not to wander into regions
is able to pass under the point without collision. in which there is no information. On the other hand, the

The remaining points, i.e., those that are not on the grouraverly conservative approach of never driving in a dirattio
plane but are low enough to cause collision, are transformedntaining an invalid region would prevent the robot from,
into a top-down coordinate system to yield a localized 2or example, driving toward a window even though there
map of the environment. We call these points tisstacle may be considerable free space before it reaches the window.
points The 2D map is an orthographic projection of thes®ur approach achieves a safe compromise between the two
obstacle points along the normal to the ground plane. Textremes.



out of the field of view of the IR camera, thus preventing
triangulation. Although our robot is designed to turn away
from an object before it gets this close, the issue can armise i
either the case of a dynamic obstacle that suddenly appears i
front of the sensor, or when avoiding one obstacle the robot
turns to face another nearby obstacle. To avoid collisions i
either case, we implement a conservative strategy thas take
advantage of the fact that the sensor yields invalid, rather
than erroneous readings. If at any time more thar= 0.4

(i.e., 40%) of the pixels are found to have invalid readings,
then the robot assumes that it is not safe to proceed futther.
such a case the robot stops, then turns continuously uastil th
condition no longer holds before it resumes driving. A plot
of the percentage of non-depth pixels can be seen in Figure
4. One scenario that may arise is an object that is too close
to the sensor for valid depth readings but too small to trigge
the 40% test. In such an instance the infinite pole approach
allows for the detection of the obstacle by marking, in the
occupancy map, all invalid depth readings that are adjacent
to floor pixels in the color image.

D. Obstacle Avoidance

Fig. 3. Top: An RGB image (left), with the segmented floor pixels colored  The final step is to determine the robot’s translational
green, and a depth image (right). No depth readings are hiaileom the d . | lociti f h id

table support because of its reflective propertiesd®LE: Occupancy map an rOta.t'ona Ve ocities from the 2[_) ogcgpancy gna. TO
ignoring invalid readings (left) and using our infinite palgproach to handle make this decision, our approach is limited to examin-

specular surfaces (right). The red rectangle denotes tiaidm of the table  jhg g fixed rectangular region containing locations
in the occupancy map. Note that the table top is intentionadtycaptured 9 g 9 hg . <
in the occupancy map because it is high enough for the robatfedyspass [—0.25,0.25] m andyp, € [0.0,1.0] m, that is, up to one

under it. BoTToM: Zoomed-in version of the occupancy maps centered ameter in front of the robot and a quarter of a meter on either

the table’s location. side of the center. Extensive work has been done by a number
of authors on developing efficient and robust ways to avoid
obstacles [12], [22], [7], [8], but we adopt a simpler apoa

We call our technique thifinite pole approachFor each based on that of Lorigo et al. [15]. The translational vetlpci

pixel in the depth image with an invalid depth reading, alls determined as a constant multiplied by the minimum

adjacent pixels (using an 8-neighborhood) are examined. distance to an occupied cell in the rectangular region of

any of these neighbors is a floor point, then a thin, verticathe 2D occupancy grid. The rotational velocity is calculate

infinitely tall obstacle is hypothesized at that floor pol@dh  as the angle to the centroid of the occupied cells in the

the other hand, if none of the neighbors is a floor pointectangular region, scaled by a constasnt

then the invalid reading can safely be ignored because it o

will already be protected by a hypothesized infinite pole vo= Apy argm;nﬂgnm(w (8)

arising from_a p|>_<el beloyv it in the depth map (ass_umlng that w = coarctan i, /i, Q)

the sensor is oriented in the usual manner). This approach

assumes that specular obstacles rest on the floor, or at leabere the centroid is given by

rest on something that rests on the floor, causing it to fail

only if a specular obstacle is hanging in the air with no direc (,, [hy) = _ Z am(z,y), Z ym(z,y) |,
connection to the ground. Figure 3 shows that this approach Zaz,y m(z,y) v oy

can successfully detect an object with a specular surface, (10)

despite not being able to obtain any depth readings of tt&nd m(x,y) is the value of a cell in the occupancy map.
object from the sensor. The top of the table in the figurés in [15], we also include a single bit of state to force
is not captured in the occupancy map because it is highe robot, once it begins rotating, to continue rotatinghie t
enough for the robot to safely pass under it. In this caséame direction until the path is clear. This additional ¢ogi
it is crucial that the system correctly handle the reflectivgrevents the robot from getting stuck in a corner or tight
material, because avoiding collision relies completely ospace.
detecting the reflective legs.

Another limitation of the sensor is its inability to produce
depth readings if an obstacle is too close. Yet this is pefcis  The robot used in our experiments was an ActivMedia
the most dangerous situation for an obstacle avoidance SYRB3AT Pioneer mobile robotics platform (approximatély?
tem! The problem is caused by the projected IR pattern beingeters in size) with a computer mounted on top. The

V. EXPERIMENTS
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Fig. 4. LerT: Selected images from a sequence obtained as the robot apptba wall, with the nhumber under each image indicating thartie to
the wall. Invalid depth readings are shown in blackcRT: Plot showing the percentage of invalid depth readingslpias the robot approached the wall,
with red asterisks corresponding to the images shown.

