
Abstract—This paper discusses the real-time aspects of
networked control systems’ (NCSs) operating environments.
An open-loop unstable magnetic-levitation (maglev) test bed
was constructed and used to develop an NCS with a real-time
application interface (RTAI) operating environment. A client-
server architecture on a local area network (LAN) was
developed with the network communication based on the user
datagram protocol (UDP). The implementation of an event-
driven server and a time-driven client presented in this paper
facilitates a simple timing scheme that does not require clock
synchronization between the client and the server. A novel
prediction scheme involving the multiple-step-ahead
generation of control signals is used to maintain system
stability in the presence of excessive time delays and packet
losses in the communication network. The current system can
compensate for up to 20% data-packet losses without losing
stability with the maglev real-time-control test bed in the
communication network.
Keywords—Networked control system, time delays, packet

losses, real-time computing environment.

I. INTRODUCTION

With the advancement in the automation industry, the
need to perform complex remote operations has grown.
Ever-increasing computational capabilities and bandwidths
in the networking technology enabled researchers to
develop NCSs to implement control from a distance. The
real-time operating environment is needed in the
implementation of an NCS to handle the timings of various
events in the communications among these nodes. The
success of an NCS relies on the efficient integration of
computing resources, communication network, and control
algorithms in different levels of the automation industry. A
substantial amount of work has been done in the area of
NCSs. Teleoperation was the first form of an NCS that
became popular. Internet-based teleoperation was used in
telerobotics, remote manufacturing, tele-surgery, and
distance education [1–4]. Ferrell [5] was the first to work
on the problem of time delays in teleoperation. Later,

This material is based upon work supported by the National Science
Foundation under Grant No. CMS-0116642.

A. Ambike is currently a Software Engineer at NuView, Inc. in
Houston, TX, USA (e-mail: ajitambike@yahoo.com).

W.-J. Kim is with Department of Mechanical Engineering, Texas A&M
University, College Station, TX 77843-3123, USA (e-mail:
wjkim@mengr.tamu.edu). Phone: (979)845-3645, Fax: (979)862-3989.

K. Ji is with Department of Mechanical Engineering, Texas A&M
University, College Station, TX 77843-3123, USA (e-mail:
kunji@tamu.edu).

Anderson and Spong studied the bilateral control of the
teleoperated system with time delays [6]. Conway et al. [7]
introduced new concepts called time and position clutches
to deal with the time delays. Bluetooth wireless technology
was used to develop wireless control of a rotating inverted
pendulum by Eker and Cervin [8]. Ploplys et al. [9]
concluded that the UDP, an unreliable but faster protocol,
is better suited for real-time control over dedicated wireless
computer networks.

An investigation on real-time operating environments
enabling closed-loop real-time control over networks is the
main focus of this paper. Various key issues regarding the
realization of such systems have been identified and
addressed. An NCS with closed-loop control of a maglev
setup is implemented on a LAN in a real-time operating
environment. The stability of such control systems in the
presence of time delays has been an important area of
research. A novel multiple-step-ahead predictor-based
algorithm was developed to stabilize the NCS in the event
of network delays and packet loss.

The need of real-time operating environments is
presented in Section II. A brief discussion on the factors
affecting the selection of real-time operating environments
is given in Section III followed by a review of RTAI and
Linux Control and Measurement Device Interface
(comedi). The development of software architecture and
the implementation of the predictor-based algorithm are
presented in Section IV. In Section V, the experimental
verification of the NCS and its real-time operational
environment is given.

II. NEED OF REAL-TIME OPERATING ENVIRONMENT

The Ethernet is widely used in the Information
Technology (IT) industry and allows Internet connection.
Various standard communications protocols such as
Transmission Control Protocol/Internet Protocol (TCP/IP)
came into use in the NCSs. However, the use of a LAN in
NCSs poses several technical challenges including dealing
with network latencies. To understand the latency issues,
let us consider a simple client-server communication on an
Ethernet as shown in Fig. 1. The client requests some
information from the server, and the server responds to that
request. The maximum delay in this communication, i.e.
the latency, is a significant real-time constraint on the
communication system. Table I gives the nomenclature of
the time delay components shown in Fig. 1.

