
Received May 22, 2019, accepted June 3, 2019, date of publication June 10, 2019, date of current version June 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2921975

Real-Time Online Multi-Object Tracking in
Compressed Domain

QIANKUN LIU1,2, BIN LIU 1,2, YUE WU3, WEIHAI LI 1,2, AND NENGHAI YU1,2
1School of Information Science and Technology, University of Science and Technology of China, Hefei 230026, China
2Key Laboratory of Electromagnetic Space Information, Chinese Academy of Sciences, Hefei 100864, China
3Alibaba Group, Hangzhou 311121, China

Corresponding author: Bin Liu (flowice@ustc.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61371192, in part by the Key

Laboratory Foundation of the Chinese Academy of Sciences under Grant CXJJ-17S044, and in part by the Fundamental Research Funds

for the Central Universities under Grant WK2100330002.

ABSTRACT Recent online multi-object tracking (MOT) methods have achieved desirable tracking per-

formance. However, the tracking speed of most existing methods is rather slow. Inspired from the fact

that the adjacent frames are highly relevant and redundant, we divide the frames into key and non-key

frames and track objects in the compressed domain. For the key frames, the RGB images are restored

for detection and data association. To make data association more reliable, an appearance convolutional

neural network (CNN) which can be jointly trained with the detector is proposed. For the non-key frames,

the objects are directly propagated by a tracking CNN based on the motion information provided in the

compressed domain. Compared with the state-of-the-art online MOTmethods, our tracker is about 6× faster

while maintaining a comparable tracking performance.

INDEX TERMS Compressed domain, multi-object tracking, online, real-time.

I. INTRODUCTION

Multi-Object Tracking (MOT) is an important computer

vision task which aims to estimate the trajectories of inter-

ested objects and maintain their identities across frames.

It has various applications that with real-time and online

requirements, such as autonomous driving and robot naviga-

tion. However, real-time onlineMOT still remains a challeng-

ing task.

Driven by advances in object detection, tracking-by-

detection has become a popular strategy for MOT. Most

existing methods focus on designing a complicate approach

to tackle MOT in a data association manner. These methods

can be divided into two categories: offline and online meth-

ods. The offline methods [1]–[3] usually use future frames

to track objects, which makes them impractical for casual

applications. On the contrary, the online methods [4]–[14]

track objects based on the past and current frames and have

achieved desirable performance, as shown in Figure 1. How-

ever, detection and data association are performed frame-

by-frame in these online methods to ensure a good tracking

The associate editor coordinating the review of this manuscript and
approving it for publication was Yongqiang Zhao.

performance, which is time-consuming and makes them

unable to be applied in real-time applications. In order

to re-recognize objects when occlusion happens, appear-

ance affinity is commonly used in data association pro-

cess [4]–[7], [13], [15]. However, the appearance models

utilized in these methods are independent from the detector

and are therefore potentially sub-optimal.

In practical applications, videos are usually captured,

stored and transmitted in the compressed domain. Implemen-

tations for some video tasks in the compressed domain are

necessary and more suitable. Firstly, implementations in the

compressed domain can take lower computational cost since

not all frames need to be restored into RGB images (the

RGB images in this paper denotes the regular colorful or gray

images, which is used to distinguish them from the frames in

the compressed domain). Secondly, the motion information is

readily provided in the compressed domain which is helpful

for video tasks. A fewworks, such as tracking [8], [17], video

object detection [18] and action recognition [19], have been

done in the compressed domain. Generally, there are two

goals of the implementations in the compressed domain: (1)

Feature propagation [18]. Features are only extracted from

the key frames which are restored into RGB images, and then
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FIGURE 1. Performance-speed of some online trackers on MOT17 test
split. Vertical axis: Multi-Object Tracking Accuracy (MOTA) [16]. Horizontal
axis: The number of frames that the tacker can process in one second,
i.e., the frequency. Better trackers lie in top-right of the figure.

propagated to the non-key frames. Computational cost can be

saved since the frequency of feature extraction is reduced and

the feature propagation is much more efficient than feature

extraction. (2) Motion cues extraction [8], [17], [19]. The

motion cues of objects are directly extracted from the motion

information (motion vectors and residuals, more specifically)

without access to the RGB images, which are further used to

handle the task.

Existing compressed domain based tracking algorithms

focus on the motion cues extraction from the pixel level [17]

or the bounding-box level [8]. For the pixel level, each pixel

that locates in the bounding-box is shifted separately based on

themotion vectors (MVs), then the smallest axis-aligned rect-

angle that includes all the shifted pixels is selected as the new

bounding-box. For the bounding-box level, MVs that locate

in the bounding-box are averaged to get the displacement,

then the bounding-box is shifted. However, the scale variation

can not be handled.

