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Abstract

An optimal state feedback control strategy is proposed for processes described by non-linear,

distributed-parameter models. For different values of a given parameter susceptible to up-

sets, the strategy involves off-line computation of a repository of optimal open-loop control,

state, and the gain needed for the feedback adjustment of control. The gain is determined by

minimizing the perturbation of the objective functional, state and control due to an upset.

When an upset is encountered in a running process, the repository is utilized to obtain the

control adjustment required to steer the process to the new optimal state. The strategy is

successfully applied to a highly non-linear, heavy oil recovery process with the state depend-

ing non-linearly on time and two spatial directions inside a moving boundary, and subject

to pressure upsets. The results demonstrate that the proposed strategy is able to determine

control adjustment with negligible time delay, and navigate the process to the new optimal

state when disturbed by a pressure upset.
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Chapter 1

Introduction

In this introductory chapter, we briefly discuss about control theory fundamentals and de-

scribe different types of highly practiced control frameworks. Then we perform a literature

survey on the cutting edge closed loop control practices and finally, we conclude with the

novelty of our approach.

1.1 Control Theory Fundamentals

Control theory in Systems Engineering is a subfield of mathematics that deals with the

control of continuously operating dynamic engineering processes and machines. The prime

objective is to develop a detailed mathematical model and derive an optimum control action

so that the process can be effectively controlled without any delay or overshoot along with

ensuring system stability. To do this, a controller is mandated that navigates the controlled

process variable and compares it with the optimum pre-determined set point value. The dif-

ference between this actual process variable and the desired set point value is called the error

signal and it is applied as feedback to generate a control action to bridge the gap between

these variables [1]. Theoretical basis of process control for various plant operations was first

described by Edward Routh [2], Charles Sturm and Adolf Hurwitz who all contributed to

the development of control stability criteria as well [3]. From 1922 onwards, the development

of PID (proportional-integral-derivative) control theory was initiated by Nicolas Minorsky
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CHAPTER 1. INTRODUCTION

[4]. Although, major application of control theory is in systems engineering, that deals with

the design of process control systems for industrial operations, other applications range far

beyond this.

Basic Advantage of Closed Loop Control

Fundamentally, there are two types of control strategies: open loop control and closed loop

(feedback) control. In open loop control mode, controller action is independent of the process

output (controlled process variable). In closed loop control, the control action from the

controller is necessarily dependent on the process output to monitor the error signal; based

on this error, necessary corrective measure is taken by the finite control element in order to

minimize the deviation and drive the process to desired operating point [5]. A closed loop

controller therefore has a feedback loop which ensures the controller exerting a control action

to give a process output the same as the set point.

For this reason, closed loop controllers are also referred as feedback controllers. Open loop

control is an admissible choice when low cost is a preference, output varies rarely or not at all

and no quantitative measurement (dynamic) is possible or process disturbances are highly

rare. On the other hand, closed-loop control offers significant process navigation as a process

can be maintained at desired optimum point within a given accuracy. Moreover, Corrections

to process disturbances can be automated and the problems associated with instability can

be addressed [6]. It is noteworthy that, closed loop control strategies are highly reliant on

open loop results and researchers congregate various open loop optimization parameters to

develop their feedback control algorithms [3, 5, 6].

1.2 Review of Different Control Frameworks

Feedback control frameworks are indispensable for a desired output for most of the large

scale industrial operations. In this section, we discuss about different types of feedback

controllers and review their performances for any flow process.

2



CHAPTER 1. INTRODUCTION

PID (Proportional-Integral-Derivative) Control Framework

PID (proportional-integral-derivative) controllers are straightforward in principle, uncompli-

cated to tune, and is still extensively used in industrial process control [7]. Flexibility in

parameter tuning makes it more user friendly towards plant operators and engineers; thus,

it is being used in most of the simple and linear process applications. Tuning works well

(for an analogue controller) a linear system having monotonic response [8]. Many meth-

ods are available in the literature to propose a perfect PID such as Ziegler-Nichols tuning,

Cohen-Coon tuning and CHR tuning. Ziegler-Nichols tuning generate PID parameters such

as controller path gain (kp), integral (Ti) and derivative time (Td) constants using period

and frequency derived from Bode frequency diagrams [6, 8]. Cohen-Coon method rectifies

sluggish, steady state response generated by Ziegler-Nichols method having large process

delay; but this method is appropriate is mostly for first order processes [8]. CHR (Chien,

Hrones and Reswich) method is a modification of Ziegler-Nichols tuning method using 0%

overshoot criteria; as a result, the gain and the derivative time are lesser but the integral

time is larger [9].

Even though many advanced process control mechanisms are based on a PID control

algorithm, the same cannot effectively navigate practical production process with model

non-linearities and time varying uncertainties [10].

IMC (Internal Model Control) Control Framework

A central concept of IMC (internal model control) states that control can be achieved only

if the control system involves, either implicitly or explicitly, some mathematical formulation

of the process to be controlled [11]. In the basic IMC structure, as shown in Figure 1.1, a

replica of plant model is fed back to the controller and we obtain a new controller; this new

controller is advantageous in many ways. As described by Garcia et al.[12], the advantages

are in terms of dual stability, perfect control and zero offset. The IMC structure offers these

aforementioned advantages only when the plant model is perfect; but in reality, physical

systems are non-linear.

3



CHAPTER 1. INTRODUCTION

Figure 1.1: Basic Structure of a IMC

The selection of the invert plant model as a compensator can create instability even in the

presence of an infinitesimal plant-model mismatch [11]. Thus, tuning, model non-linearity

and robustness are major concerns associated with a IMC framework [13, 14].

MHPC (Model Heuristic Predictive Control) Control Framework

From mid-70s, several industrialists and academic practitioners started reporting effective-

ness of computer-model based control in controlling various processing units in petrochemical

refineries [15]. Richalet et al. [16] introduced a method called model heuristic predictive con-

trol (MHPC) and reported successful applications to large-scale industrial processes. MHPC

employed a finite impulse response model and a reference trajectory (a path that describes

how each controlled variable should return from the current status to the desired setpoint)

along with coincidence points (the points in the prediction horizon where the output needs

to be on the pre-specified reference trajectory). Hence, the main tuning knob for MHPC are

the time constants of the reference trajectories. Process delays reduce the efficacy of this

framework in some applications.

DMC (Dynamic Matrix Control) Control Framework

Charlie et al. [17] generated tremendous interest after reporting the use of a multivari-

able model-based control algorithm termed as dynamic matrix control (DMC) in the 1979

AIChE Annual Meeting and the 1980 Joint Automatic Control Conference. DMC utilizes

4



CHAPTER 1. INTRODUCTION

a truncated step response model and least squares minimization of errors with respect to

a constant setpoint. For DMC, main tuning knobs are the parameters in the least squares

minimization. Due to significantly less barrier in terms of real time implementation, the

use of these model-based computer control spread rapidly across petrochemical plants in the

Western industries. This was the basis of the modern day control techniques collectively

known as model predictive control (MPC), still high CPU time and robustness were major

issues [15].

GPC (Generalized Predictive Control) Control Framework

Independent from the industrial research and development wing, the adaptive process con-

trol (control method utilized by a controller that must adapt to a controlled system with

parameters which may vary, or are initially uncertain) community witnessed a rise of its own

version of MPC named as generalized predictive control (GPC) [18]. While DMC was envis-

aged to deal with multivariable constrained control problems mainly for the petrochemical

industries, GPC was proposed to offer an alternative to the self-tuning regulators, primar-

ily to overcome robustness issues. Similar to adaptive control methodology, GPC utilized a

transfer function model in the stochastic framework [15, 19]. Application of the same to mul-

tivariable control problems and inclusion of constraints became an issue. Though regarded

to be theoretically more comprehensive than DMC and its contemporaries, GPC went highly

unnoticed by the researchers [15].

MPC (Model Predictive Control) Control Framework

MPC (model predictive control) is a multivariable control algorithm that uses an internal

dynamic process model, history of past control measures and finally, an optimization cost

function over the receding prediction horizon [15]. Based on the structure of the associated

model and the cost function, different types of MPC frameworks are available in the liter-

ature. Non-linear MPC (NMPC or online-MPC) is characterized by the use of non-linear

system models and the numerical solution is typically based on direct optimal control meth-
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CHAPTER 1. INTRODUCTION

ods using Newton-type optimization schemes, in one of the variants: direct single shooting,

direct multiple shooting methods or direct collocation [20]. Though it is used in the com-

mercial scale applications most intensively, still it has limitations in terms of slow sampling

rate, high CPU time and extensive computation [21].

Table 1.1: Key Features of Different Control Frameworks

Control
Framework

Benefits Limitations

PID Flexible and user-friendly Model non-linearity

IMC
Perfect process control with zero
offset and easy to implement

Model non-linearity and im-
perfections

MHPC
Flexible in terms of parametric
tuning and quick control

Process delays

DMC
Comprehensive process control
and user-friendly applications

High CPU time and robust-
ness

GPC
Applicable to multivariable con-
strained parameter problems

Robustness

MPC
Wide range of applications - deals
with model non-linearities and
multivariable problems

High CPU time and compu-
tational overhead

In comparison to online-MPC, explicit-MPC (EPMC) is recognized for fast evaluation

of the control law [22]. In this parametric programming technique, the control law (piece-

wise affine function - PWA) is solved offline and the coefficients are stored for each control

region (convex polytopes) of the state space [23]. Thereafter, the optimal control action is

determined in two steps: first, the region containing the current state is evaluated and then,

the PWA is evaluated using the stored coefficients. In case, there is a growth in number of

control regions, it becomes computationally intensive due to increment in controller memory

6



CHAPTER 1. INTRODUCTION

requirements [24]. Various robustification techniques are also reported for MPC frameworks,

out of which, multi-stage MPC is the most practiced one; but the major drawback is often

associated with the uncertainties in the prediction horizon [25].

Table 1.1 summarizes important advantages and disadvantages of different closed loop

control frameworks.

1.3 Literature Survey

Optimal control theory engages with the problem of finding a control law for a given system

or a process such that a certain optimality criterion is satisfied. A control problem includes

an objective functional involving state and control variables. Besides, an optimal control

is a set of differential equations describing the paths of the control variables that can ef-

fectively optimize the objective functional. This optimal control necessary conditions can

be derived using Pontryagin’s principle (described in Chapter 2) or by solving the Hamil-

ton–Jacobi–Bellman equation (a sufficient condition).

Limitations of Open Loop Optimal Control

Open loop optimal control policies are capable enough to stimulate multifarious objective

functionals in terms of mass or revenue but in the present global scenario, the basic challenge

in terms of field scale application is inherently associated with the projection and mainte-

nance of the optimal state in presence of system or operational upsets; in other words, the

developed open-loop strategies lack direct control on the process that is performing at its op-

timality. Open-loop control algorithm generally produces a sequence of optimal state signal

for deterministic dynamics having zero perturbations. However in case the system leaves an

optimal trajectory due to unavoidable modelling imperfections, it needs to be mended with

the aid of a hand-tuned PID (proportional-integral-derivative) controller. This operation of-

ten leads to suboptimal behaviour as the error feedback has not been counted in optimization

calculations [26]. Hence, a feedback strategy needs to be amended for operating the process

at a desired optimal condition even when there is a tweak in the boundary conditions.

7



CHAPTER 1. INTRODUCTION

1.3.1 Selection of Control Strategy

Several controller design methods and control algorithms are briefly described in Section

1.2. Out of them, Model predictive control (MPC) is the most sophisticated version of ad-

vanced process control. Three decades have passed since milestone publications from several

industries and academic institutions on model predictive control (MPC). The first decade

is characterized by the fast-paced industrial adoption of the technology, mostly in the re-

fining and petrochemical sectors, that incited much interest and also confusion among the

academicians [27, 28]. The second decade reviewed a number of advances in comprehending

the MPC from a control theoretician’s viewpoint, which included state-space interpretations

and stability proofs [29]. These theoretical developments contributed to the furnishing of the

second generation of commercial software [30]. The third decade’s main focus has been on

the development of fast-paced MPC, a term chosen to collectively describe various endeavors

to bring orders-of-magnitude improvement in the efficiency of the real time and online com-

putation so that the technology can be applied to systems mandating very fast and accurate

sampling rates [31]. Throughout the three decades of the development, theory and practice

supported each other quite effectively, a primary reason for the fast and steady rise of the

technology [32].

Advantages and Disadvantages of NMPC

Recent studies [33, 34, 35] have shown that non-linear dynamic optimization is the basis of

model (non-linear) predictive control (NMPC) and has a crucial role in terms of real time

implementation of a feedback control scheme. Adetola et al. [36] analyzed the effective-

ness of NMPC and from their studies it is concluded that NMPC can address multivariable

constrained non-linear systems, can encompass multifarious performance criteria and it also

possesses a flexible structure for real-time optimizing control. Studies of De Souza et al. [34]

and Huang et al. [35] also substantiates above inferences. Moreover, Aydin et al. [37] show-

cased that shrinking-horizon NMPC has potential to optimally operate semi-batch processes

where the optimization problem is solved until the final time with a precise estimation of

8



CHAPTER 1. INTRODUCTION

system states. In spite of all these beneficial factors, an inherent certain computational time

often leads to non-negligible feedback delay in a closed-loop control operation. This CPU

time is always associated with the solution of the corresponding non-convex optimal control

problems in real-time mode. Gros et al. [38] demonstrated that this delay often results in

suboptimal solution, or worse, infeasible operation. Hence, reduction of CPU time gains

substantial importance and inevitably, it became an open research field both in academia

and industrial operations. Wolf et al. [39] showcased a deep review of the broad class of fast

computational methods for NMPC (suboptimal, explicit, hierarchical and sensitivity based).

Feedback Law: An Alternative Approach

Alternatively, stable optimal performance can only be accomplished by fabricating an op-

timal feedback law that generates a mapping from states to control actions by employing

all available optimal process information. In such optimal feedback control scheme, there is

hardly any separation between the desired trajectory and the real time trail for the com-

pletion of a given assignment [40]. In addition, researchers directly seek to deduce gain

parameter values of a feedback controller which in turn produce an optimal mapping from

state to control responses and are explicitly governed by a linearized control law. The notion

of transformed linearized control law has better potential in terms of control robustness as

it alleviates computational intricacies associated with model non-linearity.

This paper concentrates on the development and implementation of linearized control

mechanism that effectively correlates optimal values of system state at different magnitudes

of pressure to the corresponding optimal control with the aid of gain parameters. These gain

parameters are inherently coupled with the optimal values of Riccati elements, state and

co-state variables as a function of time. Optimal solutions of Riccati elements are eventually

deduced from perturbation equations in terms of state and co-state variables. Thus entire

computational overload could be dealt in off-line mode and we generate a repository in

terms of optimal policy, optimal state and optimal gain at different boundary conditions.

In the real time mode, we have utilized this repository and state feedback control law to

9



CHAPTER 1. INTRODUCTION

take necessary control adjustment through simple interpolation in order to steer the process

to optimality at the tweaked boundary condition. This interpolation mechanism, based on

known process information, effectively addresses the aforementioned computational delay.

1.3.2 State Feedback Law: Advances on Riccati based approach

Optimal feedback controllers incorporate three crucial attributes. They are governed by an

explicitly defined objective functional encompassing all relevant process variables along with

their relative weighting. Besides, they can control mapping of multiple input signals onto

more than one output signal and mandate precise estimation of system state. Associated

errors are rectified by the controller in case they adversely affect process performance, other-

wise can be neglected (as per minimum intervention principle that states that the deviations

from the desired trajectory needs to be corrected only when they interfere with process

performance). This is an essential property for systems enduring control dependent pertur-

bations, since process-irrelevant correction could destabilize the system [40]. The approach

of state dependent Riccati equations was first adopted by Pearson in 1960s and the notion

was duly modified as well as applied on real time set-ups by Beeler upon introducing con-

trol non-linearity [41, 42]. This approach was effective for solving Hamilton-Jacobi-Bellman

equation as a closed loop non-linear optimal control method. Nekoo et al. [43] utilized this

perception and demonstrated the adaptability of a modified state-dependent Riccati equa-

tion approach for a highly coupled non-linear system with complex weight matrix. But still

the associated models do not incorporate any spatial dependence of the controlling state.

Till date the application of Riccati-based approach is mostly restricted to lumped param-

eter models. For such systems, standard practice for closed-loop, real-time, control heavily

relies on an explicit expression relating the current operating state of the system to the stip-

ulated control variable [43]; the linearized control command is therefore simply expressed in

terms of a gain matrix applied to the existing system state. The gain matrix is determined as

the solution of a time-dependent Riccati equation, particularly when the control command

is derived over an infinite horizon. In that case, an efficient closed-loop optimal control

10



CHAPTER 1. INTRODUCTION

becomes more promising when coupled with a state estimator (for instance, Kalman filter

based state estimator), which equips the controller with an estimate of the actual prevailing

state of the system. This approach has become very trendy as it bridges the gap between

existing state/policy and its desired optimal counterparts [43, 44]. Typical studies involving

a Riccati equation-based approach deal with the control of induced perturbations affecting

a linearized model such as boundary layer transition control or instability development con-

trol. Additionally, gain-scheduling could be an alternate choice to achieve high-performance

(closed-loop) global control without heavy computations where the notion of “envelopes” is

introduced in the state space of the system followed by the derivation of control specific to

each envelope; these envelopes generally incorporate time dependent optimal estimations in

terms of system state or Riccati variables. Numerous aeronautical applications used to rely

on such a control scheme which eventually mandated several controllers to be resolved and

transition between the controllers is quite challenging [43, 44].

