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ABSTRACT 

 
This paper considers an optimisation problem encountered in the implementation of traffic 

policies on network routers, namely the ordering of rules in an access control list to minimise 

or reduce processing time and hence packet latency.  The problem is formulated as an 

objective function with constraints and shown to be NP-complete by translation to a known 

problem. Exact and heuristic solution methods are introduced, discussed and compared and 

computational results given.  The emphasis throughout is on practical implementation of the 

optimisation process, that is within the tight constraints of a production network router 

seeking to reduce latency. on-line, in real-time but without the overhead of significant extra 

computation. 

 

 

1. INTRODUCTION: ACCESS CONTROL LISTS 
 

An Internetwork (Internet) is a network of networks.  Key devices known as routers 

switch, or route, communications traffic, usually in the form of discrete packets, 

between networks.  Routers are responsible for correct and appropriate delivery of 

packets from source to destination through the use of routed and routing protocols (or 

manually defined static routes) and the application of policies.  The primary function 

of a router is to forward each packet to the most suitable device, often another router, 

at each step (hop) of the journey.  However, a vital secondary role is to consider 

whether a given packet should be passed at all, according to a set of tests, or rules, 

against which it may be matched. 

 

A typical rule, in the syntax of the Cisco Internetwork Operating System (IOS) 

(Colton, 2002), might be: 

 
    access-list 101 deny icmp any 10.0.0.0 0.255.255.255 echo-reply 
 

This states that ICMP echo-reply packets from any source to the network 10.0.0.0 

are to be blocked at this point.  The first part of the rule assigns it to access list  101. 

 

An access list, or Access Control List (ACL), is then a sequence of such rules designed 

to implement a given objective or set of objectives.  ACLs can be used simply to pass 

or block packets or as filters for more sophisticated policies such as traffic shaping, 

address translation, queuing or encryption.  A packet may be matched against several 

ACLs on a single router and many on its complete journey from source to destination.  
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Inefficient ACLs then may add significantly to packet delay and even small ACLs 

will contribute to this latency simply by their aggregation across several routers. 

 

An example of a complete ACL is given in Figure 1.  Other than the ACL assignment, 

a rule may consist of up to five parts: the permit or deny type, the protocol, a source 

address, destination address and a flag function (as in the echo-reply parameter 

above) for fine-tuning.  Each parameter may be a single value or a range of allowable 

matches.  For example, the any parameter above matches all source addresses whilst 

the 0.255.255.255 parameter matches destination addresses in the 10.0.0.0 

network.  The absence of any term, such as a protocol or flag, indicates the rule will 

match a packet with any such values – provided the specified fields are matched. 

 

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq telnet

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq ftp

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq http

access-list 101 deny ip 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 administratively-prohibited

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 echo-reply

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 packet-too-big

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 time-exceeded

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 unreachable

access-list 101 permit icmp 172.16.20.0 0.0.255.255

access-list 101 deny icmp any any

access-list 101 permit ip 202.33.42.0 0.0.0.255 any

access-list 101 permit ip 202.33.73.0 0.0.0.255 any

access-list 101 permit ip 202.33.48.0 0.0.0.255 any

access-list 101 permit ip 202.33.75.0 0.0.0.255 any

access-list 101 deny ip 202.33.0.0 0.0.255.255 any

access-list 101 deny tcp 210.120.122.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.183.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.114.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.175.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.136.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.177.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 permit tcp any 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp any any eq www

access-list 101 permit tcp any any

access-list 101 deny ip 195.10.45.0 0.0.0.255 any

access-list 101 permit ip any any

{access-list 101 deny all} {implicit}

 
 

Figure 1.  An Access Control List (ACL) 

 

Although the simple examples given in this section may appear to imply classful 

routing, the rules can use wildcard masks to match any required subnet so that the 

techniques discussed in this paper are fully suited to Classless Inter-Domain Routing 

(CIDR) applications.  However, a discussion of such Variable Length Subnet Mask 

(VLSM) principles would extend this paper unnecessarily and can be found elsewhere 

(Colton, 2002). 