In this paper, we focus on real-time online multi-object

tracking. To this end, we propose an Online MOT Tracker

in Compressed Domain (OTCD). Since the adjacent frames

are highly relevant, it is redundant to perform detection and

data association in all frames. Motivated by this, we divide

the frames into key and non-key frames respectively. For the

key frames, detection and data association are performed.

An Appearance CNN (A-CNN) which shares features with

the detector is designed to assist data association, and it can

be jointly trained with the detector. Note that RGB images

are restored for the key frames since both detection and

appearance feature extraction need to be performed on the

RGB images. For the non-key frames, objects are directly

propagated based on the motion cues which are extracted

from the MVs and residuals by a Tracking CNN (T-CNN).

Owning to the sparsity of key frames and the share of features

between A-CNN and detector, our tracker achieves a great

boost in tracking speed with little performance degradation.

To sum up, our contributions are as follows:

• We develop an online unified MOT tracker to track

objects in compressed domain for real-time applications.

• We propose an appearance CNN to assist data associa-

tion. The joint training of appearance CNN and detector

helps to further promote the performance of our method.

• We propose a tracking CNN to propagate objects

through non-key frames while maintaining their iden-

tities without detection and data association, which

accelerates our tracker greatly with little performance

degradation.

The rest of this paper is organized as follows. Section II

reviews the related work. Section III introduces the pro-

posed tracker in detail and section IV represents experimental

results. Finally, section V makes a conclusion on our work in

this paper.

II. RELATED WORK

In this section, we provide a brief overview about the usage

of appearance features in MOT and the works implemented

in the compressed domain.

A. APPEARANCE FEATURES IN MOT

Appearance features can be used to improve tracking per-

formance in crowded scenario where occlusion often hap-

pens. And various appearance features have been used

in MOT, such as histogram of gradients [20], [21], color

histogram [20] and integral channel features [15]. Recently,

the powerful deep features extracted by CNN have been intro-

duced to MOT [4]–[7], [13], [15]. Bae et al. [4] proposed a

deep appearance learning method to learn a discriminative

appearance model in an online manner. Kieritz et al. [15]
designed an appearance model which was incrementally

trained online for each object. Both [4] and [15] need to

collect the training samples online, which is time-consuming.

Chu et al. [7] utilized single object tracker for MOT based

on appearance features, but the online learned target-specific

CNN layers need to be preserved for each target. Instead

of learning the appearance model online, some researchers

trained an appearance model offline [5], [6], [9], [13], which

can be used as a function to measure the affinity between

different features while tracking online. Zhu et al. [5] trained
a spatial attention CNNwhich can focus onmatching patterns

of input image patches. The works in [6], [9], [13] trained

appearance models using person re-identification dataset and

achieved great improvements.

The aforementioned methods separated data association

from detection, and the utilized appearance models were

isolated from the detector. Our work focuses on designing a

compact appearance model, which shares features and can be

jointly trained with the detector.

B. WORKS IN THE COMPRESSED DOMAIN

In order to use the motion information provided in the com-

pressed domain freely, a few works [8], [17]–[19] have been

done in the compressed domain. Ujiie et al. [8] interpolated
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the bounding-boxes of objects in the bounding-box level

for some frames to avoid detection and data association.

Alvar et al. [17] constructed approximate bounding-box of

the target object in the pixel level based on the bounding-box

in previous frame for single object tracking, but each frame

needs to be restored into RGB image for detection. The work

in [18] fed MVs and residuals to a network to propagate

the features across frames for object detection. However,

the frames are processed in a batch manner which is inap-

plicable for online tasks. Wu et al. [19] recognized different

actions in the compressed domain and achieved great perfor-

mance. Nevertheless, the MVs and residuals are traced back

to the reference frame and accumulated on the way, which

augments the computational cost.

Among these methods, the work in [8] is the most related

to our work. However, the work in [8] cannot handle the

scale variations of bounding-boxes since MVs are simply

used (by averaging MVs that locates in the bounding-boxes)

to predict the displacements of objects. While our method

utilizes a tracking CNN to predict the velocities of objects

based on MVs and residuals, in which the scale variation of

bounding-boxes are considered.

III. METHOD

Frames in a compressed video are divided into Group of

Pictures (GOP), and there are three types of frame generally:

I-frame (intra-coded frame), P-frame (predictive frame) and

B-frame (bi-directional frame). Among these three types of

frame, I-frame can be treated as a regular RGB image, while

P-frame and B-frame are encoded with MVs and residuals.

The main difference between P-frame and B-frame is that

P-frame is encoded in a predictive manner, while B-frame

is encoded in a bi-directional manner. We share the same

assumption with [8], [17]–[19] that the compressed video

only contains I-frame and P-frame for simplicity. The reason

is that the B-frames, which are encoded in a bi-directional

manner, require special handling since we focus on online

tracking, and we leave this for the future work. In this paper,

we track objects in raw MPEG-4 videos which have an

I-frame before every 11 P-frames. However, the proposed

method is applicable for different compression techniques,

such as MPEG-2 [22] and H.264 [23]. The reason is that

different compression techniques usually use motion vectors

and residuals for frame compression, thus the frames in the

videos can be easily divided into key and non-key frames.