1.4 Novelty of the Thesis

The novelty (significance) of this thesis is primarily associated with the application of Riccati

transformation to a detailed non-linear, autonomous, unsteady state, distributed parameter

mathematical model. Simultaneously, state-dependent linearized control law was formulated

by strategically allocating boundary conditions to the perturbed expression of stationary

condition. The following steps were performed in this study:

1. We develop the theoretical structure of closed loop optimal control (described in Chap-

ter 3) by perturbing open loop optimal control framework (explained in Chapter 2);

thus, we formulate feedback optimal control necessary conditions in terms Riccati

equations and proportional gain control law.

2. We apply open loop optimal control strategy (Chapter 2) to a distributed parame-

ter process model (Section 4.2.1) and obtain a repository in terms of optimal policy

11
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and other process variables (optimal state and optimal gain) at known process inputs

(Section 4.4.1).

3. We perturb real-time optimal trajectory; we deploy the stored repository to interpo-

late the closest gain and apply necessary control adjustment to steer the process to

optimality at new operating condition (described in Section 4.4.2).

4. Finally, we analyze various results and endeavour to scrutinize the effectiveness of the

developed closed loop control strategy (Section 4.4.2).

Most important feature of this state-feedback control strategy is: the real time simulation

is entirely based on the interpolation with respect to the stored optimal repository that

reduces computational overhead as we do not need to calculate the optimal control problem

every time at tweaked system state. Therefore, chances of process or economic loss can be

effectively diminished.

This Feedback control algorithm can be applied to any physical system. We endeavored

to examine the effectiveness of this closed loop optimal control strategy for a laboratory

scale heavy oil reservoir (described in Section 4.1) in presence of pressure upset and we used

Tint(t) as the control function.
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Chapter 2

Optimal Control Background

In this chapter, we engage with the theoretical background of open loop optimal control

problem. We will define and analyze the problem, then we will discuss the solution strategy

and finally, we will conclude with its limitations in terms of real time application.

2.1 Problem Statement

The objective of an optimal control problem is to find a continuous control function u(t)

that necessarily optimizes a pre-defined objective functional encompassing an autonomous

integrand F [45] as follows:

I =

tf∫
0

F [y(t),u(t)] dt; y ∈ Rn, u ∈ Rm (2.1)

where y(t) and u(t) are state and control vectors

y =
[
y0 y1 . . . yn−1

]>
and u =

[
u0 u1 . . . un−1

]>
subjected to the constraint differential equations

−dy

dt
+ f [y(t),u(t)] ≡ G = 0; (2.2)

where f is the autonomous function vector

f =
[
f0 f1 . . . fn−1

]>
13



CHAPTER 2. OPTIMAL CONTROL BACKGROUND

along with the initial conditions

y(0) = y0.

Differential equations 2.2 is alternatively called the system of state equations since they

describe states of the system [y(t)] as a function of the independent variable t. Both F and

f may have continuous partial derivatives with respect to both state and control vector. In

this case, the final time (tf) is specified and the overall analysis is performed in the interval

0 ≤ t ≤ tf [46, 47, 48].

2.2 Augmented Functional

In case u(t) has indirect non-linear influence on the integrand F or f is highly non-linear [in

terms of y(t) or u(t)], we can not find any explicit solution for the control dependent state

i.e., y = y(t,u). To obtain the solution of the optimization problem, we adjoin the state

equation constraints to I using undetermined Lagrange multiplier vector λ(t) or co-state

variables [46] and obtain the augmented functional,

J =

tf∫
0

(
F + λ>G

)
dt (2.3)

where λ is the lagrange multiplier vector

λ =
[
λ0 λ1 . . . λn−1

]>
.

For the given initial condition, optimization of J is equivalent to the optimization of I

constrained by the state equations because the augmented functional consists of all terms

of both the objective functional and the state equation constraints. Furthermore, we apply

principles of variational calculus in order to analyze the problem. The analysis necessarily

leads to the solution of the optimal control problem.
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2.3 Analysis of Optimal Control

At the optimum of J , δJ = 0 [47]. Hence,

δJ =

tf∫
0

[δF + δλ>.G + λ>δG] dt. (2.4)

The result is necessarily subjected to the following pre-conditions:

1. The derivatives of F and f with respect to y and u are continuous in the vicinity of

the optimum; and

2. There exists at least one set of variations at each t in (0, tf] for which the variation of

G is not zero at the optimum [47].

In the context of equation 2.4,

δF = Fyδy + Fuδu, (2.5)

and

δG = Gyδy + Guδu + Gẏδẏ. (2.6)

Eventually, δJ depends upon arbitrary functions δy, δu and δλ. But, δẏ is not arbitrary

and depends on δy. Hence by applying integration by parts with respect to t, we obtain

tf∫
0

λ>Gẏδẏ dt =
[
λ>Gẏδy

]
t=tf
−
[
λ>Gẏδy

]
t=0

+

tf∫
0

[
d(λ>Gẏ)

dt

]
δy dt. (2.7)

Combining equations 2.5, 2.6 and 2.7 with equation 2.4, we obtain

δJ =
[
λ>Gẏδy

]
t=tf
−
[
λ>Gẏδy

]
t=0

+

tf∫
0

[
Fy + λ>Gy +

d(λ>Gẏ)

dt

]
δy dt

+

tf∫
0

[
Fu + λ>Gu

]
δu dt+

tf∫
0

δλ>.G dt. (2.8)
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Initially, system state is specified at y0. Thus at t = 0, δy = 0. At the final time, we could

specify the Lagrange multipliers at zero value i.e., λtf = 0 [47]. Thus Equation 2.8 takes the

following form:

δJ =

tf∫
0

[
Fy + λ>Gy +

d(λ>Gẏ)

dt

]
︸ ︷︷ ︸

=δJ1

δy dt+

tf∫
0

[
Fu + λ>Gu

]︸ ︷︷ ︸
=δJ2

δu dt+

tf∫
0

δλ> [G]︸ ︸
=δJ3

dt.

(2.9)

Since δy, δu and δλ are arbitrary in the above equation, δJ1 = 0, δJ2 = 0 and δJ3 = 0 must

be satisfied in order to ensure δJ = 0 [47, 48]. By necessity, we obtain

Fy + λ>Gy +
d(λ>Gẏ)

dt
= 0, (2.10)

Fu + λ>Gu = 0, and (2.11)

G = 0. (2.12)

2.4 Hamiltonian Based Approach

If we assume that system states y can be represented by the fully discretized linear differential

equations

dy

dt
= Ay + Bu ≡ f (2.13)

subjected to the initial conditions

y(0) = y0,

then the fully discretized objective functional I becomes linear quadratic as the following

I =

tf∫
0

(
y>Cy + u>Du

)
dt ≡

tf∫
0

F [y(t),u(t)] dt. (2.14)
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This approach enables us to introduce a mnemonic function called the Hamiltonian (by

combining 2.13 and 2.14 with the aid of undetermined λ, [47]) given by

H = λ>f + F. (2.15)

From the definition of the Hamiltonian, it is convenient to verify and compare that

Hλ =
∂H

∂λ
= ẏ ≡ −dy

dt
+ f [y(t),u(t)] = 0︸ ︷︷ ︸

state equations

, (2.16)

Hy =
∂H

∂y
= −λ̇> ≡ Fy + λ>Gy +

d(λ>Gẏ)

dt
= 0︸ ︷︷ ︸

co-state equations

, (2.17)

and

Hu =
∂H

∂u
= 0 ≡ Fu + λ>Gu = 0︸ ︷︷ ︸

stationarity condition

. (2.18)

2.5 Pontryagin’s Minimum Principle

We deploy Pontryagin’s minimum principle to derive necessary conditions for the minimum

of the above optimal control problem [47]. According to this principle, for any admissible

choice of control u = û + δu, H(ŷ, λ̂, û) is minimum at any instant of time. Thus,

H(ŷ, λ̂, û) ≤ H(ŷ, λ̂,u), 0 ≤ t ≤ tf. (2.19)

With the Hamiltonian based approach, Equation 2.9 yields the following:

δJ =

tf∫
0

[
Hy + λ̇>

]
︸ ︷︷ ︸

=δJ1

δy dt+

tf∫
0

[Hu]︸︷︷︸
=δJ2

δu dt+

tf∫
0

[−ẏ +Hλ]︸ ︷︷ ︸
=δJ3

δλ dt. (2.20)

For a given optimal control û, if both state and co-state equations are satisfied (for pre-

determined, fixed initial and terminal conditions respectively), we are eventually left with
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the stationarity condition. For sufficiently small δu, we can apply first order Taylor expansion

on the Hamiltonian Hu at (ŷ, λ̂, û + δu) and we obtain the following:

δJ = J(ŷ, λ̂, û + δu)− J(ŷ, λ̂, û) = I(ŷ, û + δu)− I(ŷ, û)

=

tf∫
0

[
Hu(ŷ, λ̂, û + δu)−Hu(ŷ, λ̂, û)

]
δu dt

=

tf∫
0

[
Hu(ŷ, λ̂,u)−Hu(ŷ, λ̂, û)

]
δu dt

where u is the perturbed control. Depending on u, we can have five different cases [47]:

1. u has no constraints: In this case, δu can have any value and a non-zero H(ŷ, λ̂, û)

leads to δI < 0. Hence, H(ŷ, λ̂, û) must be zero for the minimum of δI and it leads to

H(ŷ, λ̂, û) = H(ŷ, λ̂,u).

2. umin < u < umax: Provides H(ŷ, λ̂, û) = H(ŷ, λ̂,u) for the same reason as stated

above.

3. u ≤ umax: Provides H(ŷ, λ̂, û) ≤ H(ŷ, λ̂,u) because δu can take only negative values

and in order to ensure I(ŷ,u)− I(ŷ, û) ≥ 0.

4. u ≥ umin: Provides H(ŷ, λ̂, û) ≤ H(ŷ, λ̂,u) because δu can take only positive values

and in order to ensure I(ŷ,u)− I(ŷ, û) ≥ 0.

5. F = F (|u|): When u = 0, we can not apply the stationarity condition. ButH(ŷ, λ̂, û) ≤
H(ŷ, λ̂,u) provides the necessary condition for the minimum of I.

The above cases show that Pontryagin’s minimum principle provides necessary condition for

the minimum of δJ [47].
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2.6 Summary of Necessary Conditions

From the analysis of the optimal control problem, we obtain the necessary conditions (valid

in the interval of 0 ≤ t ≤ tf) as follows:

The system of state equations:

−dy

dt
+ f [y(t),u(t)] = 0, with the initial condition y(0) = y0, (2.21)

the system of co-state equations:

Fy + λ>Gy +
d(λ>Gẏ)

dt
= 0, with the final condition λ(tf) = 0, (2.22)

and the stationarity condition:

Fu + λ>Gu = 0. (2.23)

2.7 Solution of Optimal Control Problem

The solution of optimal control problem requires satisfaction of differential equations subject

to initial as well as final conditions. In this section, we discuss about the gradient method,

which is quite effective for solving a wide range of optimal control problems [47]. In this

method, the state and co-state equations are solved using initial guesses for the control u

and the final time tf. The guessed u is then improved using the stationarity condition Hu in

the interval 0 ≤ t ≤ tf. The stepwise iterative procedure of the gradient method is:

1. We guess for the initial control function u.

2. We integrate the state equations forward to the final time using the initial conditions

and the control function.

3. We calculate the objective functional using the control functions and the corresponding

state and co-state.
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4. Thus, we integrate the co-state equations backward to initial time using the final

conditions at the final time, the control functions, and the state determined in step 3.

5. Finally, we improve the control function using the gradient information (until the

stationarity condition approaches zero) and repeat Step 2 onward until there is no

further reduction in the objective functional.

For sufficiently small ε, δu = −εHu; and the changes in δu is small enough so that the change

in J is given by J(u + δu)− J(u) = δJ . This change in J to be minimized. Hence, based

on this strategy, most improved functional value Jnext results from unext(t) = u(t) + δu(t)

and the corresponding state ynext [47]. Optimal control theory is applied in Section 4.4.1.

Challenges in Optimal Operation

The basic challenge associated with the real time application of open loop optimal control

strategy is computational overhead. For deterministic dynamics, open-loop control algorithm

generates a sequence of optimal state signals experiencing zero perturbations; in other words,

open-loop policies do not have direct control regulation on the processes performing at its

optimality. Presence of disturbances in the system state (pressure in our case, Chapter 4)

often leads to sub-optimal or non-optimal behaviour, and this phenomenon can be effectively

addressed by computing error feedback in optimization calculations.

A feed-forward scheme could also mitigate this setback but it mandates distinguished

sensor and model for each of the disturbances; on contrary, a feedback strategy imparts

control action, based on a unique process model, only when the output gets deviated from

the set point (described in Chapter 3). Control action, based on this error, effectively bridges

the gap between the real time perturbed state and the desired optimal state. Moreover,

solving the entire optimal control problem at tweaked boundary condition is not a convincing

approach as the iterative solution is quite time consuming or, computationally intensive.

These perceptions invoke the idea of incorporation of an effective feedback control strategy

(described in Section 3.5) in real time applications.
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Chapter 3

Theoretical development

In this chapter, we develop Riccati equations and state feedback control law based on the

open loop optimal control necessary conditions discussed in Chapter 2. We introduce the

Riccati based approach to formulate state feedback control strategy and apply the same to

a distributed parameter system.

3.1 Riccati Based Approach

From the theoretical derivation based on the Hamiltonian approach (as described in Section

2.4) we obtain

Hλ =
∂H

∂λ
= ẏ = Ay + Bu, (3.1)

Hy =
∂H

∂y
= −λ̇> = Cy + A>λ, (3.2)

and

Hu =
∂H

∂u
= 0 = Du + B>λ. (3.3)

Thus we have from Equation 3.3

u = −D−1B>λ. (3.4)
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Eventually, we obtain from Equation 3.1 and 3.4

ẏ = Ay −BD−1B>λ, (3.5)

and from Equation 3.2

λ̇ = −Cy −A>λ. (3.6)

One possible solution of this problem is represented by the form

λ(t) = S(t)y(t) (3.7)

which is known as Riccati transformation [48, 49, 50]. Consequently, Equations 3.5 and 3.6

yield

ẏ = Ay −BD−1B>Sy, and (3.8)

Sẏ + Ṡy = −Cy −A>Sy. (3.9)

By substituting equation 3.8 into equation 3.9, we obtain

Ṡ = −SA−A>S + SBD−1B>S−C; known as Riccati equation, (3.10)

with the linearized proportional gain feedback control law

u = −D−1B>λ = −K(t)y(t); where, K is the proportional gain parameter.
(3.11)

In the context of the above analysis, if we change the initial conditions in terms of y(t0), the

open loop optimal control policy needs to be recalculated as we can not apply superposition

principle to quickly adjust the deviations in initial condition and the non-linear dependence

of the optimal control problem on the initial conditions [49]. Hence, in our case, final

time (tf) and initial conditions (y = y0) are pre-determined and fixed. When the process

experiences an upset in any boundary condition, perturbation equations can be formulated
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which represent the system behaviour for fixed initial conditions in some domain close to

the nominal state ȳ0, that is for |δy(t0)| ≤ ε [48, 50]. Thus, the closed loop optimal control

problem can be formulated as the minimization of second variation of J around a known

optimal (δJ , [51])

δ2J =

tf∫
0

[
δuT

(
∂2H

∂u2

)
δu + δyT

(
∂2H

∂y∂u

)
δu + δyT

(
∂2H

∂y2

)
δy

]
dt (3.12)

subjected to the perturbed system of state equations (as the constraint)

d[δy(t)]

dt
=

(
∂f

∂y

)
δy +

(
∂f

∂u

)
δu (3.13)

using δu or the adjustment to control as the control policy. The deviation in the system

is represented by Equation 3.13 whose solution δu(t) and δy(t) represents optimal feedback

corrections to the nominal open loop control [49]. But the solution of this optimal control

problem at a perturbed boundary condition (or, system state) is computationally intensive

or, time consuming (as described in section 2.7); eventually, chances of process or economic

loss are more pronounced. Alternatively, we can deploy Riccati based approach and introduce

the notion of Riccati transformation on the perturbed state (δy) and adjustment to control

(δu) as

δλ(t) = S(t)δy(t) (3.14)

which is described in subsequent sections.

3.2 Basis of Closed Loop Control

Let us consider the open-loop problem of finding the control u(t) at the optimum of the

objective functional

I =

tf∫
0

x0f∫
0

x1f∫
0

x2f∫
0

F [y(t),u(t)] dx2 dx1 dx0 dt; y ∈ Rn, x ∈ R3, u ∈ Rm (3.15)
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subject to the process model, or state equation

∂y

∂t
= f ; y(0) = y0, p = 0 (3.16)

where f depends on u, y and its spatial derivatives; and p is a vector of functions depending

on y at spatial boundaries, y∂, and its derivatives. This problem is equivalent to finding the

optimum of the augmented functional,

J =

tf∫
0

x0f∫
0

x1f∫
0

x2f∫
0

[F + λ>(−ẏ + f)] dx2 dx1 dx0 dt (3.17)

where λ is the co-state variable vector. At the optimum of J , its variation δJ = 0. Using the

principles of variational calculus, this result eventually provides the necessary conditions—

differential co-state equation with zero co-states at the final time tf along with boundary

conditions, and the variational derivative of J with respect to u being zero—which must be

satisfied to obtain the optimal control policy û(t) and the corresponding optimal state ŷ(t).