computer consisted of standard hardware with 6 GB RAMran until it received a stop command by a human operator.
an EVGA GeForce 9800 graphics card, and an Intel Core In the environment with dynamic objects, the robot was
i7 processor running Ubuntu Linux 11.04. The robot wasble to successfully react to obstacles that moved into its
tethered through a network cable to a remote desktop fpath of motion and avoid them. The robot was also able
ease of interfacing. The 3D sensor was an Xbox Kinect 36@ negotiate all the thin cables hanging from the ceiling in
capable of providing RGB images, depth maps, and 3D poittie second environment. In the third environment, the robot
clouds at 30 frames per second, which is the same frame ratas able to successfully distinguish between objects that i
at which our system can detect obstacles. could pass under and those that it could not. This allowed for
To test the robustness of the obstacle detection and avoitie robot to achieve behavior impossible with most previous
ance approach, the robot was placed in several environmesgnsors, namely to distinguish between obstacles based on
containing various types of obstacles and lighting condiheir height above the ground. The robot was also able to
tions. The lighting conditions included naturally lit rosm successfully avoid obstacles with specular materials.
artificially lit rooms, and rooms with no light. The types In addition to these environments with the varying light-
of obstacles used were dynamic obstacles, thin obstacléizg conditions, the robot also wandered a hallway with a
and obstacles at multiple heights above the ground. Theflective tile floor typically found in public buildings and
environments used for testing were as follows: offices. This experiment revealed the robustness of theosens

1) An empty room with several people walking around®© S\/rovideddeptg readg:?? evein for h_ighly reflectivs sursace ,
The people were instructed to occasionally walk in /e conducted an additional experiment to test the system's

front of the robot to enter the sensors blind spot. Thié’;\bility to detect and avoid obstacles at a high rate of speed.

tested the system’s ability to detect and avoid objects i'Il;his is in the spirit of other work done by various researsher
a dynamic environment, as well as its ability to handld18]: [31; [10]. Our goal was to detect the frame rate of the
obstacles that enter the blind spot. sensor itself, the speed of the algorithm, and the ability of

2) A room with several cables, as small as 0.5 cm iﬁhe overgll sygtem .to robustly detect pbstacles even when
diameter, hanging from the ceiling. This tested thdl was given little time to react.lln this tes't, we ran the
sensor's ability to detect thin objects. same_detecnon and_ ob_stacle avoidance rputlnes as the other

3) A room with several bridges of varying height. This€XPeriments but with increased translation velocity from

tested the system’s ability to distinguish between oh2-2 M/S to the robot's maximum speed of 0.8 m/s and

stacles under which the robot can safely pass, and tho@&reased rotation velopities from 2.8 rad/s to 5.6 rad/s.
with which the robot will collide if attempting to pass Because our approach is able to update the occupancy map
under them. at 30 Hz, detecting and avoiding obstacles while the robot

4) A room with an object containing specular surfacednoves at_high speed proved not to be an issue. All obstacles
This test the system’s ability to handle obstacles tha¥€r€ avoided as they had been at slower speeds.

do not yield depth readings. VI. CONCLUSION
All these environments were tested with the three different In this paper we proposed an algorithm to detect and
lighting conditions. avoid obstacles for a mobile robot platform using a 3D

Images of these environments are shown in Figure 5. Aensor. Instead of projecting the depth map to UV-disparity
the start of each experiment, the robot was placed such tres performed by previous researchers, we adopt the strategy
there were no obstacles directly in front of it, so that thef projecting 3D points to the ground plane, from which a 2D
floor plane could be estimated as described in Section I\éccupancy map is filled. A simple control scheme produces
A. The floor plane calculated in this initial step was usedranslation and rotation velocities from the occupancy map
for the rest of the experiment. The robot was given a sta@ur system utilizes a Kinect sensor, which facilitates -real
command through the network connection, after which itime, accurate 3D measurements in an inexpensive manner.
wandered around the environment autonomously, detectivge have identified two limitations of the Kinect sensor,
and avoiding any obstacles that it encountered. The roboamely its inability to produce depth readings for specular



Fig. 5. Top: Images of the various environments in which the obstaclectieteand avoidance algorithm was run. From left to rightnBmic environment,
environment with thin objects, environment with multi-lewtlebstacles, and an environment with reflective materiatst®m: Occupancy maps of the
environment as seen from the Kinect at the time of the top images.

surfaces and for objects that are too close to the sensdm] D. Fox, W. Burgard, and S. Thrun. The dynamic window apptoa
We have proposed Soluuons to both Of these problems to collision avoidancelEEE Robotics & Automation Magazmd(l),

. . : N . 1997.
An infinite pole solution hypothesizes infinitely tall, thin g 5 Fox, w. Burgard, S. Thrun, and A. B. Cremers. A hybridiisitn

obstacles when invalid depth readings are adjacent to groun
plane pixels, and the control scheme turns away from
scenes with a large percentage of invalid readings. Togethe[g]
these innovations facilitate robust, real-time, reliaditstacle
avoidance. (10]
Our experiments demonstrate the feasibility of using a

3D sensor for obstacle detection and avoidance. The sengdi

contains several advantages over previous sensors, such as

low power, low cost, high resolution, high frame rate, angy
the ability to provide readings outside of a horizontal plan
This last capability is particularly important, as it enebthe
robot to detect obstacles based on their height. As a result,
demonstrated by our system, the robot can determine whether
or not it is low enough to drive under any particular obstacld4]
The sensor also has the advantage that it is unaffected by
indoor lighting conditions, so that it performs equally ivel [15]
when all the lights are turned off. Future work will be aimed

at avoiding obstacles such as ledges and stairs to prevent th

[13]

robot from driving off ledges or falling into holes. [16]
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