Ajit Ambike, Won-jong Kim, Senior Member, IEEE, and Kun Ji, Student Member, IEEE

Real-Time Operating Environment for
Networked Control Systems

2005 American Control Conference
June 8-10, 2005. Portland, OR, USA

0-7803-9098-9/05/$25.00 ©2005 AACC

ThB03.2

2353

T C p rep

T C w a it

T C tran sm it

T S p ro cess

T S p rep

T S w a it

T S tra n sm it

T C p ro cess

C lien t send s a
request to serv er

C L IE N TS E R V E R

S erver receiv es th e
request

S erver send s a
resp onse to clien t

C lien t rece ives th e
respo nse

T

Fig. 1. Time-delay components of the latency in a periodic client-server
communication process.

TABLE I. NOMENCLATURE FOR TIME-DELAY COMPONENTS.
Symbol Description

TCprep Time taken by the client to prepare the request message
TCwait Time spent by the client waiting for network access
TCtransmit Transmission time from the client to the server
TSprocess Time taken by the server to process the request
TSprep Time taken by the server to prepare the reply message

TSwait Time spent by the server waiting for network access
TStransmit Transmission time from the server to the client
TCprocess Time taken by the client to process the reply
T Total period of the process on the client side

As shown in Fig. 1, a typical client-server
communication in an NCS is periodic with a period T. The
total communication process is required to be completed in
one period. The total communication time or the latency is

.processtransmitwaitprep

processtransmitwaitpreptotal

TCTSTSTS

TSTCTC TCT
 (1)

We apply a client-server architecture to a closed-loop
NCS with the architecture shown in Fig. 2. The client side
of the architecture hosts the test bed. The server side
implements the controller. The request message sent by the
client to the server carries the sensor data and the response
message sent by the server to the client carries the control
data.

Actuator Plant

Sensor

sc

ca
Desired
Value

Actual
Value

+

-

Controller
&

Predictor

Server Side Client SideLAN

Fig. 2. Block diagram of a typical closed-loop NCS.

The creation of the message to be sent to the server is a
time-driven process. Taking our maglev setup for an
example, it is the responsibility of the operating system
(OS) to ensure that a sensor-data sample is taken every 3

ms for the 333.333 Hz sampling frequency. On the other
side of the communication network, the server waits for the
request message from the client. As soon as it receives a
message from the client, it processes the request and creates
a reply, the control data in the current research. The
moment of the creation of this reply to be sent to the client
is dependent on the arrival of the request. In other words, it
is an event-driven process. After the server sends back the
reply message to the client, the client receives it and
generates the control signal. In the beginning of the next
sampling period, another sensor-data sample is taken and a
similar communication process takes place. For this kind of
closed-loop NCSs to remain stable, these events have
certain deadlines. If some of these deadlines would be
missed, the stability of the NCS could be negatively
affected. In the current research, the maglev test bed to be
described in Section IV is open loop unstable. Srivastava
[10] demonstrated that all the calculations in the feedback
control loop should be completed in 1.4 ms. If this deadline
is missed due to the network latency, the system becomes
unstable. Moreover, in order to ensure that the time-
sensitive events happen at precise times, a real-time
operating environment is needed. A real-time system can
be defined as a system that responds to externally generated
stimuli within a finite and specified period of time [11].

III. SELECTION OF REAL-TIME OPERATING ENVIRONMENT

A. Factors Affecting the Selection of Operating
Environment

An appropriate OS is required to successfully implement
the control architecture. Following factors were considered
in the OS selection in the context of our maglev test bed.

1) Periodic tasks: The OS should allow execution of
periodic tasks.

2) Time resolution: The time required for closing the
control loop was expected to be not more than 1.4 ms.
Thus, it was desirable that the time resolution be as small as
14 µs, which is 1% of the time required for closing the
control loop.

3) Threads: There was also a need for multi-threaded
programming to implementing the algorithms for closed-
loop real-time control over the network.

Commercially available OSs such as Windows 2000,
various versions of Unix, and Linux are not real-time OSs,
and their performance with reference to above-mentioned
factors turned out not to be very satisfactory. Two timing
tests, as stated by Volz [11] were performed to observe
their performances. The smallest amount of time that can
be precisely measured on an OS is known as its clock
resolution. The time required reading a clock is typically
much less than its resolution. For example, the time
required to access the clock in Redhat Linux 7.3 was found
to be approximately 0.01 µs whereas its clock resolution

2354

was found to be 10 µs. Because the time for clock read is
less than the resolution, many consecutive clock reads can
be made before the value returned by the clock changes.
The number of times the clock was accessed before the
change in the value returned by the clock access function
was recorded and then plotted. Fig. 3 represents the results
of the first test on Windows 2000 and Redhat Linux 7.3
OSs. Significant variations in these plots indicate some
other OS activities that are not deterministic.