3.3 Optimal Process under Upset

For a process running with the optimal control policy, a process upset (i.e., a change in a

parameter value) renders the state non-optimal. Given a sufficiently small upset, the change

in J from the optimal state (ŷ, û) can be expressed as

∆J = J(y,u)− J(ŷ, û) = δJ(ŷ, û)︸ ︷︷ ︸
=0

+ δ2J(ŷ, û; δy, δu)

where δy = y− ŷ, and δu = u− û. Thus, the restoration of the process to optimality under

the upset can be posed as the optimal control problem of finding the control adjustment δu

that minimizes δ2J (i.e., the second variation of J) subject to the perturbed state governed

by

∂(δy)

∂t
=

∂f

∂y

̂
y,û

δy +
∂f

∂u

̂
y,û

δu; δy(0) = δy∂ = 0 (3.18)
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3.4 Incorporation of State Feedback

Discretizing the spatial domain using grid point spacing ∆xi along each xi-direction, we get

δ2J(ŷ, û; δy, δu) =

tf∫
0

(
1

2
δu>

∂2H

∂u2

̂
y,û

δu + δy>
∂2H

∂y∂u

̂
y,û

δu +
1

2
δy>

∂2H

∂y2

̂
y,û

δy

)
dt

(3.19)

where

H =
(
λ>f +

L−1∑
i=0

M−1∑
j=0

N−1∑
k=0

Fijk

)
∆x0∆x1∆x2 (3.20)

with λ and f as vectors of their respective elements at all spatial grid points [51]. Thus, for

n state variables and L, M and N grid points along, respectively, x0-, x1- and x2-directions,

λ =
[
λ0 λ1 . . . λn−1

]>
and (3.21)

λi =
[
λi,0,0,0 λi,0,0,1 . . . λi,0,0,N−1 λi,0,1,0 λi,0,1,1 . . . λi,0,1,N−1 . . . λi,0,M−1,0

. . . λi,0,M−1,N−1 . . . λi,L−1,M−1,0 λi,L−1,M−1,1 . . . λi,L−1,M−1,N−1

]>
,

i = 0, 1, . . . , n− 1
(3.22)

Note that the minimization of δ2J subject to Equation (3.18) with δu(t) as the control func-

tion is the linear quadratic regulator problem of optimal control with finite time horizon [51].

In the necessary condition for the minimum of δ2J , we introduce the Riccatti transformation,

δλ = Sδy (3.23)

where δλ and δy have the same structure as of λ in Equations (3.21) and (3.22), and

S =



S0,0 S0,1 . . . S0,n−1

S1,0 S1,1 . . . S1,n−1

...
...

...
...

Sn−1,0 Sn−1,1 . . . Sn−1,n−1


(3.24)
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is a block positive definite Riccati matrix, each element of which is a symmetric matrix of size

LMN × LMN . Finally, we incorporate into the necessary condition, the feedback control

law

δu = −Kδy (3.25)

where K is the gain matrix. With the above considerations, the necessary condition for the

minimum of δ2J results in the differential Riccati equation [48, 49, 50, 51]

dS

dt
= −SA−A>S + SBD−1B>S−C; S(tf) = S∂ = 0 (3.26)

where

A =
∂f

∂y

̂
y,û

, B =
∂f

∂u

̂
y,û

, C =
∂2H

∂y2

̂
y,û

, D =
∂2H

∂u2

̂
y,û

, (3.27)

and E =
∂2H

∂y∂u

̂
y,û

(3.28)

and a stationarity condition for δu that provides the equation for the gain [51],

K = D−1
(
E> + B>S

)
(3.29)

3.5 Feedback Optimal Control Strategy

Following is the strategy (Figure 3.1) to apply feedback control to a process susceptible to

upsets in a parameter value:

Offline Calculations

For each, different value of a parameter expected to undergo upsets, determine and store a

repository of the following:

1. the optimal state ŷ(t) and control û(t) by solving the open-loop optimal control prob-

lem, and

26



CHAPTER 3. THEORETICAL DEVELOPMENT

2. the gain K(t) by solving the differential Riccati equation and the gain equation

Figure 3.1: Closed Loop Optimal Control Strategy

Real-Time Control

Execute the process with a nominal value of the parameter, and pre-determined û(t). When-

ever there is an upset in the parameter, do the following:

1. obtain the interpolated ŷ(t) and K(t) from the repository at the current parameter

value, and
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2. obtain and apply the improved control

û(t) = u(t) + K(t)[y(t)− ŷ(t)]

which is the control law given by Equation (3.25).

To summarize, we developed the theoretical background of a proportional gain state-

feedback controller with time varying gain which will perform control adjustment so that

the process gets steered to optimal process conditions and simultaneously minimize the

variation in the objective functional [50].

Advantage of Real Time Feedback Strategy

This feedback control strategy is totally based on real time interpolation with respect to the

stored optimal repository. Thus, the simulation or real time implementation mandates less

CPU time as we do not need to re-calculate the optimal control problem all over again at

tweaked boundary condition (or, system state); thus, chances of process or economic loss

(mentioned in section 3.1) are effectively subdued. The solution strategy along with control

algorithm and simulation results are described in section 4.4.2.

28



Chapter 4

Application

We derive the necessary conditions of open-loop optimality (described in Chapter 2) and

apply the feedback control strategy (explained in Chapter 3) to a distributed-parameter

system of a labscale heavy oil reservoir to which a gas (nitrogen) is injected to produce

heavy oil. In this chapter we discuss the following:

1. We discuss the experimental process.

2. We review model equations, necessary conditions of open loop optimal control and

closed loop control framework.

3. We analyze different simulation results.

4.1 Process Description

In this section, the experimental procedure to determine the dependence of solubility (wint)

of nitrogen on temperature (T ) and pressure (P ) is described. Details of experimental

apparatus and various parts are described in Appendix A.

4.1.1 Experimental Set-up

As shown in the schematic (Figure 4.1), nitrogen is injected to the pressure vessel containing

a cylindrical mesh packed with heavy oil (setup equivalent to the geological core).
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Figure 4.1: Schematic of Lab-scale Setup
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At the start of each experiment, air is purged out from the pressure vessel by applying

14.5 psi-absolute vacuum pressure through a vacuum pump. Then nitrogen gas is injected

into the pressure vessel. The physical reservoir model is suspended from a load cell inside

the vessel and it comes in contact with nitrogen. Elevated temperature aids in dissolution

of nitrogen through oil. Eventually, viscosity of heavy oil drops and it starts flowing from

the physical model; this live oil (nitrogen dissolved heavy oil) starts draining out from the

bottom of the model by the effect of gravity. Thereafter, through a funnel, the live oil is

accumulated inside the collection tube. The accumulated live oil is directed through the

viscometer to the flash separation tank preheated at 70 ◦C. As the separated nitrogen from

the flash tank enters water columns, the water level changes. This change reflects the amount

of nitrogen dissolved in the oil. The flow regulating valve on the top is then vented to liberate

nitrogen to the fume hood. The nitrogen-free dead oil from the flash tank is weighed. At

the end of each experimental run, the gas flow is shut down and the pressure vessel is vented

to atmosphere. Relative errors between the oil recoveries from the repeated experiments

were found to be in the range of 0.8 % to 1.3 %. Method of determination of interfacial

concentration as a function of temperature and pressure is described in Appendix A, section

A.3. Different experimental results are portrayed in Appendix D.

4.2 Mathematical Equations

The prime focus of the laboratory scale experimental investigation is to maximize the pro-

duction of oil by injecting nitrogen through the porous media. The amount of accumulated

dead oil is necessarily regulated by the cumulative effect of concentration, temperature and

potential energy gradients. We couple these governing constraints with our objective func-

tional and eventually derive necessary conditions for open loop optimality. Moreover, we

formulate the Hamiltonian for the state feedback control scheme. In this section, we de-

scribe all these equations. In addition, we formulate different initial, terminal and boundary

conditions corresponding to these equations.
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4.2.1 Process Model

We have three non-linear, autonomous, simultaneous process model equations in a dis-

tributed parameter system.

Assumptions for Model Formulation

Seven assumptions are made in order to simplify the system in terms of energy, mass and

momentum balance [52, 53, 54]. These assumptions are:

1. The flow of the live oil through the porous medium along the vertical direction is

governed by Darcy’s law.

Justification: The flow of live oil is a creeping flow since Reynold’s numbers (Re)

calculated for the live oil flow are less than unity [54].

2. The diffusion of the nitrogen is pre-dominant along the radial direction only and dif-

fusion in the vertical direction is neglected.

Justification: Diffusion occurs in the radial direction over a large surface area along

the circumference of the cylindrical model. On the other hand, diffusion in the vertical

direction occurs over a much smaller area starting at the top of the cylindrical model.

Moreover, convection plays a dominant role in the vertical direction.

3. The porous medium possesses uniform porosity and permeability.

Justification: The oil is mixed uniformly with glass beads and packed in a cylindri-

cal stainless steel wire mesh. Thus, the model has a uniform permeability, and no

heterogeneities prevail.

4. The density of the live oil is assumed constant in the range of temperature variation

(between 25 ◦C to 90 ◦C).

Justification: A sensitivity analysis suffices that a small variation in live oil density

[54] generates an insignificant change in the maximum objective functional.
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5. No chemical reaction takes place as the absorption of the solvent gas in heavy oil is

purely a physical phenomenon [54].

6. Radioactive effects are neglected.

7. The specific heat capacity (Cp) and the thermal conductivity coefficient (k) are assumed

to be constant in the range of temperature variation.

Justification: A sensitivity analysis suffices that a small variation in specific heat and

conductivity [54] generates an irrelevant change in the maximum objective functional.

Based on first principles, the process model is given by the following three state equations:

∂w

∂t
=

D

r

∂w

∂r
+D

∂2w

∂r2
+
∂D

∂w

(
∂w

∂r

)2

+
∂D

∂T

∂w

∂r

∂T

∂r
+

α

φµ

∂w

∂z
− αw

φµ2

(
∂µ

∂w

∂w

∂z

+
∂µ

∂T

∂T

∂z

)
, (4.1)

∂T

∂t
=

γ

r

∂T

∂r
+ γ

∂2T

∂r2
+ γ

∂2T

∂z2
+

α

φµ

∂T

∂z
− αT

φµ2

(
∂µ

∂w

∂w

∂z
+
∂µ

∂T

∂T

∂z

)
, (4.2)

∂z

∂t
= − α

φµ̄(r)
(4.3)

where w is mass fraction of nitrogen in the reservoir, T stands for temperature of the reser-

voir, and z represents the height along the vertical direction or the moving boundary itself.

Moreover, α = KrKρg where Kr and K are, respectively, the relative permeability and

permeability of the porous medium, t is time, r is the radial distance, g is gravity, ρ is oil

density, φ is medium porosity with γ = k
ρCp

where Cp as specific heat capacity and k as

thermal conductivity.

It may be noted that D = D(w,P, T ) is the dispersion coefficient of gas in heavy oil

(refer to Appendix C.2), µ = µ(w,P, T ) is the heavy oil viscosity (see Appendix C.1),

and µ̄(r) is the average viscosity at z = 0 as a function of r. Detailed derivation of these

process models are explained in Appendix E and model simulation results (up to 163.85 min)
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are described in Appendix F. The above equations are subject to the following initial and

boundary conditions:

Initial and Boundary Conditions

Initially, height of bitumen is Z0 (35 cm) with no dissolved nitrogen. However, all surfaces

have interfacial conditions in terms of both temperature and nitrogen at any point of time.

Thus, initial conditions at t = 0 are:

w =


0 ∀ 0 < z < Z0, 0 < r < R

wint at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R,

T =


T0 ∀ 0 < z < Z0, 0 < r < R

Tint at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R; and,

z = Z0 ∀ 0 ≤ r ≤ R.

It is noteworthy that r is the radius measured radially outward from the central vertical axis

of the cylindrical physical model and z is the vertical distance measured upward from the

bottom of the cylindrical core as shown in the Figure 4.2. Also, initially T0, Tint = 23 ◦C.

The boundary conditions at any point of time t > 0 are

w = wint at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R,

T = Tint at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R

where z(t, r) is the bitumen height inside porous media at any given r and t. Additionally,

due to symmetry,

∂T

∂r
,
∂w

∂r
= 0 at r = 0 ∀ 0 ≤ z ≤ Z0.

at any time instant. Model equations with the associated initial and boundary conditions

become constraints of the optimal control problem that is portrayed next.
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Figure 4.2: Cylindrical Geometry

4.2.2 Objective Functional

The mathematical model of the lab-scale nitrogen injection enhanced oil recovery process

forms the basis for the optimal control problem; the objective of the same is to maximize oil

production using interfacial temperature versus time as a control function.

Objective Functional

In the present case, the optimal control problem is to maximize heavy oil production given

by the following objective functional

I =

tf∫
0

ṁ dt

subjected to the satisfaction of the associated non-linear model equations or constraints. In

the above expression, tf is the final time (fixed and pre-determined) and ṁ is the mass flow
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rate at any instant of time which is given by

ṁ =

R∫
0

2πρv0r dr =

R∫
0

2πραr

µ̄
dr.

Combining above two equations, we obtain

I =

tf∫
0

R∫
0

(
2πραr

µ̄

)
dr dt =

tf∫
0

R∫
0

(
βr

µ̄

)
dr dt (4.4)

where β = 2πρα. The associated non-linear constraint equations are:

−∂T
∂t

+ f1 = G1(t, r, z) = 0 (4.5)

where
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where
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)
and,

−∂z
∂t

+ f3 = G3(t, r, z) = 0 (4.7)

where

f3 = − α

φµ̄
.

Thus maximization of I is equivalent to the maximization of the following augmented func-

tional:

J = I +

tf∫
0

R∫
0

Z0∫
0

[
λ1(t, r, z)G1 + λ2(t, r, z)G2 +

λ3(t, r)G3

Z0

]
dz dr dt (4.8)
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where λ1, λ2 and λ3 are the undetermined co-state variables corresponding to three state

variables temperature, mass fraction (nitrogen) and axial distance respectively. The bound

is subjected to Equation 4.4. Upon substituting Equations 4.5, 4.6 and 4.7 into 4.8, we get

J =

tf∫
0

R∫
0

Z0∫
0

{
λ3
Z0

(
−∂z
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− α
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)
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dz dr dt+
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D
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∂2w

∂r2
+
∂D

∂w

(
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)}
dz dr dt. (4.9)

Next step is to obtain variation of J and deduce the necessary conditions for its maximum.

Control Function

Control function for this problem is interfacial temperature as a function of time which is

Tint(t). Referring to Figure 4.2, interfacial temperature prevails at:

1. the curved surface, that is, T (t, R, z) for any height and time;

2. the bottom surface, that is, T (t, r, 0) for any radial distance and time; and

3. the top surface, that is, T (t, r, Z0) for any radial distance and time.

Basically, T (t, R, z), T (t, r, 0), and T (t, r, Z0) represent the same entity Tint(t) at different

physical locations. Eventually, each variation δT (t, R, z), δT (t, r, 0), and δT (t, r, Z0) repre-

sents the same variational entity or δTint(t). To be admissible, Tint(t), should be such that

the state equations, and the associated initial and boundary conditions are satisfied.
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4.2.3 Necessary Conditions of Optimality

The necessary condition for the maximum of J is that its variation δJ be zero, that is,

δJ = δI +

tf∫
0

R∫
0

Z0∫
0

(δλ1G1 + λ1δG1) dz dr dt+

tf∫
0
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Z0

dz dr dt = 0. (4.10)

We obtain by necessity following three co-state equations:

Co-state Equation 1:
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and 0 ≤ r ≤ R and 0 ≤ z ≤ Z0

Co-state Equation 2:
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and 0 ≤ r ≤ R and 0 ≤ z ≤ Z0

Co-state Equation 3:

∂λ3
∂t

= 0, (4.13)

and 0 ≤ r ≤ R
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and, one stationarity condition:
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(4.14)

where ∂J
∂Tint

is the variational derivative of J with respect to Tint. This derivative essentially

approaches zero upon minimization of the augmented functional J . Detailed derivation of

these equations is explained in Appendix G.

Terminal and Boundary Conditions for Co-state variables

At the final time, state variables become fixed. Thus, terminal conditions at t = tf are:

λ1,2 =


0 ∀ 0 < z < Z0, 0 < r < R

0 at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R,

λ3 = 0 ∀ 0 ≤ r ≤ R.

The boundary conditions at any point of time 0 < t < tf are

λ1,2 = 0 at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R,
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Additionally, due to symmetry,

∂λ1
∂r

,
∂λ2
∂r

= 0 at r = 0 ∀ 0 ≤ z ≤ Z0.

Summing up, the necessary conditions for the maximum of J are

1. the state equations (Equation 4.1, Equation 4.2 and Equation 4.3), and the set of initial

and boundary conditions,

2. the co-state equations (Equation 4.11, Equation 4.12 and Equation 4.13), and the set

of terminal and boundary conditions; and

3. the stationarity condition (Equation 4.14).

The aforementioned conditions must be satisfied in order for Tint(t) to be optimal, that is,

maximize I (or, J) or the oil production.

