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Abstract— Many roads are not totaly planar and often

present hills and valleys because of environment topogra-

phy. Nevertheless, the majority of existing techniques for

road obstacle detection using stereovision assumes that the

road is planar. This can cause several issues : imprecision as

regards the real position of obstacles as well as false obstacle

detection or obstacle detection failures. In order to increase

the reliability of the obstacle detection process, this paper

proposes an original, fast and robust method for detecting

the obstacles without using the flat-earth geometry assump-

tion; this method is able to cope with uphill and downhill

gradients as well as dynamic pitching of the vehicle. Our ap-

proach is based on the construction and investigation of the

”v-disparity”1 image which provides a good representation

of the geometric content of the road scene. The advantage

of this image is that it provides semi-global matching and is

able to perform robust obstacle detection even in the case of

partial occlusion or errors committed during the matching

process. Furthermore, this detection is performed without

any explicit extraction of coherent structures such as road

edges or lane-markings in the stereo image pair. This paper

begins by explaining the construction of the ”v-disparity”

image and by describing its main properties. On the basis

of this image, we then describe a robust method for road

obstacle detection in the context of flat and non flat road

geometry, including estimation of the relative height and

pitching of the stereo sensor with respect to the road surface.

The longitudinal profile of the road is estimated and the ob-

jects located above the road surface are then extracted as

potential obstacles; subsequently, the accurate detection of

road obstacles, in particular the position of tyre-road con-

tact points is computed in a precise manner. The whole

process is performed at frame rate with a current-day PC.

Our experimental findings and comparisons with the results

obtained using a flat geometry hypothesis show the benefits

of our approach. Future work will be concerned with the

construction of a 3D road model and the test of the system

for Stop’n’Go applications.

Keywords—imaging and vision enhancement, stereoscopic

vision, road obstacle detection, non flat road geometry,

semi-global matching, real time processing.

I. Introduction

IN the field of stereo vision-based road obstacle detection,
a number of assumptions are frequently made about the

environment in order to facilitate the process. The major-
ity of existing techniques assumes that the road is planar
[1][2]. Some techniques assume that there is a constant
plane [3], others perform a dynamic estimate of the inclina-
tion of the road plane and the relative height of the stereo-
scopic sensor [4][5]. In [4], lane-markings are extracted and
matched between the left and right images in order to ob-
tain the parameters of the road plane; however this method
is limited to the precision of lane-markings extraction tech-

1v is the ordinate of a pixel in the (u,v) image coordinate system

niques which are sometimes not reliable (poor quality of
lane-markings, etc.). Another possibility is to model the
suspensions of the vehicle; however the imperfections of the
road surface (holes etc.) can not be taken into considera-
tion. This paper present a method for robustly estimating
the road parameters -including vehicle pitching- which is
not affected by these problems. Furthermore, while the hy-
pothesis of a flat road geometry is reasonable in the vicinity
of the vehicle, it may not be valid for the entire part of the
road visible in the image. Obstacle detection is therefore
only reliable on the locally planar area, which limits the
detection distance. In order to cope with non flat geome-
try roads, this paper present a robust method for locally
estimating the longitudinal road profile. Our method does
not need any extraction of lane-markings but exploit all
the relevant information in the image (texture of the road,
shadows, road edges, etc.). Thanks to this estimation, the
result of the obstacle detection process is far more reliable
and accurate.

Our approach is based on the construction and subse-
quent processing of the ”v-disparity” image, which provides
a good and robust representation of the geometric content
of road scenes.

This paper is structured as follows: Section II presents
the models we have used with respect to the stereoscopic
sensor and the longitudinal road profile. Section III explain
the construction of the ”v-disparity” image and describe its
main properties. Section IV presents our method for per-
forming obstacle detection. Experimental results are shown
including comparisons with the results obtained using a flat
road geometry assumption. Lastly, Section V concludes the
paper and discusses the potential for future work.