 

The rules of an ACL are processed in order.  That is, each incoming packet is tested 

against the first rule; if it matches, it is passed or blocked accordingly and no further 

rules are considered; otherwise it is tested against the second rule, and so on.  There is 

an implicit  {deny all} rule at the end of each ACL to block all packets not 

otherwise matched.  Some rules are more likely to match packets than others and, 

depending on the method of implementation, some rules may take longer to process 

than others (for example if multiple parts of protocol units at different layers have to 
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be examined).  The time to process an ACL is then the total time taken to test a packet 

against each rule up to and including the one it matches.   

 

Whatever the purpose of an ACL, it is clearly advantageous to have the rules ordered 

in such a way as to minimise, or at least reduce, processing time.  However, the 

relationship between rules prohibits arbitrary reordering.  For example, in Figure 2, an 

IP packet from network 192.168.16.0 to network 10.0.0.0 will match both rules 

shown.  The packet will be passed in 2(a) but blocked in 2(b).  Clearly then, rules may 

not be reordered if this changes the underlying intention of the policy. 

 

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

{access-list 102 deny all} {implicit}

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

{access-list 102 deny all} {implicit}

Access list 2(b)

Access list 2(a)

 
 

Figure 2.  The importance of dependent rule order 

 

The short history of the study of ACL design is as follows.  The issue of efficiency in 

packet filters was first addressed in this context by Stoica (2001) but largely as an 

aside and without significant outcome.  Shih & Qian (2002) discuss the crucial 

question of how to identify rule dependencies in ACLs although the subject is first 

considered in any form in Hari et al. (2000), again as an aside.  The first attempt at 

optimisation comes from Cisco (2003) but this work ignores individual rule latencies: 

that is, all rules are assumed to take the same time to process.  Bukhatwa & Patel 

(2003) show the value of ACL optimisation but ignore both differences in rule 

latencies and, more crucially, rule dependencies.  Bukhatwa (2004) gives a simplified 

method for ordering a list efficiently, based on the classification of rules by latency, 

but still fails to consider rule dependencies.  In these approaches, rules are permitted 

to migrate freely within the list.  Al-Shaer & Hamed (2004) give a much-improved 

treatment of the problem – with an awareness of rule dependency, but only for the 

purpose of discovering rule anomalies.  All the above methods are off-line, that is, 

although rule hit-rates may be recorded automatically, any optimisation of rule order 

takes place as a separate, semi-manual process and the revised ACL loaded back on to 

the router.  With the introduction of Turbo Access Lists (Cisco, 2004), the searching 
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of ACLs is made more efficient.  The list is pre-compiled into tables for which the 

packet header can then be used as a search key.  Whilst this may be seen as the first 

semi-automatic implementation of ACL optimisation, it is actually a batch process - 

there is no attempt to change rule order in response to traffic flow.  Also different rule 

latencies are still not considered. 

 

This paper undertakes an entirely deeper study of the optimal ACL problem, suitable 

for implementation, on a larger scale, within the router IOS or embedded in hardware.  

We consider rule hit-rates, latencies and variable traffic flow in the optimisation of 

ACL order.  It is proposed that the optimisation of rules within ACLs should take 

place in real-time (on-line) and automatically.  Such processes must be efficient and 

worthwhile – reducing packet latency without adding significant computational 

overhead.  They must also be practical and not conflict with the requirements and 

expectations of the Network Administrator (NA) configuring and maintaining the 

ACLs. 

 

We proceed now to a formal development of the problem, which is essentially to find 

the optimal ordering of the rules of an ACL that satisfies the original policy.   

 

 

2. DEFINITIONS AND NOTATION 
 

Where appropriate in this paper, abbreviations are used as follows: ∃,  ‘there is’ or 

‘there exists’; ∀, ‘for all’ or ‘for every’; ∧, ‘and’; ⇔, ‘if and only if’; and →, ‘such 

that’. 

 

Define A* to be the set of all addresses available within a given system, define B* to 

be the set of all protocols recognised by the system and define F* = {0, 1}
w
 to be the 

set of w flag vectors ({0, 1} w-tuples acting on B*) valid for the system.  For 

completeness, X*  represents the set of payloads. 

 

2.1. Packets 
 

A packet, pk = (Sak, Dak, bk, fk, Xk), is defined by its constituents: Sak ∈ A*, the source 

address; Dak ∈ A*, the destination address; bk ∈ B*, the protocol; fk ∈ F*, the flags 

vector and Xk ∈ X*, the payload. 

 

A traffic flow, T = [p1, p2, ..., pq], is a sequence of q packets.  For sufficiently large q, 

this may be regarded as a distribution of packets and we simply refer to the traffic, T. 