4.2.4 Closed Loop Optimal Control Framework

Following the development of Chapter 3, fully discretized Hamiltonian (at any instant of

time t) in our case is given by

H =
L−1∑
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(
2πρri −

λ3i
φ

)
α
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]
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)

+Dwijw
2
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ij
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]
∆r∆z.

(4.15)

In this case, both Tij and wij have dimensions of Ni ×Nj whereas, zi entails Ni numbers of

grid points as it varies radially only. Moreover, f =
[
f1 f2 f3

]>
. Also, following Table

4.1 displays the dimensions of relevant matrices for our algorithm:
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Table 4.1: Matrix Dimensions

matrix S A B C D E

dimension n× n n× n n× 1 n× n 1× 1 n× n

Terminal and Boundary Conditions for Riccati variables

For integrating system of Riccati equations (Equation 3.26) backward, we utilize optimal

state and optimal co-state and deploy following terminal and boundary conditions. At the

final time, state variables become fixed. Terminal conditions at t = tf are:

Sij =


0 ∀ 0 < z < Z0, 0 < r < R

0 at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R,

The boundary conditions at any point of time 0 < t < tf are

Sij = 0 at r = R ∀ 0 ≤ z ≤ Z0 and z ∈ {0, Z0} ∀ 0 ≤ r < R,

Moreover, due to symmetry,

∂Sij
∂r

= 0 at r = 0 ∀ 0 ≤ z ≤ Z0.

4.3 Development of Computer Program

We develop the computer program using C++ programming language. We solve (integrate)

model equations, then we obtain open loop policies [Tint(t)] at different pressures and finally,

we simulate for closed loop algorithm whenever there is a pressure upset.

Model Equations

We utilize spline fittings to interpolate and extrapolate interfacial concentration (wint) and

diffusivity (D) at different grid point locations of temperatures and mass fraction respectively.

For example, we have four different data sets for wint versus T at five different pressures as
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described in Figure ??. Hence, we use quadratic spline for interpolating solubility at different

intermediate temperature at any pressure as number of data points is four. On the other

hand, we have thirty data points for D versus w at a given temperature and pressure. In

this case, we fit cubic spline for interpolation purposes. We have developed two separate

libraries (for quadratic and cubic spline) libraries for these purposes.

We fully discretize partial differential equations along radial and axial directions; thus,

they are converted in to ordinary differential equations and we integrate them using Runge-

Kutta-Fehlberg method with adaptive step-size. We have developed and deployed two dif-

ferent libraries for these purposes. Adaptive step size is evaluated in one library whereas,

Runge–Kutta–Fehlberg algorithm is coded in the other library. In addition, we deploy Simp-

son’s rule for numerical integration purposes.

Open Loop Policies and Riccati Equations

For open loop optimal control, we generate a library for gradient descent line search method

and for unconstrained minimization using Broyden–Fletcher–Goldfarb–Shanno algorithm.

These two techniques were incorporated within the same library as two separate classes;

moreover this library was included in the main model for optimizing the objective functional.

We write state equations, co-state equations, stationarity condition and the objective func-

tional in four separate functions and fully discretize them for different grid points. As per the

computational algorithm described in section 2.7, we utilize the same library for maximizing

the objective functional at different pressures. Eventually, we obtain open loop policies as an

output of this library. As soon as we obtain a distinguished policy, we store optimal state,

co-state and control using cubic splines with respect to time.

Both differential equation solver libraries (same were deployed for open loop simulation)

are utilized for solving Riccati equations as well. We take derivatives of fully discretized

co-state equations (section 4.2.3) and the Hamiltonian (section 4.2.4) with respect to yij

and uij and obtain different matrices of Riccati equation at different grid point locations.

Then, we populate these matrices and re-organize them in the form of Equation 3.26. In
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addition, we utilize the stored splines for optimal state and co-state variables to integrate

these equations along with interpolated D and wint at different pressures.

Close Loop Simulation

By solving model equations, open loop policies and Riccati equations at different pressures,

we obtain our repository of optimal state, optimal gain and optimal control. We deploy this

repository along with wint(T, P ) and D(w, T, P ) data sets for the closed loop simulation.

Particularly for closed loop simulation, we develop an adjustment library that encompasses

different interpolation/adjust classes for diffusivity (D), interfacial concentration (wint) and

gain (K) at different pressure points. Different data files comprising wint(T, P ), K(y, P ) and

D(w, T, P ) and are rigorously checked and validated within these classes. All interpolations

are performed using spline fitting libraries.

The main purpose is to adjust and interpolate these parameters whenever there is a

pressure upset. Hence, at tweaked boundary condition (pressure), our model library utilizes

adjusted K, D and wint to integrate state equations. Then the control function is adjusted to

its optimal points at new pressure with the aid of the closest (interpolated) gain parameter

using relevant functions in model library. All these aforementioned libraries and classes are

deployed for open loop and closed loop simulations and results are portrayed in section 4.4.

4.4 Simulation Results

At the onset, we evaluate diffusivity D(w) of nitrogen as a function of solvent mass fraction

at different temperature (T ) and pressure (P ). Both solubility data (Appendix D.1) and

diffusivity data (Appendix C.2) are deployed in the simulation studies. In this section, we

discuss following simulation results:

1. We generate open loop optimal control policies at five different pressures (74.5 psi,

58.5 psi, 50 psi, 43.5 psi and 24.5 psi) and create our repository of optimal variables -

optimal state, optimal control and optimal gain.
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2. We discuss the effectiveness of the state-feedback proportional gain control law in

presence of pressure upset and explain different observations.

We performed all the simulations and observed different phenomena for a span of 163.85 min.

4.4.1 Open Loop Simulation Results

This section congregates the results of open loop optimal control strategy and open loop

simulation results:

1. We explain the open loop optimal control strategy.

2. We discuss the effects of different initial guesses on the optimal policies at different

pressures.

3. We analyze the effects of selecting different grid points on the final open loop policies.

4. We describe iterative convergence of the objective functional.

5. We conclude the section with the analysis of the open loop optimal control policies at

different pressures.

Computational Algorithm to Determine Optimal Tint(t)

The necessary conditions contain non-linear partial differential equations encompassing split

boundaries whose analytical solution is not possible. Therefore, this optimal control prob-

lem needs to be solved numerically. The computational algorithm, which was utilized to

determine the optimal Tint is as follows:

1. We provide an initial guess for Tint at each grid point in the stipulated time interval.

2. We integrate the state equations forward using the initial and boundary conditions and

Tint values. Then, we save different values of state variables (T , w and z) at each grid

point in the space of t, r, and z.
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3. Thereafter, we evaluate the objective functional; in case, it does not increase after the

initial iteration, we quit.

Table 4.2: Simulation Parameters

Parameters Value Reference

number of grid points along t 30 Simulation

number of grid points along r, Ni 6 Simulation

number of grid points along z, Nj 6 Simulation

diameter of the physical model, d 5.5 cm Experiment

initial height of the physical model, Z0 35 cm Experiment

permeability, K 4 Darcy Experiment

relative permeability, Kr 1 Reference [54]

oil density, ρ 0.821 g cm−3 Reference [54]

gravity, g 35,31,600 cm min−2 Reference [54]

specific heat, Cp 2.13 J g−1 ◦C−1 Reference [54]

thermal conductivity, k 0.6 J cm−1 min−1 ◦C−1 Reference [54]

4. Upon increment in the value of the objective functional, we integrate co-state equations

backward using terminal and boundary conditions, and the values of Tint and state

variables. Thus, we save the values of co-state variables (λ1, λ2 and λ3) at each grid

point in the space of t, r, and z.

5. Thereafter, we obtain new and improved values of Tint at each grid point in the time

interval using the variational derivative as follows:
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T new
int = Tint + δTint, where δTint = ε ×

(
∂J
∂Tint

)
and ε is a small positive number whose

optimal value provides maximum reduction in variation in the objective functional (as

described in Section 2.7).

6. Using T new
int , we repeat the computation Step 2 onward until there is no further signif-

icant improvement in the objective functional or when the improvement is negligible,

the T new
int values are optimal.

We applied second order finite-difference approximations to the partial differential equations

along the radial and axial directions in order to obtain a set of ordinary differential equations

for each PDE at the grid points.

Table 4.3: Parameters used in Computations

Parameters Value

maximum number of iterations 300

initial step-size for integration 10−5

minimum step-size for integration 10−8

maximum step-size for integration 1

maximum step-length for line search 0.1

tolerance on integration accuracy 10−5

tolerance on gradient correction 10−6

These ODEs are very stiff to integrate. We used implicit Runge–Kutta–Fehlberg method

with adaptive step-size to integrate the same. The Broyden–Fletcher–Goldfarb–Shanno

method [50] was utilized to provide the improvements δTint based on the variational deriva-

tive. Table 4.2 incorporates the computational geometry and different parameters used for
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this simulation (For SI units, refer to Nomenclature). The computational algorithm was

programmed in C++ (using Visual Studio IDE) and executed on Intel Core-I7 processor

(64 bit, 3.60 GHz, 15.9 GB usable RAM). The parameter values are provided in Table 4.3

and were used in the determination of optimal δTint values at each minute of the time in-

terval. These optimal policy along with optimal state and co-state variables are to be used

as benchmarks for investigating different closed loop results. In addition, optimal state and

co-state variables at five different pressures are stored in a repository which is to be utilized

for interpolating the optimal profiles whenever there is an upset in the boundary conditions

(pressure in our case).

Effect of different initial guesses

In the computation, we utilized different initial guesses (initial control function or, Tint versus

t) as portrayed in Figure 4.3 and Figure 4.4.
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Figure 4.3: Initial guess for control function - set 1.

In Figure 4.3, we take wavy functions only whereas, in Figure 4.4, we consider linear

functions as well. In some cases (Initial guess 3), we have considered a combination of

both linear and wavy functions. The wavy functions differ in terms of amplitude and linear

functions vary in terms of slope only.
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Figure 4.4: Initial guess for control function - set 2.

We feed these initial guesses and simulate for the open loop converged optimal control

policies. We do not observe any noteworthy trend in the number of iterations for obtaining

the convergence. In other words, initial guesses do not effect the speed of convergence

(computation time) at all. Overall, we attain computational convergence within 40 iterations.

For all the initial guesses, final converged optimal control policies nearly coincide for a

given operating pressure. In any case, the converged policies are mild wavy in nature. More-

over, at 74.5 psi and 43.5 psi pressures, we hardly observe any difference in the policies except

for the wavy patterns (as shown in Figure 4.5 and Figure 4.6). Even though we see slight

differences in the converged policies for few of the cases (corresponding to 24.5 psi, 50 psi

and 58.5 psi), the average temperature (of the final converged policies) and final objective

functional values (mass of heavy oil recovered) are approximately same. Table 4.4 and Table

4.5 corroborates the aforementioned fact.

In a nutshell, we conclude that our open loop optimal control problem is independent

of the choice of the initial guess for the control function. However, in this report we have

showcased our closed-loop simulation results with respect to initial guess 2 which is wavy

throughout the selected observation period of 163.85 min and the average temperature (of

the guessed policy) is nearly 80 ◦C.
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Figure 4.5: Results for 24.5 psi, 50 psi and 74.5 psi.

Table 4.4: Objective functionals for different initial guesses - set 1

pressure (psi) Initial guess 1 Initial guess 2 Initial guess 3

24.5 19.28 19.28 19.28

43.5 34.99 34.99 34.99

50.0 42.61 42.63 42.63

58.5 52.75 52.75 52.75

74.5 56.52 56.57 56.55
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Figure 4.6: Results for 43.5 psi and 58.5 psi.

Table 4.5: Objective functionals for different initial guesses - set 2

pressure (psi) Initial guess 4 Initial guess 5 Initial guess 6

24.5 19.28 19.28 19.28

43.5 34.98 34.98 34.99

50.0 42.62 42.63 42.65

58.5 52.70 52.75 52.77

74.5 56.51 56.65 56.69
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Effect of different grid points

We have utilized different grid points to investigate open loop optimal policies with the

corresponding objective functional.

Table 4.6: Grid point analysis

pressure (psi) grid point iterations objective functional (g) %variation step size

24.5

i=5, j=5 18 20.07 − 10−3

i=6, j=6 21 19.28 3.95 10−4

i=7, j=7 Equations become stiff; step size order 10−9

43.5

i=5, j=5 11 36.41 − 10−3

i=6, j=6 16 34.99 3.91 10−4

i=7, j=7 Equations become stiff; step size order 10−9

50.0

i=5, j=5 11 44.36 − 10−3

i=6, j=6 17 42.63 3.90 10−4

i=7, j=7 Equations become stiff; step size order 10−9

58.5

i=5, j=5 17 54.88 − 10−3

i=6, j=6 27 52.75 3.87 10−4

i=7, j=7 Equations become stiff; step size order 10−9

74.5

i=5, j=5 13 60.23 − 10−3

i=6, j=6 20 58.29 3.86 10−4

i=7, j=7 Equations become stiff; step size order 10−9

Table 4.6 shows that there is no significant variation in the objective functional value from
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(i = 5, j = 5) grid points to (i = 6, j = 6) grid points (integration step size increased from

10−3 to 10−4). But (i = 7, j = 7) combination makes the open loop solution computationally

intensive as integration step size becomes of the order of 10−9. Eventually, CPU time becomes

high and we prefer to stick with (i = 6, j = 6) grid points for further analysis.

Open loop solution convergence

It takes up to 27 iterations (as shown in Table 4.7) for the algorithm to converge.

Table 4.7: Open Loop Results

pressure (psi) iterations oil mass (g) CPU time (min)

24.5 21 19.28 20.3

43.5 16 34.99 18.1

50.0 17 42.63 18.8

58.5 27 52.75 23.0

74.5 20 58.29 21.4

For the physical model with aforementioned geometry, upon convergence, we obtain

optimal Tint(t) at each minute of the time interval. The optimal Tint(t) values thus obtained

are converted into the open loop optimal policy of nitrogen temperature versus time using

the experimental data, wint = wint(Tint) and diffusivity data D(w, T ) at 5 given pressure (P )

values ranging between 24.5 psi to 74.5 psi (described in Appendix D and C respectively).

Computation is initialized with the guessed Tint versus time relation (second initial guess)

at different pressure magnitudes. As the iterations proceed, the oil production increases

monotonically. The improvement is significant during the initial iterations but slows down

towards the end for any pressure. The convergence for 74.5 psi is portrayed in Figure 4.7. In

all cases the computation converged within 25 min.
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Figure 4.7: Convergence of objective functional.

Open loop optimal policies

The computation is performed for the physical model of 4 Darcy permeability and 35 cm

drainage height and 5.5 cm of diameter and we observe different optimal policies for a span of

163.85 min (approximately). The algorithm converged in five different numbers of iterations

at five different pressures yielding five different optimal Tint(t) (policies) and five different

objective functional values (mass of oil produced) as shown in Table 4.7 and Figure 4.8.

Some crucial observations are:

1. As pressure increases from 24.5 psi to 74.5 psi, value of the objective functional increases

from 19.28 g to 58.29 g whereas, the average optimal Tint(t) decreases from 77.90 ◦C

to 56.57 ◦C as shown in Figure 4.8. Eventually, we presume that at higher pressure

conditions, lower temperature is mandated to enhance heavy oil recovery.

2. The optimal Tint(t) policies (converged final policies) are mild wavy in nature at

any given pressure ranging between 24.5 psi to 74.5 psi in our observation period of

163.85 min.
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3. Optimal policies at different pressures do not coincide or overlap to each other; distinct

optimal Tint(t) maximizes heavy oil recovery at different pressures.
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Figure 4.8: Optimal temperature policies at different pressures.

4. We can compare these policies with the experimental results as shown in Appendix D.

It is observed that at 90 ◦C (highest operating temperature) we recover 21.3 g, 36.2 g,

43.7 g, 53.7 g and 66.5 g at 24.5 psi, 43.5 psi, 50 psi, 58.5 psi and 74.5 psi respectively.

But with the optimal policies, we are able to recover (theoretically) 19.3 g, 34.5 g,

42.6 g, 52.8 g and 58.3 g at 24.5 psi, 43.5 psi, 50 psi, 58.5 psi and 74.5 psi at an average

temperature of 77.9 ◦C, 69.8 ◦C, 67.1 ◦C, 62.9 ◦C and 56.6 ◦C respectively. In other

words, we obtain more amount of heavy oil at lesser (optimal) temperature control.

From the validated process model (Appendix E and F), we set these optimal Tint(t) at five

different pressures as our benchmarks and further we simulate and analyze closed loop results

using the aforementioned optimal policies within the range of operating pressures.
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4.4.2 Closed Loop Simulation Results

In this section, first we describe close loop control methodology. Then we analyze the closed

loop results by introducing step change in pressure at any intermediate operating time in

the span of 163.85 min.

Closed Loop Optimal Control Methodology

We utilize optimal state and optimal co-state for integrating non-linear distributed parameter

system of Riccati equations (Equation 3.26) backward with the aforementioned (in Section

4.2.4) terminal and boundary conditions. Then, we determined gain parameter matrix at

a given pressure. We repeated the same for five different pressures and we generated our

desired repository in terms of optimal state, optimal gain and optimal control [Tint(t)] for

five given pressures ranging between 24.5 psi and 74.5 psi corresponding to a coarse grid of

fixed, unperturbed initial conditions ȳ0 as described in Table 4.8.