II. Assumptions and models

A. Modelling the stereo sensor

The two image planes of the stereo sensor are supposed
to belong merely to the same plane and are at the same
height above the road (see Fig. 1). This camera geometry
means that the epipolar lines are parallel.

In what follows we will need to perform positioning in
three coordinate systems shown in Fig. 1: Ra (absolute),
Rcr (right camera) and Rcl (left camera). Ra is the road
coordinate system.
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Fig. 1. The stereo sensor and the coordinate systems used.

The other parameters on the figure are as follows:
• θ : is the angle between the optical axis of the cameras
and the horizontal,
• h : is the height of the cameras above the ground,
• b : is the distance between the cameras (i.e. the stereo-
scopic base).

In the camera coordinate system, the position of a point
in the image plane is given by its coordinates (u, v). The
image coordinates of the projection of the optical center
will be denoted by (u0, v0), assumed to be at the center of
the image. The intrinsic parameters of the camera are f
(the focal length of the lens), tu and tv (the size of pixels
in u and v). We also use αu = f/tu and αv = f/tv.
With the cameras in current use we can make the following
approximation: αu ≈ αv = α.

Using the pin-hole camera model, a projection on the
image plane of a point (X,Y,Z) in Ra is expressed by:

{

u = αu
X
Z

+ u0

v = αv
Y
Z

+ v0

(1)

On the basis of Fig. 1, the transformation from the
absolute coordinate system to the camera coordinate sys-
tem is achieved by the combination of a vector translation
�t = −h�Y + εi

b
2
�X (with εi = −1 in Rcl or 1 in Rcr), and

a rotation around �X by an angle of −θ. Let Ti denote the
translation matrix, R the rotation matrix and Di = RTi.
In homogeneous coordinates, the different transformation
matrices are therefore:

Ti =





1 0 0 −εi
b
2

0 1 0 h

0 0 1 0
0 0 0 1



 , R =





1 0 0 0
0 cos θ − sin θ 0
0 sin θ cos θ 0
0 0 0 1





(2)

where i is equal to r, l (right or left).

It is necessary to perform a perspective projection in
order to express fully the coordinates of the points in the
image plane coordinate system. The perspective projection
matrix Mproj is expressed as follows:

Mproj =

(

αu 0 uo 0
0 αv vo 0
0 0 1 0

)

(3)

Finally, we obtain the matrix of transformation Tri from
the absolute coordinate system Ra to the image coordinate
system i (i is equal to l or r):

Tri =MprojDi (4)

If P is a point with homogeneous coordinates
(X,Y,Z, 1)T in Ra, its homogeneous coordinates in the im-
age coordinate system i are:

p = TriP = (x, y, z)T (5)

We can then compute the non-homogeneous (u, v) coor-
dinates of P as:

{

u = x
z

v = y

z

(6)

B. Modelling the longitudinal road profile

In what follows we will consider that the road is mod-
elled as a succession of parts of oblique planes in Ra with
respect to the plane of the stereoscopic sensor. This model
will allow us to extract the longitudinal profile of the road
as a piecewise linear curve (see Section IV.A). Our main
assumption is only that the profile curvature is of constant
sign.

III. ”V-disparity” image

A. Construction

We suppose that a disparity map I∆ has been computed
from the stereo image pair (see Fig. 6 Up Left). For ex-
ample, this map is computed with respect to the epipolar
geometry; the primitives used are horizontal local maxima
of the gradient; matching is local and based on normalized
correlation around the local maxima.

Let H be the function of the image variable I∆ such that
H(I∆) = Iv∆. We call Iv∆ as the ”v-disparity” image (see
Fig. 6 Up Right ). H accumulates the points with the same
disparity that occur on a given image line i. For the image
line i, the abscissa uM of a point M in Iv∆ corresponds
to the disparity ∆M and its grey level iM to the number
of points with the same disparity ∆M on the line i : iM
=

∑

P∈I∆
δvP ,iδ∆P,∆M

where δi,j denotes the Kronecker
delta.