 

2.2. Rules 
 

A rule, ri = (ti, SAi, DAi, Bi, σi), consists of: a type, ti ∈ {permit, deny}, SAi ⊆ A*:  the 

source range, DAi ⊆ A*:  the destination range, Bi ⊆ B*:  the protocol range, and a 

flags predicate, σi: F* a {true, false}.  Only ti is a required component in all 

syntaxes.  If any other components are absent then SAi = A*, DAi = A*, Bi = B* or σi ≡ 

true by default. 
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A packet, pk, matches a rule, ri (for which we write pk ∇ ri), if its addresses and 

protocols are within the range of the rule and if its flags vector satisfies the rule’s 

flags predicate.  That is, 

 

 pk ∇ ri ⇔ (Sak ∈ SAi) ∧ (Dak ∈ DAi) ∧ (bk ∈ Bi) ∧ σi (fk),    (1) 

 

in which case the packet will be permitted or denied according to ti. 

 

2.3. Policies and Dependencies 
 

A policy, Z = [r1, r2, ..., rn] is an (ordered) sequence of n rules to achieve some 

purpose.  It is assumed here that the rules of a policy are correctly ordered, by the NA, 

to achieve this purpose.  Also, the last rule implicitly denies all traffic; that is, tn = 

deny, SAn = A*, DAn = A*, Bn = B* and σn ≡ true. 

 

A dependency exists between two rules, ri and rj, if they are of opposite type and it is 

possible that there exists a packet, pk, that matches both rules ((pk ∇ ri) ∧ (pk ∇ rj)); 

that is ri and rj are dependent if 

 

 (ti ≠ tj) ∧ ∃ pk →  (Sak ∈ SAi ∩ SAj) ∧ (Dak ∈ DAi ∩ DAj)    (2) 

∧ (bk ∈ Bi ∩ Bj) ∧ σi(fk) ∧ σj(fk). 

 

Eliminating the packet, pk, from this expression, allows a {0, 1} dependency matrix, D 

= (dij: 1≤i,j≤n), to be defined: 

 

 dij  ⇔  (ti ≠ tj) ∧  (SAi ∩ SAj ≠ ∅) ∧ (DAi ∩ DAj ≠ ∅)     (3) 

               ∧ (Bi ∩ Bj ≠ ∅) ∧ (Σi ∩ Σj ≠ ∅), 

 

where Σi ⊆ F*  is the subset of flag vectors satisfying σi. 

 

If dij = 1 then the order of rules i and j must be preserved if the behaviour of the 

policy is to be maintained. 

 

2.4. Redundancies 
 

A rule, rj, in a policy, Z, is redundant (written ri � rj) if there exists a rule, ri (i < j), in 

Z, such that all packets matching rj will be matched by ri. 

 

 ri � rj ⇔ (ti = tj)∧ (SAi ⊇ SAj) ∧ (DAi ⊇ DAj) ∧ (Bi ⊇ Bj) ∧ (Σi ⊇ Σj).  (4) 

 

A redundant rule may be removed from the policy without changing its purpose. 

 

A rule, ri, in a policy, Z, is potentially redundant if there exists a rule, rj (i < j), in Z, 

such that all packets matching ri will be matched by rj. A redundant rule may be 

removed from the policy without changing its purpose provided that no other rules 

between ri and rj are dependent upon rj; that is, 

 

 ri � rj ⇔ (ti = tj)∧ (SAi ⊆ SAj) ∧ (DAi ⊆ DAj) ∧ (Bi ⊆ Bj)    (5) 

∧ (Σi ⊆ Σj) ∧∀ v → (i < v < j), dvj = 0. 
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Both forms of redundancy include the case, ri = rj. 

 

Finally, and in brief, rules, rα, rβ, .., rω , are said to be co-redundant if there can be 

found a rule, ri (i < α, β, .., ω), such that ri can replace rα, rβ, .., rω .  Equivalent 

definitions may be derived for co-redundancy with respect to source/destination 

address and protocol/flags, and for potential co-redundancy. 

 

A useful tutorial approach to the management of redundancies is given in Shih and 

Qian (2003).  Al-Shaer & Hamed (2004) give an updated treatment.  Although 

interesting, these concepts are not central to this work.  The techniques discussed in 

this paper will work whether or not the policy, Z = [r1, r2, ..., rn], contains 

redundancies.  Techniques for removal and detection of redundancies may be applied 

independently if required. 