Table 4.8: Open Loop Repository

Pressure (psi): 24.5 43.5 50.0 58.5 74.5

optimal state: ŷ24.5 ŷ43.5 ŷ50.0 ŷ58.5 ŷ74.5

Riccati variables: S24.5 S43.5 S50.0 S58.5 S74.5

optimal gain: K̂24.5 K̂43.5 K̂50.0 K̂58.5 K̂74.5

We deploy this repository for interpolating closest optimal gain [K̂P (t)] and optimal state

[ŷP (t)] at tweaked pressure in the stored grid. On the other hand, we have diffusivity versus

concentration (mass fraction) data and viscosity correlation at different temperatures and

pressures. We interpolate both of them for integrating state equations so that we have

the desired information in terms of system state [yP (t)] which is not optimal at modified

pressure (P ). Moreover, we calculate operating control [non-optimal, uP (t)] at this new
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pressure. Subsequently, proportional gain state-feedback control law takes control action

that is given by

ûP (t) = uP (t) + K̂P (t)[yP (t)− ŷP (t)]

and aids in bridging the gap between the desired optimal control policy [ûP (t)] and the

prevailing non-optimal Tint [uP (t)] at the existing operating pressure.

In other words, control adjustment occurs and the same steer the process towards op-

timality at the prevailing boundary conditions [48, 50]. Moreover, we solve the Riccati

equations and generate the repository of optimal variables (state, gain and control - total

size of files 430 kB) to further deploy in closed loop simulation. Algorithm is described in

Figure 3.1

Closed Loop Simulation Results

Initially, we investigate within two known pressure bounds as open loop results [both ob-

jective functional values and optimal Tint(t)] are readily available and it becomes convenient

enough to test the closed loop strategy. In the real time mode, we start the simulation at a

given intermediate pressure of 50 psi and after 23 min, we introduce an upset of 17 % (step

change) and the new operating pressure becomes 58.5 psi. Figure 4.9 shows the benchmark

optimal Tint(t) at both 50 psi and 58.5 psi; moreover, we observe that real time Tint(t) initially

concurs with the optimal Tint(t) at 50 psi, then it starts varying after 23 min and eventually

(almost) coincides with optimal Tint(t) at 58.5 psi.

Additionally, objective functional value gets raised from an expected 42.6 g (correspond-

ing to 50 psi when there are no upsets) to a value of 51.0 g which is close to 52.8 g (corresponds

to 58.5 psi policy) for an observation time of 163.85 min (approximately). Therefore, we con-

clude that the closed loop optimal control strategy (upon interpolating with respect to the

repository of optimal variables and adjustment to control function) is precisely tracking the

desired optimal Tint(t) along with objective functional at the tweaked pressure magnitude.

The corrective measure is significant even in terms of the extent of time that is applied for
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the control adjustment.
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Figure 4.9: Closed Loop Result: Single upset within known bounds after 23 min.

Figure 4.10 depicts that for the similar investigation within the known bounds (as earlier)

yields lesser mass (objective functional value) if the upset is induced after 73 min. Though the

final optimal Tint(t) nearly coincides with the benchmark policy at 58.5 psi, the recovered

mass is 48.0 g. Thus, we deduce that our algorithm mandates sufficient (and necessary)

adjustment time to orient towards new nominal solutions (based on interpolation) and steer

the process towards desired optimality at new induced boundary condition.

Further, we investigate (and, validate) multiple upsets in terms of pressure as well. Start-

ing with the same intermediate pressure of 50 psi, we induce upsets after 23 min, 28 min,

39 min, 50 min and 56 min to new pressure values of 52.5 psi, 56 psi, 58.5 psi, 62.5 psi and

67.5 psi respectively as shown in Figure 4.11. The closed loop Tint(t) policy initially tracks

the policy corresponding to 50 psi and then it start varying after 23 min, right away the

disturbance is introduced. Finally, Tint(t) at 67.5 psi adjusts itself to an intermediate zone
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between 58.5 psi optimal policy and 74.5 psi optimal policy.
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Figure 4.10: Closed Loop Result: Single upset within known bounds after 73 min.

Earlier, we observed that optimal Tint(t) requirement becomes less as pressure rises; even-

tually, the result suffices our deduction as 67.5 psi optimal policy adjusts itself in between

the bounds of 58.5 psi and 74.5 psi optimal policies. In addition, this simulation result sa-

tiates in terms of the objective functional value (54.8 g) also as it lies between objective

functional values corresponding to 58.5 psi (52.8 g) and 74.5 psi (58.3 g). Consequently, we

conclude that the proportional gain control adjustment action manoeuvres the process to-

wards optimality at new boundary condition in terms of operating pressure and stimulates

enhanced oil recovery. We further extend our studies in terms of tracking the state prop-

erty (temperature) at different grid points upon control adjustment. For the case with 17 %

pressure increment from the base value of 50 psi operating pressure, after 73 min we observe

that, with time, whenever necessary control adjustment takes place, the state property gets

manoeuvred towards the expected optimal state property corresponding to 58.5 psi psi at
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(i = 2 and j = 3) grid points.
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Figure 4.11: Closed Loop Result: Multiple upsets.

Thus, not only optimal policies along with objective functional values, but also state

properties get navigated towards the desired optimal trajectories at the tweaked pressure.

This phenomenon is showcased in Figure 4.12. Moreover, calculated squared errors at all the

grid points corroborates the aforementioned observation in Figure 4.13 as we see the squared

deviation between the nominal state and the adjusted state approaches zero upon control

regulation. With the same processor configuration (as mentioned in section 4.4.1), this

entire interpolation mechanism and the necessary control adjustment action concludes the

simulation (over the span of 163.85 min) in about 0.9 µs. It may be noted that the repository,

which was determined and stored offline, required a total space of just 0.185 MB. Therefore,

we can conclude that the state feedback proportional gain control action is potential enough

for fast amendments of the desired nominal trends at new conditions which eradicates any

chances of loss in the process output.
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Figure 4.12: Optimal temperature at grid points i = 2 and j = 3.
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Figure 4.13: Error Analysis at Different Grid Points.
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Conclusions

Initially, an optimal control framework was developed for nitrogen injection enhanced oil

recovery using interfacial temperature versus time as a control function. The necessary con-

ditions for maximum oil production were derived based on a distributed-parameter process

model with a moving boundary. Then we derived system of Riccati equations and pro-

portional gain feedback control law where adjustment to control was explicitly related to

perturbed state with the aid of time-dependent gain parameter matrix. A computational

algorithm was developed and programmed to determine the optimal control functions (using

C++ programming language), optimal gains, and optimal states at different pressure con-

ditions, that is, 74.5 psi, 58.5 psi, 50 psi, 43.5 psi and 24.5 psi. This repository was utilized

for interpolating (using an adjustment class coded in C++ programming language) optimal

conditions in the real time mode whenever there was a pressure upset.

Based on the interpolated data sets, the control action adjusted itself to steer the pro-

cess to optimality at new prevailing pressure. This control adjustment mechanism (based

on interpolating with respect to known process conditions) was not only adjusting the con-

trol function, but also predicting objective functional value (i.e., heavy oil mass) almost

accurately at tweaked pressure. Moreover, sufficient adjustment time was mandated to max-

imize production at new boundary condition. Secondly, state properties across the physical

model got updated and upon adjustment, variation with respect to the optimal state got

substantially minimized as time proceeded. Overall, proportional gain control action is po-
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tential enough to track optimality whenever there is a pressure upset and maximize nitrogen

injection recovery of heavy oil.

5.1 Future Work

There are numerous prospects that can be analysed on the basis of this control strategy:

1. We can apply NMPC (non-linear model predictive control) on the same distributed

parameter system and compare the performance with our control methodology.

2. We can analyze for white noise and response delays for the same system and the

process.

3. Like the proportional controller, we can extend the study to build a proportional-

integral controller and compare the performance.

62



Appendices

63



Appendix A

Experimental Details

Here, we describe various details of the experimental apparatus and equipment which is

related to the experimental process described in Chapter 4, Section 4.1.

A.1 Apparatus for Experimental Investigation

This section congregates list of various apparatus and sets of laboratory equipment which

were employed to carry out this experimental investigation using nitrogen as the solvent for

the recovery of heavy oil ([54]). These sets of equipment are:

1. The major equipment is a cylindrical pressure vessel with specified dimensions (internal

diameter of 15 cm and a height of 80 cm).

2. A digital thermometer (VWR traceable digital thermometer with recorder output,

Mississauga, Ontario, Canada) is used for recording the changes in temperature of the

pressure vessel.

3. A pressure transducer (Voltage Output Pressure Transducer, PX01C1-200G5T, Omega

Inc., Canada) is employed in order to measure magnitude of nitrogen pressure inside

the vessel.

4. There is a resistance temperature detector (RTD) (Rugged Transition Joint Probe,

Newport Electronics, CA, US) which is used to measure the temperature of nitrogen
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inside the vessel.

5. A load cell (Miniature Load Cell Model 31 and Mid-Range Precision Miniature Load

Cell model 31, Honeywell Sensotec, OH, US) is implemented within the system for

tracking the diminution of mass of the physical model with respect to time as oil is

being produced.

6. A flow-meter (In-line flow meters, FL46302, Omega Inc., QC, Canada) is also installed

for the purpose of assisting in navigation of the nitrogen flow rate into the pressure

vessel.

7. There are two pressure control valves present (PV101-10V, Omega Inc., QC, Canada)

which are responsible for maintaining desired nitrogen pressure level inside the pressure

vessel.

8. There are two heating tapes (Heat tape with the controller, HTWC 101, Omega Inc.,

MA, US) that are implemented to aid with the heating of nitrogen inside the pressure

vessel.

9. A viscometer is employed (VISCO PRO 2000, Cambridge Viscosity, Inc., MA, US) to

collect the recovered ‘live oil’ present in the collection tube as well as to determine the

viscosity of the oil.

10. A steel flash tank of 300 cm3 capacity is used for collecting the ‘live oil’ and segregating

nitrogen from it.

11. A physical reservoir model (2.75 cm radius and 35 cm length) is prepared from Fort

Kent heavy oil (supplied by Saskatchewan Research Council, Alberta, Canada) of vis-

cosity value of 1400 g cm−1 min−1 at approximately 25 ◦C and glass beads (BALLOTINI

Impact Beads, Potters Industries LLC, PA, US) are packed together inside the cylin-

drical stainless steel wire mesh.
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The mixture of oil with the glass beads are packed into a cylindrical stainless steel wire

mesh. The model is homogeneous with a porosity of 0.38 and of permeability value of

4 Darcy (calculation showed in Appendix B). All the apparatus and sets of equipment listed

above were connected to a computer (user interface) via a data acquisition system where

the experimental/process changes were duly recorded using LabVIEW version 7.1 software

application.

A.2 Description of Various Parts

In this section, various parts of the lab-scale experimental setup is described.

The Measuring System

A measurement system was employed for the process of associating numbers with physical

quantities, phenomena or process variables. The mass of the specific apparatus used in

the various steps were recorded and validated by using a measurement device known as

a mass balance scale. It used to consist of a display for portraying mass (measured in

unit of kilogram) of various experimental components like glass beads, cylindrical mesh,

collection pot for heavy oil etc. Besides, it also had a rectangular platform to accommodate

experimental components whose mass needed to be measured.

Hot Air Oven

Hot air ovens are electrical devices that operate by a mechanism known as dry heat ster-

ilization. The oven is heated up to a desired set point level in terms of temperature and

hot air is circulated throughout the internal core for maintaining that specific constant tem-

perature level inside the oven. The transmission of heat is governed by the phenomena of

forced convection. The power button aided to switch on the system (the hot air oven) and

the setting knob helped in adjusting the temperature at its desired level. For each single

run the lower limit of the temperature value was 23 ◦C and it was raised to 70 ◦C. The same

rise in temperature used to occur within 30 min and the system (inner core of the hot air
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oven) was maintained at this desired level during the heating operation. Inner core of the

hot air oven consists a platform for supporting the control volume (holding pot for heavy oil

mainly) during the heating operation. The circulation of air inside the system used to start

as soon as the power button was switched on. Air was passed through the holes inside the

core (along the vertical and horizontal walls) and this constant circulation of air aided in

proper temperature regulation.

The Physical Model

The experiment started with the preparation of the physical model using heavy oil. Physical

model is a control volume analogous to the exact geological core comprising heavy oil or

bitumen packed with sand materials.

The first step was to weigh the pot for measuring and recording the mass of heavy oil.

The recorded weight of the empty pot was 0.54 kg. Heavy oil was then poured into the

pot from the supply of oil (in the laboratory, the heavy oil was stored in a 55-gallon drum)

which displayed an increment in the mass to 2.54 kg. This weight was recorded and then the

pot containing heavy oil was placed inside the hot air oven and was heated for 30 min at a

constant temperature magnitude of 70 ◦C; this operating condition (in terms of temperature)

aided in the reduction of the viscosity of heavy oil that was mandated not only for the flow

but also for proper mixing of the same with the glass beads. The weighing scale was once

again brought back to zero datum level and a cylindrical mesh of known dimension was

placed on the rectangular platform and the weight was recorded as 0.08 kg. The mesh was

filled with 3.78 kg of the glass beads and in the following step the same amount of glass

beads was mixed with the preheated heavy oil. The glass beads were then added gradually

(with continuous stirring or mixing operation) to the heated controlled volume (heavy oil)

and this strategy was applied in order to ensure proper mixing of the glass beads with heavy

oil without trapping of air bubbles. This gradual mixing technique maintained homogeneity

of the mixture. Once the same was properly mixed, it was left to settle overnight for future

experimental procedures.
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Figure A.1: Heavy oil filled mesh

The saturated mixture was poured slowly into the cylindrical wire mesh as a thin layer.

It was left to settle under gravity for 5 min; it was then refilled with additional layers of

heavy oil. This procedure was repeated until the cylindrical mesh was filled to its brim;

once the system was thoroughly packed with heavy oil–glass beads mixture, it was weighed

and the mass was recorded 1.28 kg. The packed cylindrical model was secured tightly by

tightening screws on the top of the mesh and the same was placed inside the pressure vessel

with the help of a bent stainless steel fish hook (Figure A.1).

Cylindrical Vessel

A visual representation of the cylindrical vessel utilized in the experiment is illustrated in

Figure A.2. Temperature was navigated with the aid of heating tapes that emerged from

the heating source and coolant flow line. On the other hand, pressure was injected as well as

regulated with nitrogen flow line, pressure transducer and pressure gauge. Various measuring

instruments like rotameter and pressure gauge were attached at the entry of the pressure

vessel in conjunction with coolant flow line and nitrogen flow line respectively.

The heating system: The heating supply devices controlled the supply of heat to the

system. These 2 heat supply devices were responsible for the central heating of the interior
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core of the cylindrical pressure vessel and they were usually adjusted depending on the

system requirement in terms of higher or lower temperature value while conducting different

experimental runs.

Figure A.2: Cylindrical Pressure Vessel with Coolant Line

The devices were calibrated in terms of percentage of the supply heat wattage and the

specification of the same was 120 Volts–288 Watts. They were directly connected to a

Wattmeter (energy meter) for the display as well as the regulation of different electrical

parameters (Wattage, Voltage and Ampere).

The coolant system: The copper coils surrounding the pressure vessel were responsible for

maintaining the temperature within the system. In this case, the coolant was cold water at an

ambient temperature of 15 ◦C. The rotameter was connected to the system via a green hose

line and the rotameter valve (directly below the rotameter) was responsible for controlling

the coolant flow rate. The rotameter was calibrated as per the scale of 0-2 gpm and the

same could be regulated accordingly with the aid of the valve. Rotameter was responsible

for measuring the volumetric flowrate of the water used in the experiment in order to cool
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down the pressure vessel whenever the system experienced unwanted elevated temperature

levels. The valve which controls the supply of water via flowrate adjustment is seen below

the rotameter in the picture. The flow mechanism was from downward to upward direction

against gravitational force allowing effective accumulation of the coolant around the vessel

in order to cool down the system by enhancing effective heat transfer area and eradicating

the possibilities of dry spots along the direction of the flow. Usually, the coolant system was

not in use; it was used only in case of moderate adjustment of desired temperature level.

Figure A.3: Nitrogen Flow Line

Nitrogen pressure regulation system: In the diagram (Figure A.3), the red line is rep-

resentative of the pathway of nitrogen that was taken inside the cylindrical vessel from the

source. The pressure gauge with a valve was employed to control the magnitude of nitrogen

pressure entering the system. A solenoid valve at the top of the cylindrical vessel regu-

late the opening of the fluid (nitrogen in this case) flow in the valve. This is basically an

electro-mechanical device where the solenoid utilizes an electric current in order to generate

a magnetic field, hence operating a mechanism which is used for flow regulation. A dif-

ferential pressure transducer was used to measure the pressure difference across the porous

media as nitrogen was passed throughout the system. Both solenoid valve and the pressure

transducer was attached at the top of the cylinder. It had to be properly screwed with the
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help of tightening screws, washers and bolts in order to ensure minimal (or, zero) leakage

that could hinder the accuracy of the experimental results. Additionally, in our experimen-

tal procedures pressure was controlled and tightly regulated with the help of a set point

fine-tuner in the LabVIEW Interface; the same was used in conjunction with the solenoid

valve for accurate experimental results.