Once I∆ has been computed, Iv∆ is built by accumulat-
ing the pixels of same disparity in I∆ along the �v axis (see
Fig. 6 Up).



B. Semi-global matching

For a given image line, the grey level of a point in Iv∆

expresses the number of coherent points with disparity ∆M

in the same image line of the pair of stereo images. The
construction of Iv∆ in facts amounts to a global analysis
of an image line in IGr

: we determine how this image line
matches the same image line in IGl

, for different horizon-
tal offsets, that is to say for different disparities. In this
manner, the horizontal order constraint is satisfied and the
matching is semi-global (global for an image line).

C. The image of a plane in ”v-disparity” image

Let P be a point with coordinates (X,Y,Z, 1)T in Ra.
From system (6), the ordinate of the projection of this point
on the left or right image is vl = vr = v :

v =
[v0 sin θ + α cos θ](Y + h) + [v0 cos θ − α sin θ]Z

(Y + h) sin θ + Z cos θ
(7)

Moreover, the disparity ∆ of the point P is:

∆ = ul − ur =
αb

(Y + h) sin θ + Z cos θ
(8)

From (7) and (8), the plane with the equation Z = aY +d
in Ra is projected along the straight line of equation (9) in
the ”v-disparity” image:

∆M =
b

ah− d
(v−v0)(a cos θ+sin θ)+

b

ah− d
α(a sin θ−cos θ)

(9)
Thus, a surface which is formed by a succession of parts

of planes is therefore projected as a piecewise linear curve.

IV. Application

A. Robust determination of the longitudinal profile of the

road

A.1 Case of a flat road geometry.

The plane of the road is projected in Iv∆ as a straight
line with mean slope 0.70 (considering that mean values
are b = 1 m, h = 1.4 m, θ = 8.5o). The longitudinal
profile of the road is therefore a straight line in Iv∆. Robust
detection of this straight line can be achieved by applying
a robust 2D processing to Iv∆. In our application we use
a Hough transform, the bounds of Hough space depending
on the extreme values of h and θ that are tolerated.

The pitching and relative height of the stereo sensor are
dynamically estimated by simply extracting the straight
line of the road (see Fig. 2). Let cr denote the slope and
vor the value of v for ∆ = 0 on the straight line of the road;
we can obtain the following expression for θ and h:

θ = Arc tan(
v0 − vor

α
) (10)

h = b
cos θ

cr
(11)

Fig. 2. Left Up and Down : extraction of the road profile from 2
”v-disparity” images of the same road sequence. Right : the two road
profiles plotted on the same image show slope and position variations
due to the vehicle suspensions.

A.2 Case of a non flat-earth road geometry.

The road is modelled as a succession of parts of planes.
As a matter of fact, its projection in Iv∆ is a piecewise
linear curve. Computing the longitudinal profile of the road
is then a question of extracting a piecewise linear curve
in Iv∆. Any robust 2D processing can be used. In our
application we currently use the Hough Transform. θ and
h can still be estimated. Indeed, in the vicinity of the
vehicle, the road is planar. Thus, it is possible to extract
the projection of the planar part of the road (which is a part
of a straight line in the right partion of Iv∆) and estimate
θ and h.

A.3 Extracting a piecewise linear curve using the Hough
Transform.

The bounds of Hough space can be limited considering
the maximal 3D road slope tolerated. In the considered
area, the k highest Hough Transform values are retained
(in our application, k is taken between 5 and 12). The k
selected points correspond to k straight lines in Iv∆. The
piecewise linear curve researched is either the upper (when
approaching a downhill gradient) or the lower (when ap-
proaching an uphill gradient) envelope of the family of the
k straight lines generated. We choose between these two
as follows: Iv∆ is investigated along both curves extracted
and a score is computed for each : for each pixel on the
curve, the corresponding grey level in Iv∆ is accumulated.
The curve is chosen with respect to the best score obtained
(see Fig. 3).