A. OVERVIEW

The overview of the proposed tracker OTCD is shown in

Figure 2. The frames are divided into key and non-key frames

in OTCD. Suppose there is a key frame every K consecutive

frames. Since MVs and residuals are required for the non-key

frames and there are no MVs or residuals for I-frames in the

compressed domain, I-frames are always regarded as the key-

frames, which means K should be a factor of GOP size.

Let Ot = {oti }
It
i=1 and Dt = {d tj }

Jt
j=1 denote the sets of

objects and detections in frame t respectively. Note that Dt

FIGURE 2. Overview of the proposed tracker. MVs are plotted in HSV color
space. Ot is the set of objects in frame t , Dt is the set of detections in key
frame t . Detection, data association and object management are only
performed in key frames. Objects are propagated through non-key frames
by tracking CNN while maintaining their identities.

is defined for the key frames only. For a key frame at time t ,
the RGB image is restored and fed into a detector, which

produces a set of detections Dt . The objects in Ot−1 from

last frame are associated with the detections in Dt . The data
association is solved by Hungarian algorithm based on the

Intersection-over-Union (IoU) between bounding-boxes and

the appearance affinity obtained by A-CNN. After then the

birth and death of objects are managed. For each non-key

frame, the corresponding MVs and residuals are fed into

T-CNN to propagate objects from the previous frame to cur-

rent frame.

Before introducing the method in detail, we first intro-

duce the representations of objects and detections. The j-th
detection in Dt is denoted by a tuple d tj = (btj , f

t
j ), where

btj = (x tj , y
t
j ,w

t
j , h

t
j ) is the bounding-box represented by the

center coordinate, width and height. f tj ∈ R
m×m×c is the

appearance feature cropped by RoIAlign [24] from the fea-

ture map provided by detector, where m and c are the spatial
size and the number of channels respectively. As for objects,

three states {Tentative,Confirmed,Deleted} are defined to

handle the birth and death of objects, which are denoted by

{sT , sC , sD} for simplicity. The i-th object in Ot is denoted as
oti = (bti , s

t
i ,Fi), where b

t
i = (x ti , y

t
i ,w

t
i , h

t
i ) is the bounding-

box, sti ∈ {sT , sC , sD} is the state. And Fi = {f
t−τ
i }

lf−1
τ=0 is the

set of appearance features collected in the history, where lf is
the maximum number of appearance features.

B. TRACKING IN KEY FRAMES

The tracking in key frames follows the footprint of per-frame

approaches, including detection, data association and object

management.

1) DETECTOR

The detector is responsible for the detection of interested

objects (pedestrian, particularly) and feature extraction. The

R-FCN [25] with ResNet-101 [26] is used in our work

directly since detection is beyond the scope of this paper.
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We take pedestrian as the foreground and others as the back-

ground for detection. The appearance features for detections

are cropped from the feature map provided by the last convo-

lutional layer on the conv4 stage of the backbone of detector.

2) APPEARANCE CNN

Given the appearance feature f tj of the detection d tj and one

appearance feature f t−τ
i ∈ Fi of the object o

t−1
i , the proba-

bility pτ
i,j of these two features belonging to the same object

is used as the affinity between these two features:

pτ
i,j = NA(f

t−τ
i , f tj ), (1)

where NA(·, ·) denotes A-CNN. As shown in Figure 3,

A-CNN is a binary classifier in fact. Note that the appear-

ance features f tj and f t−τ
i are cropped from the feature map

provided by the conv4 stage of the backbone of detector, and

no feature extraction (except the three convolutional layers)

is performed within A-CNN, which means A-CNN shares

features with the detector. The superscripts are omitted for

simplicity in the following.

FIGURE 3. Architecture of A-CNN. Each convolution layer is followed by a
ReLU function. A position sensitive (PS) layer is introduced to exploit the
position information between input features.

a: POSITION-SENSITIVE LAYER

Given two features fi, fj ∈ R
m×m×c, we try to obtain the

affinity between these two features. The L2-normalization is

first applied to fi and fj along the channel dimension, which

produces the corresponding normalized features f ′i and f ′j .

Then two position-sensitive feature maps fi,j, fj,i ∈ R
m×m×m2

are produced respectively:

fi,j = f ′i ⊗ T (f ′j ), fj,i = f ′j ⊗ T (f ′i ), (2)

where ⊗ denotes the matrix multiplication, and T (·) is the

function that reshapes and transposes a 3-D feature map in

R
m×m×c to a 2-D featuremap inRc×m2

. Each column in T (f ′i )
corresponds to a feature vector that locates in one spatial

position in f ′i . Finally, the four feature maps fi,j, fi, fj,i and
fj are concatenated together. Despite the values in fi,j and fj,i
are the same, the distributions of them are different. We keep

both of them to preserve more position information.