0 100 200 300 400 500
0

5000

10000

15000

20000

Iteration number
(a)

N
um

be
r o

f c
lo

ck
 re

ad
s

pe
r i

te
ra

tio
n

0 100 200 300 400 500
0

5000

10000

15000

Iteration number
(b)

N
um

be
r o

f c
lo

ck
 re

ad
s

pe
r i

te
ra

tio
n

Fig. 3. Plots of the number of clock reads per iteration for the first timing
test on (a) Windows 2000 and (b) Redhat Linux 7.3.

In the second test, the clock resolution was calculated
and plotted over several iterations. There were variations in
the values returned as clock resolution. Thus, the maximum
value returned is considered the clock resolution for the
corresponding OS. Fig. 4 presents the results of the second
test on Windows 2000 and Redhat Linux 7.3 OSs,
respectively. These simple tests demonstrated the non-real-
time characteristics of the two popular OSs.

0 100 200 300 400 500
0

5

10

15

Iteration number
(a)

C
lo

ck
 re

so
lu

tio
n

(u
s)

0 100 200 300 400 500
9

9.5

10

10.5

11

Iteration number
(b)

C
lo

ck
 re

so
lu

tio
n

(u
s)

Fig. 4. Plots of the clock resolutions obtained for the second timing test on
(a) Windows 2000 and (b) Redhat Linux 7.3.

We developed a novel real-time operating environment
with RTAI with Linux that provided a competitive solution
to the problem. Fig. 5 shows the results of first and second
tests run on RTAI 24.1.12 with Redhat Linux 7.3.

0 100 200 300 400 500
0

0.5

1

1.5

2

Iteration number
(a)

N
um

be
r o

f c
lo

ck
 re

ad
s

pe
r i

te
ra

tio
n

0 100 200 300 400 500
1

2

3

4

5

Iteration number
(b)

C
lo

ck
 re

so
lu

tio
n

(u
s)

Fig. 5. Plots showing results of timing tests on RTAI 24.1.12 with Redhat
Linux 7.3. (a) Number of clock reads per iteration for the first timing test.
(b) Clock resolutions obtained for the second timing test.

In Fig. 5 (a), the straight line denotes that there was no
significant non-deterministic OS activity. Although the
spikes in Fig 5 (b) denote the variation in the clock
resolution from 1 µs to 4.1 µs, the clock resolution reported
is consistently less than 5 µs.

B. Real-Time Application Interface
The RTAI [12] was developed as a real-time operating

environment solution at Dipartimento di Ingeneria
Aerospaziale Politecnico di Milano (DIAPM). Based on the
Linux kernel, it provides the ability to make Linux fully
preemptive. Linux alone as an OS lacks real-time support.
It is necessary to make some changes in its kernel behavior
such as interrupt handling and scheduling policies to make
it a real-time platform with low latency and high
predictability of timing performances. RTAI modifies the
Linux kernel to make it a real-time operating environment.
RTAI offers the same services as the Linux kernel core,
adding the features of a real-time OS. Compared to the
commercially available real-time OSs, RTAI's performance
is very competitive [12]. Table II summarized the typical
performance of RTAI. Last but not the least, RTAI is open
source, and free under the terms of the GNU Lesser
General Public License.

TABLE II. RTAI’S TYPICAL PERFORMANCE.
Context switch time 4 µs
Interrupt response 20 µs
Maximum periodic task rate 100 kHz
One-shot task rate 30 kHz

2355

IV. DEVELOPMENT OF THE NCS ARCHITECTURE

A. Test Bed
The single-actuator ball magnetic levitation system

developed by Stephen C. Paschall, II as his senior honors
project [13] was used as the test bed for this research. As
shown in Fig. 6, an electromagnet is used to produce the
force to support the ball against gravity. The force is
produced by controlling the currents in the coil of the
electromagnet using a control system implemented on a
personal computer (PC). The digital controller designed by
A. Srivastava [10] to stabilize this maglev system is given
by

.
13.0782.0

769.0754.1
1015.4)(

2

2
4

zz

zz
zD (2)

Fig. 6. Single-actuator magnetic ball levitation system [13].