 

2.5. Lists and Hit Rates 
 

An access list, or simply list, L, implements a policy, Z = [r1, r2, ..., rn], if it is a 

permutation of the rules of Z such that the order of dependencies is preserved.  Let 

ri(L) be the rule at position i in L.  A special case of a list implementing a policy, Z, is 

the identity list, IZ = [r1, r2, ..., rn], for which ri(IZ) = ri ∀ i (1≤i≤n). 

 

The hit-rate, h(ri(L),T), of rule ri in a list L, is the probability that a packet from a 

traffic flow T will match ri in L.  Hit-rates can be calculated dynamically using 

counters within the IOS or hardware (Cisco, 2002, 2003). 

 

2.6. Latencies 
 

The latency, λ( ri), of a rule ri is the time taken to (independently) process ri.  This 

may be calculated from the length of a rule, the nature of the protocols involved or 

taken from stored tables.  In some systems, latencies may be constant for all rules but 

this is not assumed in this paper. 

 

The cumulative latency, κ( ri(L)), of ri in a list L, is the time taken to process ri and all 

rules preceding it in L. 

 

 ∑
=

=
i

i LrLr
1

))(())((
ϕ

ϕλκ .        (6) 

 

The expected latency, E(L,T), of a list L, in traffic T, is then given by 

 

 ∑ ∑∑
= ==

==
n

i

i

ii

n

i

ii LrTLrhLrTLrhTLE
1 11

))(()),(())(()),((),(
ϕ

λκ .   (7) 

 

For a given traffic flow, T, we require to find (or approximate) the list, L, 

implementing a policy, Z, that minimises E(L,T). 
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3. THE PROBLEM AND ITS COMPLEXITY 
 

The problem, SEQUENCING TO MINIMISE EXPECTED LATENCY (SMEL), can 

be expressed, in standard terms (Garey and Johnson, 1979) as 

 

INSTANCE: Traffic flow T, Policy Z of n rules, partial order on N given by 

dependency matrix D, for each rule r ∈ Z a latency λ( r) and a hit-rate 

h(r), and a target K. 

 

QUESTION: Is there an ordering L of the rules of Z, obeying the dependency 

  constraints D, such that the expected latency E(L,T) as defined in (7) 

  is K or less? 

 

For the purposes of this section only, we assume the traffic flow T to have a constant 

packet distribution.  The size of the solution space for (the unconstrained) SMEL is 

(n-1)!, taking the last deny all rule to be fixed.  This is identical to that for the 

TRAVELING SALESMAN PROBLEM (TSP), the classic NP-complete 

combinatorial optimisation (CO) problem.  The unconstrained problem (i.e. with no 

dependencies) has TSP complexity.  The dependencies serve to reduce the size of the 

solution space by making certain orderings invalid but have no effect on the 

complexity as shown here. 

 

THEOREM: SEQUENCING TO MINIMISE EXPECTED LATENCY (SMEL) 

is NP-complete 

 

PROOF: Transformation to SEQUENCING TO MINIMIZE WEIGHTED 

  COMPLETION TIME (SMWCT) (Lawler, 1978). 

 

A direct mapping from SMEL to SMWCT is achieved by setting 

 

  SMEL  SMWCT 

  Z to N 

  r to t 

  D to ⋖      [by taking  ti ⋖  tj  ⇔  (i < j) ∧ dij = 1] 

  λ( r) to l(t) 

  h(r) to w(t) 

 

(using the notation from Garey and Johnson, 1979) for any given flow, T.   

 

It follows that (unless P=NP) guaranteed exact solutions are not reasonably to be 

expected for large values of n. 

 

 

4. EXACT ALGORITHMS 
 

ACLs vary considerably in size.  An ACL to select addresses for translation, for 

example, may have only two or three rules.  A typical filter may have between 10 and 

100 rules.  Large enterprise and service providers may have ACLs with anything from 

several hundred rules to tens of thousands.  However, smaller ACLs are more 
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common so there is some value in considering exact approaches to optimising rule 

order (if only to have a benchmark against which to compare approximated solutions).  