The intuition of the Position-Sensitive (PS) layer is that

we assume the features extracted from the same patches in

different RGB images should be the same, but the patches

may not well aligned due to the inaccurate detection, occlu-

sion and pose change. The corresponding features in f ′i and f
′
j

may locate in different spatial positions. Hence, it is necessary

to compare the feature vector from one spatial position in f ′i
with the feature vectors from all spatial positions in f ′j , which
produces a single channel feature map in fj,i.

b: TRAINING OF A-CNN

During the training process, each training sample contains

two appearance features cropped from the feature map pro-

vided by the detector. The corresponding label is set to 0

(these two appearance features belong to different objects)

or 1 (these two appearance features belong to the same

object).

A-CNN is trained by the cross-entropy loss. Let LA and LD
be the loss of A-CNN and detector respectively. ThenA-CNN

and the detector can be jointly trained via a multi-task loss

L = LD + λLA, where λ is the weight to balance the loss.

3) DATA ASSOCIATION

Given the set Dt of detections in key frame t , and the set

Ot−1 of objects in the previous non-key frame t − 1, the data

association process is divided into two steps.

Step 1: assign the detections in Dt to confirmed objects

based on the IoU cost between bounding-boxes. Let cioui,j be

the IoU cost between object ot−1i and detection d tj

cioui,j = 1− IoU (bt−1i , btj ), (3)

and they will not be associated with each other if cioui,j is

greater than a threshold τiou.

Step 2: assign the unmatched detections to objects in tenta-

tive state as well as those unmatched objects in step 1 based on

the appearance cost. Let c
app
i,j be the appearance cost between

object ot−1i and detection d tj

c
app
i,j = 1− max

τ∈{1,2,...,|Fi|}
pτ
i,j, (4)

where pτ
i,j is the appearance affinity obtained by A-CNN. And

they will not be associated if c
app
i,j is greater than a threshold

τapp.

Suppose the detection d tj is assigned to the object o
t−1
i , the

bounding-box of the i-th object in frame t is succeeded from

the bounding-box of d tj . The detection’s appearance feature

f tj is added to the feature set Fi. The oldest feature will be

abandoned if there are more than lf features in Fi.

4) OBJECT MANAGEMENT

The objects are managed by transforming their states between

the pre-defined three states {sT , sC , sD}. Particularly:

1) An unmatched detection is initialized as a tentative

object, and it will be confirmed if its detection confi-

dence is larger than a threshold csT→sC .

2) A confirmed object is transformed to tentative state if

it has not been associated with any detections for more

than lsC→sT consecutive key frames.
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FIGURE 4. The Velocity prediction. The velocity of each un-deleted object
is estimated by PSRoIPooling based on the bounding-box in last frame.
The number of bounding-boxes in current frame is the same with that in
last frame.

3) A tentative object will be confirmed if it has been

associated with a detection for more than lsT→sC con-

secutive key frames.

4) A tentative object will be deleted if it has not been

associated with any detections for more than lsT→sD
consecutive key frames.

5) A deleted object remains at sD forever.

C. TRACKING IN NON-KEY FRAMES

The tracking in non-key frames is much more straightfor-

ward. The objects are directly propagated by T-CNN while

maintaining their identities. The appearance features and state

of each object are not changed during propagation since the

RGB images are not restored for detection and data associa-

tion. Let v̂ti = (v̂ti,x , v̂
t
i,y, v̂

t
i,w, v̂ti,h) be the predicted velocity of

the i-th object in frame t based on the bounding-box in frame

t − 1:

v̂ti = V(bt−1i ,NT (f
t )), (5)

where NT (·) is the backbone CNN of T-CNN, and ft rep-

resents the input data for the non-key frame t . V(·, ·) is the
velocity prediction function. As shown in Figure 4, V(·, ·)

is implemented by position-sensitive region-of-interest pool-

ing layer (PSRoIPooling) proposed in R-FCN [25]. Then

the bounding-boxes in frame t can be predicted easily by

bti = B(v̂ti , b
t−1
i ), where B(·, ·) is the bounding-box predic-

tion function that defined as


















x ti = wt−1i v̂ti,x + x
t−1
i ,

yti = ht−1i v̂ti,y + y
t−1
i ,

wti = wt−1i exp(v̂t−1i,w ),

hti = ht−1i exp(v̂t−1i,h ).