Fig. 3. Extracting the longitudinal profile of the road. (From Left to
Right) Up : an image of the stereo pair corresponding to a non flat
road geometry when approaching an uphill gradient, the correspond-
ing Iv∆ image, the associated Hough Transform image (the white
rectangle show the research area of the k highest values). Down : the
set of the k straight lines generated, the computed envelopes, and the
resulting longitudinal road profile extracted.

B. Computing the obstacle areas and the free space on the

road

Once the longitudinal profile of the road has been ex-
tracted, the disparity values on the road surface are known
for each scanning line (it is exactly the disparity value cor-
responding to the longitudinal profile curve extracted for
the scanning line in question). Let ∆i denote this value.
Thus, it is straightforward to extract the obstacles from
the disparity map I∆ already computed: for a given scan-
ning line, pixels whose disparity is equal to ∆i are located
on the road surface; other pixels belong to potential obsta-
cles. On Fig. 4, note that the vehicle located at almost 80
meters is well perceived as a potential obstacle.

Once the obstacle areas have been computed, the free
space on the road surface can be extracted (see also [6][7]),
using a growing area algorithm (see Fig. 6 Down). The
part of the image corresponding to the free space area can
be used, for example, for extracting the lane-markings in
more suitable conditions.

C. Dynamic estimation of the position of the line of the

horizon

By definition, the points located on the horizon line are
at a distance of infinity from the vehicle. Consequently,
from (8), their disparity is nil. Furthermore, these points
belong to the road. In ”v-disparity” space, the position of
the horizon line is therefore given by the value of v corre-
sponding to ∆ = 0 on the straight line of the road.

On Fig. 5, the maximum difference between the position
of the horizon line when manually estimated and when au-
tomatically estimated does not exceed 2 pixels.

Fig. 4. Up: image of a non flat road geometry from the stereo pair.
Middle: the corresponding obstacle areas computed when assuming
that the road is planar. Down: the corresponding obstacle areas
computed when there is no flat geometric assumption. In the first
case, lane-markings located a few meters in front of the vehicle are
considered to belong to obstacles while there is not such problem in
the second case.
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Fig. 5. Comparison between manual and automatic estimates of the
variations in the position of the horizon over time
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Fig. 6. Up Left: the disparity map (the grey level increases the
higher the disparity). Up Right: the corresponding ”v-disparity”
image computed from the disparity map. Down: in grey, the free
space on the road surface. The border of the black area on the Low
Right corresponds to the longitudinal profile of the road extracted
from the ”v-disparity” image and is not a straight line but a piecewise
linear curve.

D. Computing the position of tyre-road contact points

An obstacle is characterized by a vertical plane. With
the mean camera position used, the corresponding straight
line is quasi-vertical in Iv∆. It can be extracted by locating
maxima on a histogram that sums the pixels in each column
of Iv∆.

The tyre-road contact point of a vehicle is located at the
intersection between the surface of the road and the vertical
plane, and therefore, in Iv∆ it is the intersection between
the longitudinal profile of the road and the quasi-vertical
straight line corresponding to the rear of the vehicle (see
Fig. 7). Fig. 8 shows the result of the estimation of the
tyre-road contact point on a non flat road geometry over
time. Vehicle is located at about 80 m in front of our
vehicle. It should be noted that even if the disparity value
of the lower parts of the vehicles is erroneous, the position
of tyre-road contact point will still be estimated correctly
as the point of intersection between the ”obstacle” plane
projection and of the road longitudinal profile.

Bounding boxes on vehicles can be built on the basis of
the tyre-road contacts (see Fig. 9). Right and left sides are
computed on the basis of the ”u-disparity” image (u is the
abscissa of a pixel in the (u,v) coordinate system) which
provide a top view of the (u,v,∆) space.
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Fig. 7. The tyre-road contact of the nearest vehicle obtained from
the ”v-disparity” image.
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Fig. 8. Comparison between manual and automatic estimates of the
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vehicle over time.