Load Cell and Collection Tube

The heavy oil collected from the pressure vessel was directed towards the collection tube and

a load cell was attached to it. A digital thermometer upstream of the collection tube aided in

monitoring and recording of the temperature in the pressure vessel. Figure A.4 displays the

load cell at the bottom of the pressure vessel which tracked the accumulated mass of heavy

oil with time. The mass of the oil was one of the desired outputs that was being observed

while conducting the experiments; therefore, this was one of those cases where the load cell

played a vital role in tracking the altercation in mass. The collection tube had to be flushed

(with Varsol) at the onset of each experimental trials in order to ensure that the system was

totally free of oil (that may have been left back in the tube from previous experiments).

Figure A.4: Load Cell and Collection Tube
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Viscometer

From the collection tube live heavy oil (heavy oil with nitrogen dissolved in it) was directed

to a viscometer shown in Figure A.5 which was responsible for providing the magnitude of

viscosity (depending on operating temperature) of the oil. The viscosity value was directly

displayed in the control panel of the LabVIEW with the aid of the data acquisition system.

Flash Tank

In Figure A.5, the flash tank was responsible for the transition from live oil (heavy oil with

dissolved nitrogen) to dead oil (pure heavy oil when dissolved nitrogen was flushed out of

it) by separating the dissolved nitrogen from the oil as it passed through this system. The

flash tank is basically a cylindro-conical vessel used to lower the pressure on lighter fraction

of the mixture and helps it to degas, or flash out, hence separating it from remaining heavier

fraction. This is the process occurring within the system between the transitions of oil from

the live oil to dead oil phase where the heavier dead oil was collected in a collection pot at

the bottom of the flash tank.

Figure A.5: Viscometer, Flash Tank and Water Column
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Water Columns

The water column located adjacent to the flash tank in Figure A.5; the scale allowed the

investigators to observe and track the difference in volume after the separation of the nitrogen

from oil inside the flash tank. The differential change in height multiplied with the cross

sectional area of the column aided to get the amount of dissolved nitrogen in live oil.

Data Acquisition System

Data acquisition dealt with the process of sampling signals (that measured real world phys-

ical conditions and converted the same into digital numeric values) of various tangible or

intangible manipulated or regulated physical phenomena. Figure 4.1 displays the connection

wires of the apparatus to the acquisition system which was in turn connected with the com-

puter where the process variables were recorded using the control panel display of LabVIEW

7.1 software application.

Cleaning Station

This is the area that was employed mainly for cleaning purposes. Varsol was the cleaner

(liquid) that was used which is a premium quality low odour paint thinner with a medium

to fast evaporation rate that acted as a versatile solvent for degreasing sets of equipment.

Different apparatus being used were cleaned before and after the experimental setup with

this chemical in the area displayed below. The red station was filled with this chemical and

all the cleaning operations were performed inside this closed system.

A.3 Determination of Interfacial Concentration

At the onset of each set of experiment, atmospheric air was purged from the pressure vessel

by applying vacuum close to 14.5 psi-absolute using a vacuum pump. Then, the pressure

vessel was filled with 25 g of heavy oil. The filling up was done slowly and layer by layer

in order to avoid entrapment of air within heavy oil layers. After thoroughly sealing the
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pressure vessel, it was placed in a water bath (as shown in Figure A.6).

Figure A.6: Schematic diagram of nitrogen-heavy oil system for solubility measurement

The objective of the heater tapes and the water jacket was to maintain the temperature

of the pressure vessel at the desired set points. The top end of the vessel was connected to

the valve regulated nitrogen inflow line and the desired pressure conditions were regulated by

LabVIEW block diagram. The accumulated mass of oil was weighed and then it was heated

inside the hot air oven at around 70 ◦C in order to release dissolved and residual nitrogen

in the oil. After flashing the solvent gas, the dead oil was weighted and from mass balance,

nitrogen mass fraction in the oil was calculated. The run time for each test was 430 min.

Interfacial Concentration of nitrogen at different temperatures and pressures was derived

using following mass balance equation

wint =
mgas

mgas +moil

(A.1)

For example, at 43.5 psi and 25 ◦C temperature, weight of oil (after heating) was found to be

2.46 g and weight of oil (before heating) was 2.4851 g. Hence, amount of dissolved nitrogen
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was 0.0251 gm. Therefore, from mass balance, interfacial concentration under prevailing

condition was calculated to be:

wint =
0.0251

0.0251 + 2.46
= 0.0101 (A.2)

Different operating pressure magnitudes were selected to be 74.5 psi, 58.5 psi, 50 psi, 43.5 psi

and 24.5 psi respectively. For each of these pressure magnitudes, experiments were performed

at different values of temperature namely 25 ◦C, 50 ◦C, 75 ◦C and 90 ◦C respectively. There-

after, from mass balance, we obtained the dependencies of solubility of nitrogen on pressure

and temperature. Results are discussed in Appendix D
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Permeability Calculation

Permeability (K) was calculated using the following equation:

K =
Po ×Qo × µnitrogen × L(

πD2

4

)
× Pm ×4P

.

where Pi and Po are the pressure at inlet port and outlet ports of the cylindrical vessel

respectively, 4P is the pressure difference, Pm is mean pressure, L is length of the cylindrical

vessel, µnitrogen is nitrogen viscosity at room temperature, Qo is flow rate of nitrogen and D

is the diameter of the cylindrical vessel. Using following data, value of K is 4 Darcy.

Parameter Value

Po (atm) 1.153

Pi (atm) 1.142

4P (atm) 0.011

Qo ( cm3 s−1) 1.7

µnitrogen (cP) 0.0175

Pm (atm) 1.1475

L (cm) 35

D (cm) 5.5
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Viscosity and Diffusivity Data

C.1 Viscosity Data

Figure C1 and Figure C2 describe viscosity of heavy oil at different temperatures and pres-

sures.
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Figure C.1: Viscosity of Heavy Oil at Different Temperatures.

We can clearly see that viscosity remains almost constant in the range of temperature

variation (Figure C1) but with increasing pressure, the viscosity magnitude drops (Figure

C2).
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Figure C.2: Viscosity of Heavy Oil at Different Pressures.

Eventually, we can express pressure, concentration and temperature dependent heavy oil

viscosity (µ) by the following correlation

µ =
(
a0 +

a4
T

+ a7w
)
P 2 +

(
a1 +

a5
T

+ a8w
)
P + a2 +

a6
T

+ a9w. (C.1)

In the above correlation, a0, a1, a2, a4, a5, a6, a7, a7, a8, and a9 are constant parameters in

their corresponding units as shown in Table C.1.

C.2 Diffusivity Data

At the onset of our simulation studies, we evaluate diffusivity D(w) of nitrogen as a function

of solvent mass fraction using a method developed elsewhere [53, 55]. In the aforementioned

algorithm, we deploy the results in terms of experimental mass at different pressure (P ) and

temperature (T ) as our initial guess. Eventually we obtain the influence of concentration,

pressure and temperature on diffusivity. Figure C.3 shows that the diffusivity increases with

the solvent mass fraction to a maximum and then drops subsequently.

These diffusivity data at different pressure is further deployed in the model simulation,

open loop simulation and eventually adjusted in closed loop simulation.
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Table C.1: Viscosity Parameters

Parameters Unit Values

a0 g cm−1 min−1psi−2 0.4379

a1 g cm−1 min−1psi−1 -61.194

a2 g cm−1 min−1 2533.9

a4 g ◦C cm−1 min−1psi−2 -0.0496

a5 g ◦C cm−1 min−1psi−1 -16.168

a6 g ◦C cm−1 min−1 2950.3

a7 g cm−1 min−1psi−2 0.1532

a8 g cm−1 min−1psi−1 -7.9564

a9 g cm−1 min−1 160
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Figure C.3: Diffusivity versus concentration at different temperatures and pressures.

80



Appendix D

Experimental Results

D.1 Experimental Result - Solubility Data

Figure D.1 depicts the dependencies of solubility of nitrogen on pressure and temperature

and clearly we see that as temperature and pressure rises, solubility (interfacial concentration

or, dissolution of nitrogen in heavy oil) increases.
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Figure D.1: Solubility at different temperatures and pressures.

The obtained data points furnish the boundary conditions of the mass transfer model

under multifarious pressure conditions.
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D.2 Experimental Result - Heavy Oil Mass

The state-of-the-art experimental procedure described in Chapter 4, Section 4.1 yields the

following results of heavy oil recovery.

0 50 100 150 200 250 300 350 400

time (min)

0

10

20

30

40

50

60

70

80

90

100

110

120

m
as
s
(g
)

74.5 (psi) 58.5 (psi) 50.0 (psi)

43.5 (psi) 24.5 (psi)

Figure D.2: Experimental mass at different pressures at 90 ◦C.

Figure D.2 describes amount of heavy oil recovery for a span of 430 min at 90 ◦C. It

is clearly seen that mass gets saturated towards the end of the process at any pressure.

Moreover, at a fixed temperature (90 ◦C), as pressure rises (from 24.5 psi to 74.5 psi), amount

of heavy oil recovered gets increased (from 35.1 g to 109.8 g) as well. After 163.85 min, amount

of heavy oil recovered was 21.3 g, 36.2 g, 43.7 g, 53.7 g and 66.5 g at 24.5 psi, 43.5 psi, 50 psi,

58.5 psi and 74.5 psi, respectively.

Figure D.3 portrays that at a given pressure (74.5 psi), as temperature rises from 25 ◦C

to 90 ◦C, we obtain more heavy oil. Also, towards 430 min, mass recovery gets saturated as

earlier. These observations concur with the experimental data investigated by Booran et al.

([54]). Thus, we conclude:

1. At any given pressure, as temperature rises, oil recovery increases.
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2. At any given temperature, as pressure increases, oil recovery gets enhanced.
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Figure D.3: Experimental mass at different temperatures at 74.5 psi.

In Chapter 4, Section 4.4 we utilize these experimental results for different simulation studies

and comparisons in terms of objective functional.
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Derivation of Process Model
Equations

E.1 Mathematical Modeling for Mass Fraction

Mass fraction of nitrogen is to be evaluated as this gas gets dissolved in to the heavy oil.

Unsteady state differential mass balance equation for nitrogen is given by

d(4V φρw)

dt
= (v4Aρw)z+4z − (v4Aρw)z − (J4S)r+4r + (J4S)r (E.1)

where, 4V = 2πr4r4z is the differential volume, 4S = 2πr4z is the differential surface

area along radial direction (transverse area with respect to diffusive flux) and4A = 2πr4r is

the differential surface area along axial direction (transverse area with respect to oil velocity)

of the element respectively. Additionally, ρ is oil density, w is mass fraction of nitrogen in

the medium and φ is medium porosity. J represents diffusive mass flux of nitrogen along

radial direction and this radial flux can be written as

J = −ρDφ∂w
∂r

(E.2)

where D is undetermined pressure, concentration and temperature dependent diffusion co-

efficient of nitrogen in the porous medium (discussed in Appendix C, section C.2). v is

assumed to be Darcy velocity of oil in the downward direction and is given by

v =
KrKρg

µ
(E.3)
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where Kr and K are the relative permeability and permeability of the porous medium re-

spectively. Besides, g is gravity and µ represents pressure, concentration and temperature

dependent oil viscosity (correlation explained in Appendix C, section C.1). T represents

temperature and P indicates pressure. Taking the limits of both 4r and 4z to zero ([56]),

previous equations are moulded as the following

∂w

∂t
=

1

φ

∂(vw)

∂z
+

1

r

∂

∂r

(
Dr

∂w

∂r

)
. (E.4)

Further simplification yields

∂w

∂t
=

α

φµ

∂w

∂z
+
αw

φ

∂

∂z

(
1

µ

)
+
D

r

∂w

∂r

∂r

∂r
+
Dr

r

∂

∂r

(
∂w

∂r

)
+
r

r

∂w

∂r

∂D

∂r
. (E.5)

We consider α = KrKρg. Moreover, we evaluate the derivative by considering dependencies

of viscosity and diffusivity on both temperature and concentration at a given operating

pressure. Thus,

∂w

∂t
=

α

φµ

∂w

∂z
− αw

φµ2

(
∂µ

∂w

∂w

∂z
+
∂µ

∂T

∂T

∂z

)
+
D

r

∂w

∂r
+D

∂2w

∂r2

+
∂w

∂r

(
∂D

∂w

∂w

∂r
+
∂D

∂T

∂T

∂r

)
. (E.6)

Upon rigorous rearrangement, final form of the mass transfer model is

∂w

∂t
=

D

r

∂w

∂r
+D

∂2w

∂r2
+
∂D

∂w

(
∂w

∂r

)2

+
∂D

∂T

(
∂w

∂r

)(
∂T

∂r

)
+

α

φµ

∂w

∂z

− αw

φµ2

(
∂µ

∂w

∂w

∂z
+
∂µ

∂T

∂T

∂z

)
. (E.7)

E.2 Mathematical Modeling for Energy

In a similar manner, the unsteady state differential energy balance equation is as follows

d(4V φρCpT )

dt
= (4AvρCpT )z+4z − (4AvρCpT )z − (qr4S)r+4r

+ (qr4S)r − (qz4A)z+4z + (qz4A)z (E.8)
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where, Cp is the specific heat of oil. In addition, qr and qz are thermal fluxes of air along

radial and axial directions respectively. They are governed by the following constitutive

relations

qr = −kφ∂T
∂r

(E.9)

and,

qz = −kφ∂T
∂z

(E.10)

where k is the thermal conductivity. Moreover, we define γ as the thermal diffusivity which

is given by

γ =
k

ρCp

. (E.11)

Like the previous case, by taking the limits of both 4r and 4z to zero ([56]), previous

equations are framed as the following

∂T

∂t
=

1

φ

∂(vT )

∂z
+

1

r

∂

∂r

(
kr
∂T

∂r

)
+

∂

∂z

(
k
∂T

∂z

)
. (E.12)

Thus,

∂T

∂t
=

α

φµ

∂T

∂z
+
αT

φ
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(
1
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)
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k
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∂r
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. (E.13)

We perform the derivative by considering dependency of viscosity on both temperature and

concentration at a given pressure. Thus by applying chain rule of derivatives, we obtain

∂T

∂t
=

α

φµ

∂T

∂z
− αT

φµ2

(
∂µ

∂w

∂w
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+
∂µ
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∂T
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)
+
γ

r

∂T

∂r
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∂2T
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+ γ

∂2T

∂z2
(E.14)

which upon further rearrangement yields following energy balance model:

∂T

∂t
=

γ

r

∂T

∂r
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∂2T
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∂2T
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∂T

∂z
− αT

φµ2

(
∂µ

∂w

∂w

∂z
+
∂µ

∂T

∂T

∂z

)
. (E.15)
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E.3 Mathematical Modeling for Momentum

Oil production necessarily reduces height z(t, r) of bitumen in the packed cylindrical column.

Starting from the momentum balance, the change in the height with time at any radial

location is given by the negative of Darcy velocity ([56]) at the bottom of the physical model

as

∂(4Azφρ)

∂t
= −ρv0(r)× 2πr4r. (E.16)

Thus,

∂z

∂t
= −v0(r)

φ
(E.17)

where v0(r) is the Darcy velocity at z = 0. It is integrated over the differential element at

z = 0 and is represented by

v0 =
KrKρg

µ̄
=

α

µ̄
. (E.18)

Equations E.7, E.15 and E.17 represents mathematical models describing mass fraction,

temperature and axial height (moving boundary) for the cylindrical physical geometry that

is subjected under nitrogen injection enhanced oil recovery process. These equations have

both time and spatial derivatives and therefore the solution depends on relevant initial

conditions and boundary conditions.
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Appendix F

Model Simulation Results

As mentioned in Chapter 4, Section 4.2.1, we have three simultaneous, heterogeneous, sec-

ond order, distributed parameter partial differential equations. Here, we discuss the model

simulation results for three state variables for 163.85 min at different grid points along the

cylindrical geometry at the operating pressure of 74.5 psi and 90 ◦C.
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Figure F.1: Temperature versus time.

We observe that at all grid points, temperature attains steady state after 80 min. Initially,

the curved surface (grid point i=4 and j=3) gets more heated up than the inner core as shown
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in Figure F.1. But neither mass fraction (Figure F.2) nor axial distance (Figure F.3) attains

steady state during this observation period.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

time (minute)

0

0.001

0.002

0.003

0.004

m
as
s
fr
ac
ti
on

i=4, j=3 i=3, j=3 i=2, j=3

i=1, j=3 i=0, j=3

Figure F.2: Mass Fraction versus time.

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

time (minute)

34.98

34.99

35

h
(m

)

i=4 i=3 i=2

i=1 i=0

Figure F.3: Axial height versus time.
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We can see that concentration (mass fraction) gets steadily increased with time and

dissolution of nitrogen is considerably high in the periphery (curved surface at r = R) as

compared to the inner core (as seen in Figure F.2). The main reason for this phenomenon

is: the curved surface is completely exposed to the flow of nitrogen; that’s why dissolution

resistance is very low at the boundaries and nitrogen dissolution is very rapid. Figure F.3

shows that height steadily decreases with time and aids in recovery of heavy oil.
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h
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Figure F.4: Axial height versus time.