(6)

Obviously, the identity is maintained for each object during

the propagation process.

a: BACKBONE CNN

The network used in T-CNN is much smaller than the net-

work in detector, since the MVs and residuals only store

the changes between two frames. Besides, a smaller network

can reduce the computational cost. The backbone CNN is

modified from ResNet-18 [26]. Particularly, the last average

pooling layer and fully connection layer are removed. As a

common practice [25], the effective stride of ResNet-18 is

reduced from 32 pixels to 16 pixels, which increases the

resolution of feature maps. Then we can get three types of

the modified ResNet-18 by changing the number of input

channels in the first convolutional layer to 2, 3 and 5, which

are denoted as ResNet2-18, ResNet3-18 and ResNet5-18,

respectively.

In order to explore the tracking ability of T-CNN, four

T-CNNs are designed, as shown in Figure 5:

• T-CNNmv: only MVs are used to predict the velocities.

• T-CNNres: only residuals are used to predicted the veloc-

ities.

• T-CNNmv|res: MVs and residuals are both used, but they

are concatenated together firstly to be fed into T-CNN.

• T-CNNmv||res: MVs and residuals are both used, and

they are fed into their corresponding branches. Then the

outputs of these two branches are concatenated together.

For all prototypes of T-CNN, the 1 × 1 convolutional layer

(followed by a ReLU function) is used to produce a feature

map with 4m2 channels.

b: TRAINING OF T-CNN

The training of T-CNN is independent of the training of

A-CNN and detector. The reason is that detection and appear-

ance feature extraction need to be performed on RGB images,

while T-CNN needs motion vectors and residuals to predict

the velocities of objects. Given the ground-truth bounding-

boxes of the i-th object in frame t − 1 and t , the ground-truth
velocity vti = (vti,x , v

t
i,y, v

t
i,w, vti,h) can be computed by vti =

B−1(bt−1i , bti ), where B−1(·, ·) is the inverse function of

B(·, ·). The loss of T-CNN can be computed by

LT =
1

I

I
∑

i=1

∑

u∈{x,y,w,h}

smoothL1 (v
t
i,u − v̂

t
i,u), (7)

in which

smoothL1(x) =

{

0.5x2 if |x| < 1

|x| − 0.5 otherwise,
(8)

is the function defined in [27], and I is the number of objects

that appear in frames t and frame t − 1. The objects that only

appear in one framewill not contribute to the training process.

D. TIME CONSUMPTION ANALYSIS

Let Tdet , Tass, Tman and Tpro be the time consumption of

detection, data association, object management and object

propagation in each frame. Compared to the per-frame

approaches, the speedup factor s of our tracker depends on
the sparsity of key frames:

s =
K (Tdet + Tass + Tman)

Tdet + Tass + Tman + (K − 1)Tpro
. (9)

Generally, Tman ≪ Tdet and Tman ≪ Tass. In our implemen-

tation, Tpro ≈
Tdet+Tass

10
. Then s is about

s ≈
10K

K + 9
. (10)

For example, our tracker is 2.5× faster approximately when

K = 3. The tracking method is shown in Algorithm 1.
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FIGURE 5. Four prototypes of T-CNN. (a): T-CNNmv , only MVs are fed into
T-CNN. (b): T-CNNres, only residuals are fed into T-CNN. (C): T-CNNmv |res,
MVs and residuals are concatenated together to be fed into T-CNN.
(d): T-CNNmv ||res, MVs and residuals are fed into ResNet2-18 and
resNet3-18 respectively, then the outputs of these two CNNs are
concatenated together. For all designs of T-CNN, the corresponding 1 × 1
convolutional layer (followed by a ReLU function) is used to produce a
feature map with 4m2 channels.

IV. EXPERIMENTS

The proposed MOT tracker OTCD is implemented based

on PyTorch library without optimization. Evaluation

is on a workstation with 2.6 GHz CPU and Nvidia

TITAN Xp GPU.

A. DATASETS

We evaluate the proposed tracker on Citypersons [28],

2DMOT2015 [29], MOT16 [30] and MOT17 [30]. The

sequences in MOT16 are the same with those in MOT17 but

are providedwith a less accurate ground-truth. Each sequence

in 2DMOT2015 and MOT17 is compressed into a MPEG-

4 video, and all images in Citypersons are compressed into

a MPEG-4 video. All data used for training and testing is

loaded from the compressed domain with the tool provided

by [19]. The loaded MVs and residuals can be treated as

special images (2 and 3 channels respectively) which have

the same resolution with the video.

Sequences in 2DMOT2015 and MOT17 are divided

into three sets. Testing set: the sequences in MOT17 test

split. Validation set: MOT17-09 and MOT17-10. Train-
ing set: the rest sequences in MOT17 as well as those

sequences in 2DMOT2015 train split but not included

in MOT17.

B. SETTINGS

The variable m used in A-CNN and T-CNN is set to 7.

The detections with confidence less than 0.95 are aban-

doned. The detection confidence threshold csT→sC is set

to 0.99. The number of consecutive key frames lsT→sC ,

lsC→sT , lsT→sD are set to 3, 2, 10 respectively. And the

number of historical appearance features lf is set to 24.