B. Components and Protocols
The distributed NCS as shown in Fig. 7 was developed.

A desktop PC with a 600-MHz Celeron processor with the
implemented controller acts as the Server PC. Another
desktop PC with a 1.7-GHz Pentium IV processor was used
for data acquisition and acts as the Client PC. A 100-Mbps
Ethernet LAN was used as the medium of communication.
This arrangement has the advantage of using standard
commercial hardware. The network communication was
based on the TCP/IP protocol suite and the programs were
developed in the C programming language. These
programs are available in Ajit Ambike’s thesis [14].
Functions provided by the Sockets Application
Programming Interface (API) were used for
implementation.

The TCP/IP suite provides various ways of data transfer.
Although the TCP is a very reliable protocol for
communication over computer networks, it consumes more
computing resources like CPU time and memory and
introduces significant time delays in the communication
[15]. For closed-loop control over the network the added
reliability provided by the TCP may not worth the cost of
the network delays it introduces [9]. On the other hand, the
UDP does not provide additional services such as ensuring
ordered data delivery and robustness as provided by the
TCP and is less reliable. Yet, the UDP has fewer overheads
and induces less network delays as compared to the TCP.

Reduced round-trip time delays justified the use of the
UDP for NCS applications.

Fig. 7. Block diagram of the developed distributed NCS.

C. Timing of Events
In the past, synchronization of clocks was tried to

coordinate the events in the networked control loop [16].
As it is a complicated process generating additional
network traffic to deliver the synchronized clock signals, a
comparatively simpler approach was developed in this
paper. Our networked control architecture is based on a
combination of time-driven and event-driven processes.
Fig. 8 shows an example timing diagram of network
communication between the client and the server. The
communications labeled y denote the sensor data
transferred from the client to the server, and the
communications labeled u denote the control signal data
transferred from the server to the client. The subscripts of
these labels denote the sampling-period index (–7, …, 7)
and indicate if the data is an estimate (e). For example, y2

denotes the sensor data of the second sampling period, u3

denotes the control signal data for the third sampling period
and u2e denotes the control signal estimate for the second
sampling period.

Fig. 8. Example timing diagram of the NCS communication. An arrow
with a cross tip denotes that the data packet was lost. In the current
architecture, lost data are not worse than late arriving data.

Fig. 9 shows a pseudocode for the execution of the
closed-loop control over the LAN. Sampling and actuation
take place on the client side and are time-driven whereas
calculation of the control signal is event-driven. It was
calculated that if the sampling period is 3 ms, the actuation
has to occur within 1.4 ms after sampling for the system
stability [10]. Thus, for 333.33 Hz sampling frequency, the
sampling and the actuation are offset by 1.4 ms on the
client side. In the software, sampling and actuation are
implemented in two different periodic threads. The

2356

sampling thread samples the data and sends them using a
UDP socket. After sampling has occurred, the actuation
thread waits for 1.4 ms for the arrival of the data on the
same UDP socket. If the control data arrive in time, they
are used immediately for actuation. If not, the estimate of
the control data that the server sent in previous messages
will be used. A discussion on this estimation of control data
is given in the following.

Fig. 9. Psuedocode for the client-server communication.

The process on the server side waits for the arrival of
sensor data from the client. As soon as the data arrives,
appropriate control is calculated and is sent using a UDP
socket. In addition to the current control data, predicted
control data for the next p sampling periods are sent to the
client. The criterion to select this p will be discussed in
Section V. Parametric predictors are used to calculate these
estimates. These predictors require past sensor data, which
are transmitted to the server along with the current sensor
data.

The client stores and updates these values of predicted
control signal after each data arrival from the server. In the
event of time delays and data losses, these values of
estimates are used to generate control signals to stabilize
the system. Another option might be to output zero value,
when the actuator receives no control action [9]. But, with
an open-loop unstable plant like our current maglev test
bed, the stability of the system will be eventually lost in the
event of excessive time delays. Thus multiple-step-ahead
prediction is used to maintain system stability.