Four standard methods are discussed briefly here.  There is a close relationship 

between the order of the n rules in an ACL and the n arcs of the TSP, with the 

dependencies of the ACL denoting infeasible arcs of the TSP.  Consequently, TSP 

notation and terminology may be used interchangeably with SMEL where 

appropriate. 

 

4.1. Exhaustive Search 
 

The simplest, but least efficient, approach to exact ACL optimisation will be to 

generate, by iteration or recursion, each ordering, L, of the rules in turn, test for 

validity against dependency constraints, D, and record the solution that minimises 

E(L,T).  The time complexity of such a process will be O(n!) but with space 

complexity of O(n).  Although minimising space complexity may be of some value in 

environments with limited (storage) capacity, this time complexity is unacceptable in 

most practical circumstances. 

 

4.2. Dynamic Programming 
 

A more efficient dynamic programming technique is given by Held and Karp (1962) 

and adapted in various forms to the present day (Lawler et al., 1985 and Gutin and 

Punnen, 2002).  The generic algorithm has time complexity O(2
n
), space complexity 

O(2
n
) and can be adapted for SMEL as follows. 

 

 Z = {r1, r2, …, rn}  (with rn fixed) 

 

 For Y = {r1, r2, …, rn-1}  and  r∈ Y, let |SMEL|(Y, r) be the minimum 

expected latency of the sublist  Y ∪ {rn}.  Then 

 

 




≠+−

=
=

∈≠ }{))(()},{(||min

}{))((
),(||

rYYssrYSMEL

rYYr
rYSMEL

Ysr κ
κ     (8) 

 

 SMEL can then be calculated as  min r |SMEL|(Z, r) + κ(r(Z)). 

 

Although an improvement on exhaustive search, the time complexity is still 

exponential.  The exponential space complexity may be a significant problem in 

restricted environments and, in practice, often translates to increased time complexity 

on implementation.  However this method, on more powerful processors, may be a 

reasonable option for smaller lists and provides good benchmarks for comparison with 

heuristics for smaller values of n. 

 

4.3. Linear Programming 
 

Linear Programming (LP) techniques are well established in solving large CO 

problems (Papadimitriou, 1994).  The formulation of SMEL as an LP problem from 

an objective function (7) subject to the constraints of dependencies, D, is non-trivial 

but achievable.  On a stand-alone processor, this provides faster solutions than from 

Section 4.1 and 4.2.  However, the implementation of LP solution software within the 
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very tight constraints of router IOS and capacity, or in hardware, is unrealistic.  For 

comparison purposes, such methods are only appropriate for small numbers of tests 

since each new instance has to be programmed into the system before solving.  This is 

impractical for large repetitive test runs. 

 

4.4. Branch and Bound 
 

The most efficient known exact (or near-exact) solutions to large CO problems are the 

various branch-and-bound or branch-and-cut algorithms developed in relation to LP 

methods. Possibly the most efficient of these is the algorithm of Applegate et al. 

(2003).  With these techniques, processing in parallel and often with human 

intervention, it is possible to derive exact (or near-exact) solutions to extremely large 

problems (Applegate et al., 2004).  Such methods are clearly not suitable for on-line 

implementation in routers although they are, however, useful for small numbers of 

larger comparisons. 

 

 

5. APPROXIMATIONS AND HEURISTICS 
 

Even for relatively small problems, heuristics will be necessary for implementation in 

real-time in operational networks.  A typical access router may have a processor 

(clock) speed of about 80KHz and less than 50MB of dynamic memory whereas large 

distribution or core routers use GHz processors and multi-GB memory.  The relative 

significance of reducing packet latency, however, remains acute in all cases, as does 

the requirement that any attempt to optimise packet processing be worthwhile.  

Nothing should be permitted to add to the inherent latency of the packet matching and 

routing process so any optimisation of ACL structure, implemented in the IOS or 

hardware, must be both time- and space-efficient.  Some of the more well-known and 

recent search techniques such as tabu search, simulated annealing and genetic 

algorithms (Aarts and Lenstra, 2003) produce very good results but are either too 

complex or difficult to implement within the strict constraints of the router IOS or 

hardware.  Fortunately there are simple heuristics for the TSP and other problems, 

simultaneously fast and compact, which extend well to SMEL. 