The thresholds τiou and τapp are set to 0.3 and 0.25

respectively.

Citypersons and training set are used to train R-FCN and

A-CNN. The training samples for A-CNN are generated

during training process. Particularly, for each ground-truth

Algorithm 1 OTCD Tracker

Input: a MPEG-4 video v with T frames, key frame sched-

uler K
Output: Trajectories of objects B = {{bti , idi}

I t

i=1}
T
t=1

1: Initialization: B← ∅, O0← ∅, t ← 1

2: while t ≤ T do

3: / ⋆ track objects online ⋆ /

4: F t ← Load(v, t) // load a frame

5: if (t − 1) mod K = 0 then // key frame

6: F t ← RestoreToRGB(F t )
7: Dt ← R-fcn(F t )
8: Association(Dt ,Ot−1)
9: Ot ← Management(Dt ,Ot−1)
10: else // non-key frame

11: Ot ← Propagate(Ot−1,F t )
12: end if

13: / ⋆ store the trajectories ⋆ /

14: Bt ← ∅
15: for each oti ∈ O

t do

16: if sti = sC then

17: Bt ← Bt ∪ {bti , idi}
18: end if

19: end for

20: B← B ∪ Bt

21: end while

22: return B

box in one image, two positive and one negative samples are

collected with ≥ 0.7 and ≤ 0.3 IoU overlap ratios with this

ground-truth box. We also randomly choose a ground-truth

box belonging to other objects as another negative sample.

The separate training of R-FCN and A-CNN are conducted

with initial learning rate 10−3 and 10−4 respectively. The

joint training of R-FCN and A-CNN is divided into 3 phases.

Phase 1: train R-FCN for 15 epochs with initial learning rate

10−3. Phase 2: train A-CNN for 5 epochs with initial learning

rate 10−4. Phase 3: train A-CNN and R-FCN jointly with

initial learning rate 10−4. Here, we set λ to 1. T-CNN is

trained on training set with initial learning rate 10−4. During

all training process, the batch size is set to 2 and the learning

rate decades every 8 epoches with exponential decay rate 0.1.

All models are optimized by stochastic gradient descent until

they converge.

C. METRICS

1) TRACKERS

We choose the following metrics to evaluate different track-

ers: Multi-Object Tracking Accuracy (MOTA) [16], Multi-

Object Tracking Precision (MOTP) [16], how often an object

is identified by the same ID (IDF1) [31], Mostly Tracked

objects (MT), Mostly Lost objects (ML), number of False

Positives (FP), number of False Negatives (FN), number of

Identity Switches (IDS) [32], number of Fragments (Frag),

and running speed (Hz).
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TABLE 1. Tracking performance on validation set with different settings for data association. Values in bold highlight the best results.

FIGURE 6. Qualitative results on PS layer. The feature maps are resized to
the size of image patches. Left: Two image patches (and their appearance
features) need to be compared with. The pixel values plotted in the
feature map are proportional to the L2-norm of corresponding feature
vectors along channel dimension. Right: two (m2-channel) feature maps
fi,j and fj,i that obtained by PS layer. Only fj,i is presented in detail. The
top image patch is divided into m × m bins (m = 7 in our experiments),
corresponding to the spatial size of the features that input to A-CNN.
Each bin is compared with the bottom image patch, producing a single
channel feature map in fj,i . The similar two patterns are with a high
similarity score.

2) DETECTOR

Except FP and FN, we choose additional metrics to evaluate

different detectors: Recall (Rcll), Precision (Prcn), Multiple

Object Detection Accuracy (MODA) [33].

All metrics are evaluated by the toolkit provided by

MOTChallenge benchmark [29], [30].

D. COMPONENTS ANALYSES

1) APPEARANCE CNN

We first present the features produced by the PS layer in

Figure 6. The PS layer actually divides one image patch into

m×m bins, and compares each bin with another image patch.

A high similarity score will be produced if the compared

image patterns are similar.

In order to demonstrate the effectiveness of the two steps

data association procedure introduced in section III-B.3

(denoted as IoU→A-CNN), an one step data association pro-

cedure that simultaneously take IoU cost and appearance cost

into consideration are also conducted (denoted as IoU+A-

CNN). For the one step data association procedure, we use

ci,j = αcioui,j + (1−α)c
app
i,j as the cost between object ot−1i and

detection d tj , and they will not be associated with each other

if ci,j is greater than the threshold τ = ατ iou + (1 − α)τ app.

Several experiments are conducted by varying α from 0.1 to

0.9 with the interval 0.1, and the best MOTA is achieved on

validation set when α = 0.5, which is our default setting

for the one step data association procedure. Note that α = 1

and α = 0 are two special cases of IoU+A-CNN which are

denoted as IoU andA-CNN, respectively. AnA-CNNwithout

PS layer (A-CNN−PS ) is also trained to further demonstrate the

effectiveness of the PS layer in A-CNN. The results are shown

in Table 1.