Moreover, Figure F.4 shows the variation of axial height at different grid locations along

the radial (i) direction at different time instants.
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Appendix G

Derivation of Necessary Conditions

As mentioned in Chapter 4, Section 4.2.3, for the necessary condition for the maximum of

J , its variation δJ must be zero, that is,

δJ = δI +

tf∫
0

R∫
0

Z0∫
0

(δλ1G1 + λ1δG1) dz dr dt+

tf∫
0

R∫
0

Z0∫
0

(δλ2G2 + λ2δG2) dz dr dt

+

tf∫
0

R∫
0

Z0∫
0

(δλ3G3 + λ3δG3)

Z0

dz dr dt = 0. (G.1)

We expand δG1, δG2 and δG3 in the previous equation by considering the following expres-

sions (explicit variables):

wr =
∂w

∂r
, wz =

∂w

∂z
, wrr =

∂2w

∂r2
and wzz =

∂2w

∂z2
; and (G.2)

Tr =
∂T

∂r
, Tz =

∂T

∂z
, Trr =

∂2T

∂r2
and Tzz =

∂2T

∂z2
. (G.3)

Moreover, while expanding, we have taken into consideration all explicitly available variables

(w, T , z) and their derivatives. Thus, we obtain

91



APPENDIX G. DERIVATION OF NECESSARY CONDITIONS

δJ = δI −
tf∫

0

R∫
0

Z0∫
0

(
λ1
∂(δT )

∂t
+ λ2

∂(δw)

∂t
+
λ3
Z0

∂(δz)

∂t

)
dz dr dt

+

tf∫
0

R∫
0

Z0∫
0

(
λ1
∂f1
∂w

δw + λ1
∂f1
∂T

δT + λ1
∂f1
∂wr

δwr + λ1
∂f1
∂wz

δwz + λ1
∂f1
∂Tr

δTr

+λ1
∂f1
∂Tz

δTz + λ1
∂f1
∂wrr

δwrr + λ1
∂f1
∂wzz

δwzz + λ1
∂f1
∂Trr

δTrr

+λ1
∂f1
∂Tzz

δTzz

)
dz dr dt+

tf∫
0

R∫
0

Z0∫
0

(
λ2
∂f2
∂w

δw + λ2
∂f2
∂T

δT + λ2
∂f2
∂wr

δwr

+λ2
∂f2
∂wz

δwz + λ2
∂f2
∂Tr

δTr + λ2
∂f2
∂Tz

δTz + λ2
∂f2
∂wrr

δwrr + λ2
∂f2
∂wzz

δwzz

+λ2
∂f2
∂Trr

δTrr + λ2
∂f2
∂Tzz

δTzz

)
dz dr dt

+

tf∫
0

R∫
0

Z0∫
0

(
λ3
Z0

∂f3
∂w̄

δw̄ +
λ3
Z0

∂f3
∂T̄

δT̄

)
dz dr dt

+

tf∫
0

R∫
0

Z0∫
0

(
G1δλ1 +G2δλ2 +

G3

Z0

δλ3

)
dz dr dt = 0. (G.4)

Further simplification of the above equation will provide a set of equations necessary for

the optimum. Applying integration by parts to the second integral with respect to t of the

previous equation, we obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂(δT )

∂t
dz dr dt =

R∫
0

Z0∫
0

[λ1δT ]tf0 dz dr −
tf∫

0

R∫
0

Z0∫
0

∂λ1
∂t

δT dz dr dt. (G.5)

As initial temperature is fixed, δT = 0 for all r and z. Now if we specify [52, 53, 54]

λ1(tf, r, z) = 0, , 0 ≤ r ≤ R and 0 ≤ z ≤ Z0 (G.6)
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then the above integral simplifies to

tf∫
0

R∫
0

Z0∫
0

λ1
∂(δT )

∂t
dz dr dt = −

tf∫
0

R∫
0

Z0∫
0

∂λ1
∂t

δT dz dr dt. (G.7)

By applying integration by parts to the third integral with respect to t of equation G.4,

we obtain

tf∫
0

R∫
0

Z0∫
0

λ2
∂(δw)

∂t
dz dr dt =

R∫
0

Z0∫
0

[λ2δw]tf0 dz dr −
tf∫

0

R∫
0

Z0∫
0

∂λ2
∂t

δw dz dr dt. (G.8)

As initial nitrogen mass fraction is fixed, δw = 0 for all r and z. Now if we specify

λ2(tf, r, z) = 0, , 0 ≤ r ≤ R and 0 ≤ z ≤ Z0 (G.9)

then the above integral simplifies to

tf∫
0

R∫
0

Z0∫
0

λ2
∂(δw)

∂t
dz dr dt = −

tf∫
0

R∫
0

Z0∫
0

∂λ2
∂t

δw dz dr dt. (G.10)

Similarly, applying integration by parts to the fourth integral with respect to t of equation

G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ3
Z0

∂(δz)

∂t
dz dr dt =

R∫
0

Z0∫
0

[
λ3
Z0

δz

]tf
0

dz dr −
tf∫

0

R∫
0

Z0∫
0

1

Z0

∂λ3
∂t

δz dz dr dt. (G.11)

As initial height is fixed, δz = 0 for all r and z. Now if we specify

λ3(tf, r) = 0, 0 ≤ r ≤ R (G.12)

then the above integral simplifies to

tf∫
0

R∫
0

Z0∫
0

λ3
Z0

∂(δz)

∂t
dz dr dt = −

tf∫
0

R∫
0

Z0∫
0

1

Z0

∂λ3
∂t

δz dz dr dt = −
tf∫

0

R∫
0

1

Z0

∂λ3
∂t

δz dr dt.

(G.13)
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Integration by parts on the seventh integral with respect to r of equation G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂wr

δwr dz dr dt =

tf∫
0

Z0∫
0

[
λ1
∂f1
∂wr

δw

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ1
∂f1
∂wr

)
δw dz dr dt. (G.14)

Considering that δw is arbitrary at r = 0 and the fact that all additive terms of δJ must be

individually zero [52, 53, 54], it follows that

λ1(t, 0, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.15)

which yields

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂wr

δwr dz dr dt =

tf∫
0

Z0∫
0

[
λ1
∂f1
∂wr

δw

]
R

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ1
∂f1
∂wr

)
δw dz dr dt. (G.16)

Similarly, integration by parts on the eighth integral with respect to z of equation G.4,

we obtain
tf∫

0

R∫
0

Z0∫
0

λ1
∂f1
∂wz

δwz dz dr dt =

tf∫
0

R∫
0

[
λ1
∂f1
∂wz

δw

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ1
∂f1
∂wz

)
δw dz dr dt. (G.17)

Integration by parts on the ninth integral with respect to r of equation G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Tr

δTr dz dr dt =

tf∫
0

Z0∫
0

[
λ1
∂f1
∂Tr

δT

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ1
∂f1
∂Tr

)
δT dz dr dt. (G.18)
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Considering that δT is arbitrary at r = 0 and the fact that all additive terms of δJ must be

individually zero, it follows that

λ1(t, 0, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.19)

which yields

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Tr

δTr dz dr dt =

tf∫
0

Z0∫
0

[
λ1
∂f1
∂Tr

δT

]
R

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ1
∂f1
∂Tr

)
δT dz dr dt. (G.20)

Integration by parts on the tenth integral with respect to z of equation G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Tz

δTz dz dr dt =

tf∫
0

R∫
0

[
λ1
∂f1
∂Tz

δT

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ1
∂f1
∂Tz

)
δT dz dr dt. (G.21)

Integration by parts on the eleventh integral with respect to r of equation G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂wrr

δwrr dz dr dt =

tf∫
0

Z0∫
0

[
λ1

∂f1
∂wrr

δwr

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ1

∂f1
∂wrr

)
δwr dz dr dt. (G.22)

Integration by parts of the second integral of the previous equation with respect to r results
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in

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂wrr

δwrr dz dr dt =

tf∫
0

Z0∫
0

[
λ1

∂f1
∂wrr

δwr

]R
0

dz dt

−
tf∫

0

Z0∫
0

[
∂

∂r

(
λ1

∂f1
∂wrr

)
δw

]R
0

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ1

∂f1
∂wrr

)
δw dz dr dt. (G.23)

Considering that δw is arbitrary at r = R and the fact that all additive terms of δJ must

be individually zero, it follows that

λ1(t, R, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.24)

Keeping in mind that wr is zero at r = 0 because of symmetry around the z-axis and making

use of these two conditions, previous expression gets simplified to

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂wrr

δwrr dz dr dt = −
tf∫

0

Z0∫
0

[
∂

∂r

(
λ1

∂f1
∂wrr

)
δw

]
R

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ1

∂f1
∂wrr

)
δw dz dr dt. (G.25)

Integration by parts on the thirteenth integral with respect to r of equation G.4, we

obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Trr

δTrr dz dr dt =

tf∫
0

Z0∫
0

[
λ1

∂f1
∂Trr

δTr

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ1

∂f1
∂Trr

)
δTr dz dr dt. (G.26)
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Integration by parts of the second integral of the previous equation with respect to r results

in

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Trr

δTrr dz dr dt =

tf∫
0

Z0∫
0

[
λ1

∂f1
∂Trr

δTr

]R
0

dz dt

−
tf∫

0

Z0∫
0

[
∂

∂r

(
λ1

∂f1
∂Trr

)
δT

]R
0

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ1

∂f1
∂Trr

)
δT dz dr dt. (G.27)

Considering that δT is arbitrary at r = R and the fact that all additive terms of δJ must

be individually zero, it follows that

λ1(t, R, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.28)

Keeping in mind that Tr is zero at r = 0 because of symmetry around the z-axis and making

use of these two conditions, previous expression gets simplified to

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Trr

δTrr dz dr dt = −
tf∫

0

Z0∫
0

[
∂

∂r

(
λ1

∂f1
∂Trr

)
δT

]
R

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ1

∂f1
∂Trr

)
δT dz dr dt. (G.29)

Integration by parts on the twelfth integral with respect to z of equation G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂wzz

δwzz dz dr dt =

tf∫
0

R∫
0

[
λ1

∂f1
∂wzz

δwz

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ1

∂f1
∂wzz

)
δwz dz dr dt. (G.30)
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Integration by parts of the second integral of the previous equation with respect to z results

in

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂wzz

δwzz dz dr dt =

tf∫
0

R∫
0

[
λ1

∂f1
∂wzz

δwz

]Z0

0

dr dt

−
tf∫

0

R∫
0

[
∂

∂z

(
λ1

∂f1
∂wzz

)
δw

]Z0

0

dr dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂z2

(
λ1

∂f1
∂wzz

)
δw dz dr dt. (G.31)

Integration by parts on the fourteenth integral with respect to z of equation G.4, we

obtain

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Tzz

δTzz dz dr dt =

tf∫
0

R∫
0

[
λ1

∂f1
∂Tzz

δTz

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ1

∂f1
∂Tzz

)
δTz dz dr dt. (G.32)

Integration by parts of the second integral of the previous equation with respect to z results

in

tf∫
0

R∫
0

Z0∫
0

λ1
∂f1
∂Tzz

δTzz dz dr dt =

tf∫
0

R∫
0

[
λ1

∂f1
∂Tzz

δTz

]Z0

0

dr dt

−
tf∫

0

R∫
0

[
∂

∂z

(
λ1

∂f1
∂Tzz

)
δT

]Z0

0

dr dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂z2

(
λ1

∂f1
∂Tzz

)
δT dz dr dt. (G.33)
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Integration by parts on the seventeenth integral with respect to r of equation G.4, we

obtain

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂wr

δwr dz dr dt =

tf∫
0

Z0∫
0

[
λ2
∂f2
∂wr

δw

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ2
∂f2
∂wr

)
δw dz dr dt. (G.34)

Considering that δw is arbitrary at r = 0 and the fact that all additive terms of δJ must be

individually zero [52, 53, 54], it follows that

λ2(t, 0, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.35)

which yields

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂wr

δwr dz dr dt =

tf∫
0

Z0∫
0

[
λ2
∂f2
∂wr

δw

]
R

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ2
∂f2
∂wr

)
δw dz dr dt. (G.36)

Similarly, integration by parts on the eighteenth integral with respect to z of equation

G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂wz

δwz dz dr dt =

tf∫
0

R∫
0

[
λ2
∂f2
∂wz

δw

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ2
∂f2
∂wz

)
δw dz dr dt. (G.37)

Integration by parts on the nineteenth integral with respect to r of equation G.4, we

99



APPENDIX G. DERIVATION OF NECESSARY CONDITIONS

obtain
tf∫

0

R∫
0

Z0∫
0

λ2
∂f2
∂Tr

δTr dz dr dt =

tf∫
0

Z0∫
0

[
λ2
∂f2
∂Tr

δT

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ2
∂f2
∂Tr

)
δT dz dr dt. (G.38)

Considering that δT is arbitrary at r = 0 and the fact that all additive terms of δJ must be

individually zero, it follows that

λ2(t, 0, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.39)

which yields

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂Tr

δTr dz dr dt =

tf∫
0

Z0∫
0

[
λ2
∂f2
∂Tr

δT

]
R

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ2
∂f2
∂Tr

)
δT dz dr dt. (G.40)

Integration by parts on the twentieth integral with respect to z of equation G.4, we obtain

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂Tz

δTz dz dr dt =

tf∫
0

R∫
0

[
λ2
∂f2
∂Tz

δT

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ2
∂f2
∂Tz

)
δT dz dr dt. (G.41)

Integration by parts on the twenty first integral with respect to r of equation G.4, we

obtain
tf∫

0

R∫
0

Z0∫
0

λ2
∂f2
∂wrr

δwrr dz dr dt =

tf∫
0

Z0∫
0

[
λ2

∂f2
∂wrr

δwr

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ2

∂f2
∂wrr

)
δwr dz dr dt. (G.42)
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Integration by parts of the second integral of the previous equation with respect to r results

in

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂wrr

δwrr dz dr dt =

tf∫
0

Z0∫
0

[
λ2

∂f2
∂wrr

δwr

]R
0

dz dt

−
tf∫

0

Z0∫
0

[
∂

∂r

(
λ2

∂f2
∂wrr

)
δw

]R
0

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ2

∂f2
∂wrr

)
δw dz dr dt. (G.43)

Considering that δw is arbitrary at r = R and the fact that all additive terms of δJ must

be individually zero, it follows that

λ2(t, R, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.44)

Keeping in mind that wr is zero at r = 0 because of symmetry around the z-axis and making

use of these two conditions, previous expression gets simplified to

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂wrr

δwrr dz dr dt = −
tf∫

0

Z0∫
0

[
∂

∂r

(
λ2

∂f2
∂wrr

)
δw

]
R

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ2

∂f2
∂wrr

)
δw dz dr dt. (G.45)

Integration by parts on the twenty third integral with respect to r of equation G.4, we

obtain

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂Trr

δTrr dz dr dt =

tf∫
0

Z0∫
0

[
λ2

∂f2
∂Trr

δTr

]R
0

dz dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂r

(
λ2

∂f2
∂Trr

)
δTr dz dr dt. (G.46)
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Integration by parts of the second integral of the previous equation with respect to r results

in

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂Trr

δTrr dz dr dt =

tf∫
0

Z0∫
0

[
λ2

∂f2
∂Trr

δTr

]R
0

dz dt

−
tf∫

0

Z0∫
0

[
∂

∂r

(
λ2

∂f2
∂Trr

)
δT

]R
0

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ2

∂f2
∂Trr

)
δT dz dr dt. (G.47)

Considering that δT is arbitrary at r = R and the fact that all additive terms of δJ must

be individually zero, it follows that

λ2(t, R, z) = 0, , 0 ≤ t ≤ tf and 0 ≤ z ≤ Z0 (G.48)

Keeping in mind that Tr is zero at r = 0 because of symmetry around the z-axis and making

use of these two conditions, previous expression gets simplified to

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂Trr

δTrr dz dr dt = −
tf∫

0

Z0∫
0

[
∂

∂r

(
λ2

∂f2
∂Trr

)
δT

]
R

dz dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂r2

(
λ2

∂f2
∂Trr

)
δT dz dr dt. (G.49)

Integration by parts on the twenty second integral with respect to z of equation G.4, we

obtain

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂wzz

δwzz dz dr dt =

tf∫
0

R∫
0

[
λ2

∂f2
∂wzz

δwz

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ2

∂f2
∂wzz

)
δwz dz dr dt. (G.50)
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Integration by parts of the second integral of the previous equation with respect to z results

in

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂wzz

δwzz dz dr dt =

tf∫
0

R∫
0

[
λ2

∂f2
∂wzz

δwz

]Z0

0

dr dt

−
tf∫

0

R∫
0

[
∂

∂z

(
λ2

∂f2
∂wzz

)
δw

]Z0

0

dr dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂z2

(
λ2

∂f2
∂wzz

)
δw dz dr dt. (G.51)

Integration by parts on the twenty fourth integral with respect to z of equation G.4, we

obtain

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂Tzz

δTzz dz dr dt =

tf∫
0

R∫
0

[
λ2

∂f2
∂Tzz

δTz

]Z0

0

dr dt

−
tf∫

0

R∫
0

Z0∫
0

∂

∂z

(
λ2

∂f2
∂Tzz

)
δTz dz dr dt. (G.52)

Integration by parts of the second integral of the previous equation with respect to z results

in

tf∫
0

R∫
0

Z0∫
0

λ2
∂f2
∂Tzz

δTzz dz dr dt =

tf∫
0

R∫
0

[
λ2

∂f2
∂Tzz

δTz

]Z0

0

dr dt

−
tf∫

0

R∫
0

[
∂

∂z

(
λ2

∂f2
∂Tzz

)
δT

]Z0

0

dr dt

+

tf∫
0

R∫
0

Z0∫
0

∂2

∂z2

(
λ2

∂f2
∂Tzz

)
δT dz dr dt. (G.53)
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Simplification of the twenty fifth term yields