D. Predictor-Based Control Strategy
It was shown in Fig. 8 that the server calculated the

predicted controls for the next p sampling periods in
addition to the control for the current sampling period.
Accurate prediction of control data is important to
guarantee the stability of the system. Predictors were
designed using MATLAB's system identification toolbox
[17] and were based on an auto-regressive (AR) model
[18]. A tradeoff exists between the accuracy of a predictor
and the number of computations done by the predictor for
each prediction. Generally higher-order predictors have a

better accuracy of prediction than the lower-order ones of
the same type. On the other hand, higher-order predictors
take more computational time for a prediction than the
lower-order ones of the same type. Based on these
considerations, an 8th-order AR model was selected to
design the predictor after numerous design iterations.
Predictors were designed for up to 4-step-ahead predictions
of sensor output. The 4-step-ahead prediction for control
signal was calculated using the predicted sensor output
data.

V. EXPERIMENTAL VERIFICATION OF THE NCS AND ITS
REAL-TIME OPERATING ENVIRONMENT

To verify the working of the networked control strategy,
two sets of experiments were conducted. In the first set of
experiments, the NCS architecture was tested for the
maximum number of allowable consecutive delays. In the
first experiment of this set, a data packet was simulated to
be lost at the 3000th sample (at 3000 × 3 ms = 9 s), and no
signal was output to the actuator. The system being open-
loop unstable, the system lost stability as expected and the
levitated ball could not maintain its equilibrium position.
The output of the system is shown in Fig. 10 (a).

0 9 18 27 36 45 54
-3

-2

-1

0

1

2

3

Time (s)
 (a)

D
is

pl
ac

em
en

t f
ro

m
 e

qu
ili

br
iu

m

(m
m

)

0 9 18 27 36 45 54
-3

-2

-1

0

1

2

3

Time (s)
 (b)

D
is

pl
ac

em
en

t f
ro

m
 e

qu
ili

br
iu

m

(m
m

)

Fig. 10. Plot of displacement of ball from the equilibrium position vs. time.
(a) System response for the first experiment of the first set. (b) System
response for the second experiment of the first set.

In the second experiment of this set, the control signals
based on predictions of the sensor data were used.
Consecutive packet losses were simulated by rejecting the
arrived data p successive times every 3000 samples (i.e.
every 9 s). The value of p was increased by one in every
run of the experiment starting from zero. The maximum
value of p was found to be two. In other words, the system
accommodated two consecutive packet drops without
loosing stability. The response of the system is shown in
Fig. 10 (b). Every time these consecutive delays occurred,
the system performance was degraded.

2357

In the first experiment of the second set of experiments,
an artificial delay of 2 ms was introduced with real-time-
sleep function on the server side at the 7000th sampling
period (at 7000 × 3 ms = 21 s). Since the data did not arrive
in time at the client side, the system lost its stability and the
ball could not maintain its equilibrium position. The
response of the system is shown in Fig. 11 (a).

0 3 6 9 12 15 18 21 24
-1

-0.5

0.0

0.5

1

Time (s)
(a)

D
is

pl
ac

em
en

t f
ro

m
 e

qu
ili

br
iu

m

(m
m

)

0 3 6 9 12 15 18 21 24
-1

-0.5

0.0

0.5

1

Time (s)
 (b)

D
is

pl
ac

em
en

t f
ro

m
 e

qu
ili

br
iu

m

(m
m

)

Fig. 11. Plot of displacement of ball from the equilibrium position vs. time.
(a) System response for the first experiment of the second set. (b) System
response for the second experiment of the second set.

In the second experiment of this set, an artificial time
delay of 2 ms was introduced on the server side for every
qth sampling period starting from 6500th sampling period
(at 6500 × 3 ms = 19.5 s). The value of q was tested for 10
and the system was found to be stable. The value of q was
then reduced by one for each subsequent run of the
experiment and the system was checked for stability. The
minimum value of q was found out to be 5. This
represented the simulation of one long time delay of
sporadic nature in five consecutive delays. Thus, system
stability was achieved in the events of up to 20% data loss
in communication. The response of the system for q equal
to five is shown in Fig. 11 (b). In the event of simulated
network delays, the ball did not fall down from its
equilibrium position. However, the position fluctuation of
the ball about the equilibrium point increased. This
dynamic degradation was due to the use of the control
based upon the estimated sensor data because actual sensor
data were not available due to data-packet losses.