When the appearance cost is only used,MOTA is improved

by 1.2% and IDS is greatly reduced by 37.3% with the help

of the PS layer at the cost of tracking speed dropped from

3.2 Hz to 2.3 Hz. Favorable MOTA and IDS can be obtained

when the IoU cost is only used. This is due to the fact that

the bounding boxes of one object in the adjacent frames may

be much closer, and the IoU cost is sufficient enough to

associate them with each other. The best tracking speed is

also possessed by the case where the IoU cost is only used.

This is reasonable since appearance cost is no need to be

computed, which is more computational expensive than IoU

cost. However, MOTA is still improved by 0.5% and IDS is

further reduced by 27.7% when A-CNN is used in IoU→A-

CNN with the little price of Hz dropped from 16.5 to 15.7.

Though MOTA is almost the same in IoU+A-CNN

and IoU→A-CNN, a better IDS and Hz are achieved by

IoU→A-CNN. Here is the explanation: (1) Hz. Both IoU

cost and appearance cost need to be computed for each

object-detection pair in IoU+A-CNN. While in IoU→A-

CNN, appearance cost (which is computational expensive)

only needs to be computed for a small proportion of

object-detection pairs. (2) IDS and MOTA. IoU cost and

appearance cost may not be always both reliable. Simulta-

neously consideration of IoU cost and appearance cost will

make them influence each other.

A case of occlusion is also shown in Figure 7. When data

association procedure is conducted based on the IoU cost

only, the tracker fails to re-recognize the occluded pedestrian.

However, when the data association procedure is conducted

based on both IoU and appearance cost as described in

section III-B.3, the tracker can re-recognize the occluded

pedestrian successfully, which demonstrates the effectiveness

of the proposed A-CNN and the data association method.

2) JOINT TRAINING OF APPEARANCE CNN AND DETECTOR

The effectiveness of joint training of A-CNN and detector

is shown in Table 2. In terms of detection, all metrics are
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FIGURE 7. A case of occlusion in MOT17-09. Please pay attention to the two pedestrians that locates in yellow dashed boxes. The color of
bounding-boxes and the numbers locate in top-left corner of the bounding-boxes denote the identities of corresponding pedestrian. From left to right:
Frame 405 (before occlusion occurs), frame 415 (when occlusion occurs), frame 425 (after occlusion occurs). Top row: Data association is conducted
based on the IoU cost only. The tracker fails to re-recognize the occluded pedestrian. Bottom row: Data association is conducted based on the IoU cost
and the appearance cost as described in section III-B.3. The tracker re-recognizes the occluded pedestrian successfully.

TABLE 2. The effect of joint training of A-CNN and detector on detection
and tracking performance. Tested on validation set.

improved. Particularly, FP is greatly reduced about 19.8%,

Prcn and MODA are both improved by more than 2%.

In terms of tracking, FP is greatly reduced about 36.6%,

which leads to a higher overall tracking performance MOTA.

Furthermore, IDF1 is improved by 2.2%, which means the

tracker can recognize an object with the same ID more often.

3) TRACKING CNN

We use T-CNN to speedup OTCD by varying K ∈

{1, 2, 3, 4, 6}. The four prototypes of T-CNN are firstly eval-

uated, as shown in Figure 8 (a). The subscript of OTCD

denotes the corresponding prototype of T-CNN. Among our

four trackers, OTCDres performs the worst since no motion

information is provided. Compared with OTCDmv|res and

OTCDmv||res, OTCDmv is less stable, we argue this to the

absence of residuals. Based on the above analysis, we can

find that MVs and residuals complement each other. Com-

pared with OTCDmv||res, OTCDmv|res has a superior track-

ing capability. What’s more, the amount of parameters in

T-CNNmv|res is much smaller than that in T-CNNmv||res. We

choose OTCDmv|res as our default tracker.

To demonstrate the effectiveness of the proposed T-CNN,

we compare our method with some other trackers, including

DeepSORT [6], SORT [34] and IOU [39]. The results are

summarized in Figure 8 (b). The bounding-boxes of objects

in the non-key frames are predicted by Kalman filter in Deep-

SORT and SORT, while they are copied from previous frame

in IOU. For all trackers, the detection time (about 60 ms) is

considered and only detections in the key frames are provided

for a fair comparison. However, the time consumption in the

non-key frames are not considered for DeepSORT, SORT

and IOU. As we can see, the tracking speed is limited due

to the detection time consumption when K = 1. But all

trackers achieve significant speedupwith the descent tracking

accuracy drop when K > 1. Thanks to the powerful track-

ing capability of T-CNN, our tracker possesses the slowest

performance decline when compared with other trackers. For

example, OTCDmv|res is accelerated from 15.8 Hz to 46.0 Hz

at the cost of accuracy drop from 38.4% to 37.8%, while

DeepSORT is accelerated from 8.5 Hz to 34.0 Hz at the cost

of accuracy drop from 38.4% to 33.4%.