λ3
Z0

∂f3
∂w̄

δw̄ +
λ3
Z0

∂f3
∂T̄

δT̄ =
λ3
Z0

∂f3
∂w̄

(
∂w̄

∂wint

)
δwint +

λ3
Z0

∂f3
∂T̄

(
∂T̄

∂Tint

)
δTint

+
λ3
Z0

∂f3
∂w̄

(
∂w̄

∂w

)
δw +

λ3
Z0

∂f3
∂T̄

(
∂T̄

∂T

)
δT. (G.54)

It is noteworthy that

δw(t, R, z) = δw(t, r, 0) = δw(t, r, Z0) = δwint; and (G.55)

δT (t, R, z) = δT (t, r, 0) = δT (t, r, Z0) = δTint (G.56)

where δwint is the time-dependent mass fraction of nitrogen gas at the solvent–heavy oil

interface and its dependence on the control function Tint at a given P is given by

δwint =

(
∂wint

∂Tint

)
δTint. (G.57)

Finally, from term one we obtain

δI = − βr

Z0µ̄2

[
∂µ̄

∂w̄

(
∂w̄

∂wint

)(
∂wint

∂Tint

)
+
∂µ̄

∂T̄

(
∂T̄

∂Tint

)]
δTint

− βr

Z0µ̄2

[
∂µ̄

∂w̄

(
∂w̄

∂w

)
δw +

∂µ̄

∂T̄

(
∂T̄

∂T

)
δT

]
. (G.58)

Also,

∂f3
∂w̄

=
α

φµ̄2

∂µ̄

∂w̄
(G.59)

and

∂f3
∂T̄

=
α

φµ̄2

∂µ̄

∂T̄
(G.60)
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With the help of the aforementioned results, Equation G.4 can be re-expressed as

δJ =

tf∫
0

R∫
0

Z0∫
0

(
∂λ1
∂t

+ λ1
∂f1
∂T

+ λ2
∂f2
∂T
− ∂

∂r

(
λ1
∂f1
∂Tr

)
− ∂

∂z

(
λ1
∂f1
∂Tz

)

− ∂

∂r

(
λ2
∂f2
∂Tr

)
− ∂

∂z

(
λ2
∂f2
∂Tz

)
+

∂2

∂r2

(
λ1

∂f1
∂Trr

)
+

∂2

∂z2

(
λ1

∂f1
∂Tzz

)

+
∂2

∂r2

(
λ2

∂f2
∂Trr

)
+

∂2

∂z2

(
λ2

∂f2
∂Tzz

)
−
(

2πrρ− λ3
φ

)
α

Z0µ̄2

∂µ̄

∂T̄

∂T̄

∂T

)
δT dz dr dt

+

tf∫
0

R∫
0

Z0∫
0

(
∂λ2
∂t

+ λ1
∂f1
∂w

+ λ2
∂f2
∂w
− ∂

∂r

(
λ1
∂f1
∂wr

)
− ∂

∂z

(
λ1
∂f1
∂wz

)

− ∂

∂r

(
λ2
∂f2
∂wr

)
− ∂

∂z

(
λ2
∂f2
∂wz

)
+

∂2

∂r2

(
λ1

∂f1
∂wrr

)
+

∂2

∂z2

(
λ1

∂f1
∂wzz

)

+
∂2

∂r2

(
λ2

∂f2
∂wrr

)
+

∂2

∂z2

(
λ2

∂f2
∂wzz

)
−
(

2πrρ− λ3
φ

)
α

Z0µ̄2

∂µ̄

∂w̄

∂w̄

∂w

)
δw dz dr dt

+

tf∫
0

R∫
0

Z0∫
0

(
1

Z0

× ∂λ3
∂t

)
δz dz dr dt+

tf∫
0

R∫
0

Z0∫
0

(X)δTint dz dr dt

+

tf∫
0

R∫
0

Z0∫
0

(
G1δλ1 +G2δλ2 +

G3

Z0

δλ3

)
dz dr dt (G.61)
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where,

X =

{
1

R

[
λ1
∂f1
∂wr

]
R

(
∂wint

∂Tint

)
+

1

Z0

[
λ1
∂f1
∂wz

]
Z0

(
∂wint

∂Tint

)
− 1

Z0

[
λ1
∂f1
∂wz

]
0

(
∂wint

∂Tint

)

+
1

R

[
λ1
∂f1
∂Tr

]
R

+
1

Z0

[
λ1
∂f1
∂Tz

]
Z0

− 1

Z0

[
λ1
∂f1
∂Tz

]
0

+
1

Z0

[
λ1

∂f1
∂wzz

δwz

]Z0

0

− 1

R

[
∂

∂r

(
λ1

∂f1
∂wrr

)]
R

(
∂wint

∂Tint

)
− 1

R

[
∂

∂r

(
λ1

∂f1
∂Trr

)]
R

+
1

Z0

[
λ1

∂f1
∂Tzz

δTz

]Z0

0

− 1

Z0

[
∂

∂z

(
λ1

∂f1
∂wzz

)]
Z0

(
∂wint

∂Tint

)
+

1

Z0

[
∂

∂z

(
λ1

∂f1
∂wzz

)]
0

(
∂wint

∂Tint

)

− 1

Z0

[
∂

∂z

(
λ1

∂f1
∂Tzz

)]
Z0

+
1

Z0

[
∂

∂z

(
λ1

∂f1
∂Tzz

)]
0

+
1

R

[
λ2
∂f2
∂wr

]
R

(
∂wint

∂Tint

)
+

1

Z0

[
λ2
∂f2
∂wz

]
Z0

(
∂wint

∂Tint

)
− 1

Z0

[
λ2
∂f2
∂wz

]
0

(
∂wint

∂Tint

)

+
1

R

[
λ2
∂f2
∂Tr

]
R

+
1

Z0

[
λ2
∂f2
∂Tz

]
Z0

− 1

Z0

[
λ2
∂f2
∂Tz

]
0

+
1

Z0

[
λ2

∂f2
∂wzz

δwz

]Z0

0

− 1

R

[
∂

∂r

(
λ2

∂f2
∂wrr

)]
R

(
∂wint

∂Tint

)
− 1

R

[
∂

∂r

(
λ2

∂f2
∂Trr

)]
R

+
1

Z0

[
λ2

∂f2
∂Tzz

δTz

]Z0

0

− 1

Z0

[
∂

∂z

(
λ2

∂f2
∂wzz

)]
Z0

(
∂wint

∂Tint

)
+

1

Z0

[
∂

∂z

(
λ2

∂f2
∂wzz

)]
0

(
∂wint

∂Tint

)

− 1

Z0

[
∂

∂z

(
λ2

∂f2
∂Tzz

)]
Z0

+
1

Z0

[
∂

∂z

(
λ2

∂f2
∂Tzz

)]
0

+
λ3
Z0

∂f3
∂w̄

(
∂w̄

∂wint

)(
∂wint

∂Tint

)

+
λ3
Z0

∂f3
∂T̄

(
∂T̄

∂Tint

)
− βr

Z0.µ̄2

[
∂µ̄

∂w̄

(
∂w̄

∂wint

)(
∂wint

∂Tint

)
+
∂µ̄

∂T̄

(
∂T̄

∂Tint

)]}
. (G.62)

In addition, δw and δT is arbitrary at z = 0 & Z0 and the fact that all additive terms

106



APPENDIX G. DERIVATION OF NECESSARY CONDITIONS

of δJ must be individually zero, it follows that

λ1(t, r, 0) = 0, λ1(t, r, Z0) = 0, λ2(t, r, 0) = 0, λ2(t, r, Z0) = 0, (G.63)

0 ≤ t ≤ tf and 0 ≤ r ≤ R

In the context of Equation G.61 the coefficients of δT , δw, δz, δλ1, δλ2, δλ1 and δTint as

indicated earlier expression depend on the arbitrary variations these terms respectively, and

they are assumed to be continuous. Under these conditions, for δJ to be zero, each of these

coefficients must be individually zero. As a result, we obtain by necessity

Co-state Equation 1:

∂λ1
∂t

= −λ1
∂f1
∂T
− λ2

∂f2
∂T

+
∂

∂r

(
λ1
∂f1
∂Tr

)
+

∂

∂z

(
λ1
∂f1
∂Tz

)
+

∂

∂r

(
λ2
∂f2
∂Tr

)
+

∂

∂z

(
λ2
∂f2
∂Tz

)
− ∂2

∂r2

(
λ1

∂f1
∂Trr

)
− ∂2

∂z2

(
λ1

∂f1
∂Tzz

)
− ∂2

∂r2

(
λ2

∂f2
∂Trr

)
− ∂2

∂z2

(
λ2

∂f2
∂Tzz

)
+

(
2πrρ− λ3

φ

)
α

Z0µ̄2

∂µ̄

∂T̄

∂T̄

∂T
, (G.64)

and 0 ≤ r ≤ R and 0 ≤ z ≤ Z0

Co-state Equation 2:

∂λ2
∂t

= −λ1
∂f1
∂w
− λ2

∂f2
∂w

+
∂

∂r

(
λ1
∂f1
∂wr

)
+

∂

∂z

(
λ1
∂f1
∂wz

)
+

∂

∂r

(
λ2
∂f2
∂wr

)
+

∂

∂z

(
λ2
∂f2
∂wz

)
− ∂2

∂r2

(
λ1

∂f1
∂wrr

)
− ∂2

∂z2

(
λ1

∂f1
∂wzz

)
− ∂2

∂r2

(
λ2

∂f2
∂wrr

)
− ∂2

∂z2

(
λ2

∂f2
∂wzz

)
+

(
2πrρ− λ3

φ

)
α

Z0µ̄2

∂µ̄

∂w̄

∂w̄

∂w
, (G.65)

and 0 ≤ r ≤ R and 0 ≤ z ≤ Z0

Co-state Equation 3:

∂λ3
∂t

= 0, (G.66)

and 0 ≤ r ≤ R
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Stationarity Equation:

∂J

∂Tint
=

{
− 1

R

[
∂

∂r

(
λ1

∂f1
∂wrr

)]
R

(
∂wint

∂Tint

)
− 1

R

[
∂

∂r

(
λ1

∂f1
∂Trr

)]
R

− 1

Z0

[
∂

∂z

(
λ1

∂f1
∂wzz

)]
Z0

(
∂wint

∂Tint

)
+

1

Z0

[
∂

∂z

(
λ1

∂f1
∂wzz

)]
0

(
∂wint

∂Tint

)

− 1

Z0

[
∂

∂z

(
λ1

∂f1
∂Tzz

)]
Z0

+
1

Z0

[
∂

∂z

(
λ1

∂f1
∂Tzz

)]
0

− 1

R

[
∂

∂r

(
λ2

∂f2
∂wrr

)]
R

(
∂wint

∂Tint

)
− 1

R

[
∂

∂r

(
λ2

∂f2
∂Trr

)]
R

− 1

Z0

[
∂

∂z

(
λ2

∂f2
∂wzz

)]
Z0

(
∂wint

∂Tint

)
+

1

Z0

[
∂

∂z

(
λ2

∂f2
∂wzz

)]
0

(
∂wint

∂Tint

)

− 1

Z0

[
∂

∂z

(
λ2

∂f2
∂Tzz

)]
Z0

+
1

Z0

[
∂

∂z

(
λ2

∂f2
∂Tzz

)]
0

+
λ3
Z0

∂f3
∂w̄

(
∂w̄

∂wint

)(
∂wint

∂Tint

)

+
λ3
Z0

∂f3
∂T̄

(
∂T̄

∂Tint

)
− βr

Z0.µ̄2

[
∂µ̄

∂w̄

(
∂w̄

∂wint

)(
∂wint

∂Tint

)
+
∂µ̄

∂T̄

(
∂T̄

∂Tint

)]}
.

(G.67)

From Equation G.64, if we simplify different terms, we obtain following relations:

∂f1
∂T

= − α

φµ2
(µwwz + µTTz) +

2αTµT
φµ3

(µwwz + µTTz)−
αTzµT
φµ2

− αT

φµ2
(µwTwz + µTTTz)

∂f2
∂T

=
DTwr
r

+DTwrr +DwT (wr)
2 +DTTwrTr −

αµTwz
φµ2

+
2αwµT
φµ3

(µwwz + µTTz)−
αw

φµ2
(µwTwz + µTTTz);

From the derivatives of f1 with respect to derivatives of T , w along r and z,

∂f1
∂Tr

=
γ

r
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∂f1
∂Tz

=
α

φµ
− αTµT

φµ2

∂f1
∂Trr

= γ

∂f1
∂Tzz

= γ

∂f2
∂Tr

= DTwr

∂f2
∂Tz

= −αwµT
φµ2

∂f2
∂Trr

= 0

∂f2
∂Tzz

= 0

Similarly, from Equation G.65, if we simplify different terms, we obtain following relations:

∂f1
∂w

=
2αTµw
φµ3

(µwwz + µTTz)−
αTzµw
φµ2

− αT

φµ2
(µwwwz + µwTTz)

∂f2
∂w

=
Dwwr
r

+Dwwrr +Dww(wr)
2 +DwTwrTr −

α

φµ2
(µwwz + µTTz)

+
2αwµw
φµ3

(µwwz + µTTz)−
αw

φµ2
(µwwwz + µwTTz)−

αwzµw
φµ2

∂f1
∂wr

= 0

∂f1
∂wz

= −αTµw
φµ2

∂f1
∂wrr

= 0

∂f1
∂wzz

= 0

∂f2
∂wr

=
D

r
+ 2Dwwr +DTTr

∂f2
∂wz

=
α

φµ
− αwµw

φµ2
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∂f2
∂wrr

= D

∂f2
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= 0.

Moreover, from the double derivatives,

∂

∂r

(
λ1
∂f1
∂Tr

)
=
(γ
r

)∂λ1
∂r

+ λ1
∂

∂r

(
∂f1
∂Tr

)
=
(γ
r

)∂λ1
∂r

+ λ1
∂

∂r

(γ
r

)
=
(γ
r

)∂λ1
∂r
− γλ1

r2

∂

∂z

(
λ1
∂f1
∂Tz

)
=

(
∂f1
∂Tz

)
∂λ1
∂z

+
∂

∂z

(
∂f1
∂Tz

)

=

(
α

φµ
− αTµT

φµ2

)
∂λ1
∂z
− αλ1
φµ2

(µwwz + µTTz)−
αµTTzλ1
φµ2

− αTλ1
φµ2

(µwTwz + µTTTz) +
2αTµTλ1
φµ3

(µwwz + µTTz)

∂

∂r

(
λ2
∂f2
∂Tr

)
=

(
∂f2
∂Tr

)
∂λ2
∂r

+ λ2
∂

∂r

(
∂f2
∂Tr

)

= DTwr
∂λ2
∂r

+ λ2
(
DTwrr +DwT (wr)

2 +DTTwrTr
)

∂

∂z

(
λ2
∂f2
∂Tz

)
=

(
∂f2
∂Tz

)
∂λ2
∂z

+ λ2
∂

∂z

(
∂f2
∂Tz

)

= −
(
αwµT
φµ2

)
∂λ2
∂z
− αµTwzλ2

φµ2
− αwλ2

φµ2
(µwTwz + µTTTz)

+
2αwµTλ2
φµ3

(µwwz + µTTz)

∂

∂r

(
λ1
∂f1
∂wr

)
= 0

110



APPENDIX G. DERIVATION OF NECESSARY CONDITIONS

∂

∂z

(
λ1
∂f1
∂wz

)
=

(
∂f1
∂wz

)
∂λ1
∂z

+ λ1
∂

∂z

(
∂f1
∂wz

)

= −
(
αTµw
φµ2

)
∂λ1
∂z
− αµwTzλ1

φµ2
− αTλ1

φµ2
(µwwwz + µwTTz)

+
2αTµwλ1
φµ3

(µwwz + µTTz)

∂

∂r

(
λ2
∂f2
∂wr

)
=

(
∂f2
∂wr

)
∂λ2
∂r

+ λ2
∂

∂r

(
∂f2
∂wr

)
=

(
D

r
+ 2Dwwr +DTTr

)
∂λ2
∂r

− Dλ2
r2

+ 2Dwwrrλ2 +DTTrrλ2 +
λ2
r

(Dwwr +DTTr)

+ 2λ2wr(Dwwwr +DwTTr) + λ2Tr(DwTwr +DTTTr)

∂

∂z

(
λ2
∂f2
∂wz

)
=

(
∂f2
∂wz

)
∂λ2
∂z

+ λ2
∂

∂z

(
∂f2
∂wz

)

=

(
α

φµ
− αwµw

φµ2

)
∂λ2
∂z
− αλ2
φµ2

(µwwz + µTTz)−
αµwwzλ2
φµ2

− αwλ2
φµ2

(µwwwz + µwTTz) +
2αwµwλ2
φµ3

(µwwz + µTTz)

∂2

∂r2

(
λ1

∂f1
∂Trr

)
= γ

∂2λ1
∂r2

∂2

∂z2

(
λ1

∂f1
∂Tzz

)
= γ

∂2λ1
∂z2

∂2

∂r2

(
λ2

∂f2
∂Trr

)
= 0

∂2

∂z2

(
λ2

∂f2
∂Tzz

)
= 0

111



APPENDIX G. DERIVATION OF NECESSARY CONDITIONS
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Using above relationships, we obtain final form of the first co-state equation as:
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similarly, using above relationships, we obtain final form of the second co-state equation as:
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(G.69)

third co-state equation as:

∂λ3
∂t

= 0; and (G.70)
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finally, the stationarity condition as:
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