Fig. 9. A result of bounding boxes on multiple vehicles.



E. Some good properties of our method

The alignments in Iv∆ corresponding to the longitudinal
profile of the road or to obstacles can be detected by robust
methods such as the Hough transform. Thus, the presence
of several alignments in Iv∆ merely affects the precision in
which they are extracted. Furthermore, the identification
of 2D alignments means that only the structures which are
globally coherent in 3D space are selected and ensures that
detection is robust to partial occlusions.

It should also be noted that:

• the construction of Iv∆ required no explicit extraction
of coherent structures in the left and right images. This
increases the robustness of our approach as the extraction
of coherent structures in 2D images is often a source of
errors. Furthermore, all the information in the disparity
map I∆ is exploited and the accumulation performed by
H increases the density of the alignments in Iv∆. Any
matching errors that occur when I∆ is computed cause few
problems as the probability that the points involved will
generate coincidental alignments in Iv∆ is low.
• no back projection that is likely to reduce precision or
amplify noise due to discretization is involved in the con-
struction of Iv∆.
• Iv∆ corresponds to the image of a cross-section through
the (u, v,∆) space, in a vertical plane which is oriented
in the direction of the optical axis of the camera. All the
matched points are accumulated onto this plane. Thus, the
road obstacles, which are orthogonal to this cross-section
plane, generate dense alignments as they are observed edge
on. The other objects -for example tree lines, buildings,
etc.- only generate diffuse areas in Iv∆ as they are not or-
thogonal to the plane of the cross-section. For this reason
the projection of these planes has little effect on the extrac-
tion of meaningful information (road profile, obstacles).
• our method works whatever the robust process used for
computing the disparity map or for processing the ”v-
disparity” image.

F. Computational cost

The whole process for extracting the longitudinal profile
of the road and computing the tyre-road contact points
is performed within 40 ms with a current-day PC. The
hardware used for the experiments is a Pentium IV 1.4
GHz running under Windows 2000. Images are grabbed
using a Matrox Meteor II graphic card. The focal length
of the lens is 8.5 mm. Image size is 380x289.

V. Conclusion

In this paper we have described a fast, accurate and ro-
bust method for detecting the road obstacles either on a
flat road geometry road or on a non flat road geometry
using stereo-vision. The detection process is based on the
construction and the processing (through a Hough trans-
form) of the ”v-disparity” image. This image provides a
2D summary of all the information that is required in or-
der to rapidly detect and robustly estimate the position

of obstacles even in the event of partial occlusion or er-
rors committed during the matching process. Furthermore,
it provides semi-global matching and reveals the matches
which are the most coherent globally in the 3D road scene.
The longitudinal profile of the road is extracted precisely.
All other information concerning obstacles are then de-
duced in a straightforward manner : obstacle areas, free
space on the road surface, position of tyre-contact points.
This detection is performed without any explicit extraction
of specific structures (road edges and lane-markings, etc.)
but exploits all the relevant information in the stereo im-
age pair. Computational time does not exceed 40 ms for
images of size 380x289 on a current day PC with no special
hardware.

The system will be tested on our experimental vehicules
for Stop’n’Go applications. Future work will also be con-
cerned with the accurate extraction of lane-markings, the
detection of obstacles in our lane, and the construction of
a 3D road model. The matching process could also be per-
formed in a different manner: instead of basing this pro-
cess on solely the maximum of correlation (which some-
times leads to the lost of good matches) it would be pos-
sible to consider the k best matches. Very fast disparity
image computation techniques will also be tested, even at
the cost of obtaining disparity maps of poorer quality, since
our method is likely to cope with such poor disparity maps.
The generalization of our method to any accumulation axis
(and no longer the v axis) can lead to the estimation of roll
and yaw rate values. Subsequent research will tackle this
problem. The precise analysis of road scenes, including
roll and yaw rate estimation could thus be achieved in real
time.
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