VI. CONCLUSIONS

A real-time operating environment is essential to
properly time the key communication events in an NCS and
to have a complete control on their execution. In this paper,
we established a novel real-time environment for NCSs
with RTAI 24.1.12 with Redhat Linux 7.3. The closed-loop
control of an open-loop unstable magnetic ball levitation

system was achieved over the Ethernet for its experimental
verification. Due to its better real-time performance, the
UDP was used in the communication architecture. A
multiple-step-ahead predictor was implemented wherein
predicted control signals were used to stabilize the system
in the events of time delays and packet losses. The number
of consecutive network delays compensated for by the
system depends on the accuracy of the predictors. The
predictors designed using an AR model were able to
stabilize the maglev system for up to 20% data-packet
losses in the communication network.

REFERENCES

[1] H. Hu, L. Yu, P. W. Tsui, and Q. Zhou, “Internet-based robotic
systems for teleoperation,” International Journal of Assembly
Automation,, vol. 21, no. 2, pp. 143–151, May 2001.

[2] M. Mitsuishi, S. Tomisaki, and T. Yoshidome, “Tele-micro-surgery
system with intelligent user interface,” in Proc. of the IEEE
International Conference on Robotics and Automation, San
Francisco, CA, vol. 2, pp. 1607–1614, Apr. 2000.

[3] R. C. Luo, J. H. Tzou, and Y. C. Chang, “Desktop rapid prototyping
system with supervisory control and monitoring through Internet,”
IEEE/ASME Transactions on Mechatronic , vol. 6, no. 4, pp. 399–
409, Dec. 2001.

[4] C. E. Garcia, R. Carelli, J. F. Postigo, and C. Soria, “Supervisory
control of a telerobotic system: A hybrid control approach,” Control
Engineering Practice, vol. 11, no. 7, pp. 805–817, July 2003.

[5] W. R. Ferrell, “Delayed force feedback,” IEEE Transactions on
Human Factors in Electronics, vol. 8, pp. 449–455, Oct. 1967.

[6] R. J. Anderson and M. W. Spong, “Bilateral control of teleoperators
with time delay,” IEEE Transactions on Automatic Control, vol. 34,
no. 5, pp. 494–501, May 1989.

[7] L. Conway, R. A. Volz, and M. W. Walker, “Teleautonomous
systems: Projecting and coordinating intelligent action at a distance,”
IEEE Transactions on Robotics and Automation, vol. 6, no. 2, pp.
146–157, Apr. 1990.

[8] J. Eker and A. Cervin, “Distributed wireless control using
Bluetooth,” in Proc. of IFAC Conference on New Technologies for
Computer Control, Hong Kong, P.R. China, Nov. 2001.

[9] N. J. Ploplys, P. A. Kawka, and A. G. Alleyne, “Closed-loop Control
over Wireless Network,” IEEE Control System Magazine, vol. 24,
no. 3, pp. 58–71, 2004.

[10] A. Srivastava and W. -J. Kim, “Internet-based supervisory control
with stochastic delay models,” in Proc. of the American Control
Conference, Denver, CO, vol. 1, pp. 627–632, June 2003.

[11] R. A. Volz, Real-Time Computing, Lecture Notes for CPSC 456,
Department of Computer Science, Texas A&M University College
Station, TX, 2003.

[12] P. Mantegazza, “DIAPM RTAI - real-time application,” [Online].
Available: http://www.rtai.org.

[13] S. C. Paschall, II, Design, Fabrication, and Control of a Single
Actuator Magnetic Levitation System, Senior Honors Thesis, Texas
A&M University, College Station, TX, May 2002.

[14] A. Ambike, Closed-Loop Real-Time Control on Distributed
Networks, Masters Thesis, Texas A&M University, College Station,
TX, Aug. 2004.

[15] A. S. Tanenbaum, Computer Networks, 3rd ed., Upper Saddle River,
NJ: Prentice-Hall, 2001.

[16] L. Zhang, Z. Liu, and C. H. Xia, “Clock synchronization algorithms
for network measurements,” in Proc. of IEEE INFOCOM, 2002, vol.
1, pp. 160–169.

[17] L. Ljung, “The system identification toolbox,” [Online]. Available:
http://www.mathworks.com/access/helpdesk/help/toolbox/ident.

[18] L. Ljung and T. Soderstrom, Theory and Practice of Recursive
Identification, Cambridge, MA: The MIT Press, 1983.

2358