The effective performance gains brought by T-CNN does

not hold whenK increases. Reasons are as follows: (1) Track-

ing accuracy. The birth and death of objects are not handled

in the non-key frames, but objects may disappear or reappear

during these frames, which leads to a poorer tracking perfor-

mance when K increases. (2) Tracking speed. Since we track

objects without detection or data association on the non-key

frames, the bounding-boxes of tracked objects may be imper-

fect, which results in more imperfect bounding-boxes in the

following non-key frames. So more confirmed objects will

not be associated with detections based on the IoU cost when

the next one key frame arrives. Hence, more detections need

to be assigned to objects based on the appearance cost, which
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FIGURE 8. Performance-speed tradeoff with different K . The subscript of OTCD denotes the corresponding prototype of T-CNN.
(a) Tracking results of OTCD with different prototypes of T-CNN. (b) Tracking results of our default tracker and other trackers. Tested on
validation set.

TABLE 3. Results of different trackers on MOTChallenge benchmark. The subscript of OTCD is the value of K . Values in bold highlight the best results
and Hz in blue highlight the real-time trackers. Hz marked by ➜ means detection time is considered. Trackers marked by ⋆ and † use the detections
provided by [13] and ourselves, respectively. While other trackers use the public detections.

is more time-consuming than the IoU cost. We choose K = 3

for the balance of performance and speed.

E. MOTCHALLENGE BENCHMARK

We compare the proposed tracker OTCD with other

online state-of-the-art trackers in Table 3 on MOT16 and

MOT17 test splits. During this evaluation, the detector is used

for feature extraction, which means except for the backbone

network of the detector, other parts of the detector are not

used. The metrics of MVint(LinearK) are accessed from [8],

while others are accessed fromMOTChallenge leaderboards.

1) MOT16

We first compare OTCDwith some trackers that track objects

based on the detections provided by [13]. Note that the

tracking accuracy MOTA and speed Hz of DeepSORT is

superior to those of OTCD⋆
1, which is not the result reflected

in Figure 8 (b), the reasons are as follows: (1) MOTA.
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The detections used in Figure 8 (b) and Table 3 are different.

The quality of our own detections is inferior to the detections

provided by [13]. And a poor quality of detections has a nega-

tive impact on trackers. (2) Hz. Detection time consumption is

considered for DeepSORT, SORT and OTCD in Figure 8 (b),

while it is not considered in Table 3.

Both MVint(LinearK) and OTCD⋆
3 are in the compressed

domain, but OTCD⋆
3 achieves a better performance than

MVint(LinearK) in all metrics except FP, IDS and Frag.

Particularly, the tracking speed of OTCD⋆
3 is about 1.7×

faster than MVint(LinearK), while possessing a 4.7% higher

MOTA. The tracking results of OTCD based on our own

detections are also provided. Note that there is a big gap

of MOTA between OTCD⋆
1 and OTCD

†
1, which means the

quality of detections has a significant impact on the tracking

performance.

As for the public detections, OTCD achieves the fastest

tracking speed among all trackers while maintaining a sat-

isfying tracking accuracy. For example, the tracking speed of

OTCD⋆
1 is 17× faster thanAMIR, which is the state-of-the-art

method. Furthermore, OTCD⋆
3 achieves the best performance

in Frag.

Interestingly, when K is increased from 1 to 3, both IDS

and Frag are greatly reduced. This is reasonable since objects

need to be recognized with a lower frequency when data

association is only performed in sparse key frames.

2) MOT17

Overall, the tracking performance of OTCD is comparable

with other trackers. Particularly, OTCD1 performs the best in

FP, and OTCD3 takes the second place in Hz. Compared with

MTDF17, which achieves the best in MOTA, our trackers

run more than 10× (OTCD1) and 25× (OTCD3) faster but

only with 1.0% (OTCD1) and 2.7% (OTCD3) performance

degradation in MOTA. Compared with GM_PHD, which

possesses the best tracking speed (38.4 Hz), OTCD3 tracks

object at a lower speed (33.4 Hz), but with a 10.5% higher

MOTA.

V. CONCLUSION

In this paper, we propose an online MOT tracker OTCD in

compressed domain. The RGB images are restored in the key

frames for detection and data association, while the MVs and

residuals are directly fed into a tracking CNN to propagate

objects through non-key frames, which can accelerate our

tracker significantly. Furthermore, an appearance CNNwhich

shares features with detector is introduced to assist data asso-

ciation, and it can be trained with detector jointly. Experi-

mental results onMOTChallenge benchmark demonstrate the

effectiveness of appearance CNN and tracking CNN, as well

as the joint training of appearance CNN and detector.
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