 

5.1. k-OPT 
 

The simplest, and most easily implemented, heuristic algorithms for large CO 

problems are the local search methods known collectively as k-OPT (Rego and 

Glover, 2002).  For the TSP, starting from some initial solution, arcs are swapped 

(k=2) or permuted (k>2) in a search to find superior solutions.  For SMEL, these 

swaps/permutations correspond to k-wise re-orderings of the rules of the list, L.  An 

example of 2-OPT applied to SMEL is given in Figure 3. 

 

The initial solution, for a policy Z is the identity list, IZ.  L<ij> is the list, derived from 

L, with rules i and j swapped.  The algorithm works by applying a sequence of 2-

swaps to the current list, L, and implementing the best while an improvement exists.  

The procedure swap(r,s) reverses the places of r and s in L.  The space complexity 

of this algorithm is O(n).  Its time complexity is ΨO(n
2
) where Ψ is the number of 

passes through the indefinite loop.  The 2-OPT algorithm is easily extended to the 3-

OPT of Figure 4, in which L<ijk> and the procedure permute(r,s,t) have the natural 
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interpretation.  3-OPT has space complexity O(n) and time complexity ΨO(n
3
).  If the 

algorithms are truncated in time to suit their environment (processor speed) by Ψ ≤ Κ, 

where Κ is constant, then both time- and space-complexity are polynomial and the 

algorithms can be constrained to run within the tight restrictions of a router IOS or 

even in hardware.  The nature of the algorithms also aids easy implementation: swaps 

and permutations make for simple IOS code and/or logic design in hardware. 

 
 

L := IZ; 

repeat 

   ∆max := 0; 
   for i := 1 to n-2 do 

      for j := i+1 to n-1 do 

         if dij = 0 then 

            begin                       

               ∆ := E(L,T) – E(L<ij>,T);  
               if ∆ > ∆max then 
                  begin 

                     ∆max := ∆; 
   i* := i; 

   j* := j 

                  end 

            end; 

   if ∆max > 0 then 
      swap(ri*(L), rj*(L)) 

until 

                     ∆max = 0  
 

 

Figure 3.  SMEL 2-OPT 

 
 

L := IZ; 

repeat 

   ∆max := 0; 
   for i := 1 to n-3 do 

      for j := i+1 to n-2 do 

         for k := j+1 to n-1 do 

            if (dij = 0) and (djk = 0) and 

               (dik = 0) then 

               begin                       

                  ∆ := E(L,T) – E(L<ijk>,T);  
                  if ∆ > ∆max then 
                     begin 

                        ∆max := ∆; 
      i* := i; 

      j* := j; 

      k* := k 

                     end 

               end; 

   if ∆max > 0 then 
      permute(ri*(L), rj*(L), rk*(L)) 

until 

                     ∆max = 0  
 

 

Figure 4.  SMEL 3-OPT 
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5.2. Lin and Kernighan 
 

The Lin-Kernigham (LK) approach to local search optimisation represents a family of 

heuristics concerned with varying the k of k-OPT.  There have been a number of 

variations since the original algorithm (Lin and Kernighan, 1973) but all have the 

same essential premise: to extend the scope and resolution of a fixed search.  

Appropriate LK algorithms are known to generally produce the best results of all local 

search methods (Johnson and McGeoch, 2002 and Johnson et al., 2002). 

 
 

L := IZ; 

repeat 

   single_smel_2-opt           {2-OPT} 
until 

                     ∆max = 0 
 

L := IZ; 

repeat 

   single_smel_3-opt           {3-OPT} 
until 

                     ∆max = 0  
 

 

Figure 5.  SMEL 2-OPT and 3-OPT using procedures single_smel_2-opt and 
single_smel_3-opt 

 

Let single_smel_2-opt and single_smel_3-opt be procedures that implement 

single iterations of the SMEL 2-OPT and 3-OPT processes (so that the algorithms of 

Figures 3 and 4 can be rewritten as in Figure 5, for example).  Then the simplest, and 

fastest, version of an LK algorithm for SMEL will be the (2,3)LK-OPT algorithm as 

shown in Figure 6.  This is the LK variant used in the computational results to follow.  

As with most, local search processes, it has space complexity, O(n).  It’s time 

complexity, however, is less predictable.  Empirical results are given in Section 6. 

 
 

L := IZ; 

repeat 

   repeat 

      single_smel_2-opt 
   until 

                        ∆max = 0; 
                     single_smel_3-opt 

until 

                     ∆max = 0  
 

 

Figure 6.  SMEL LK-OPT 

 

5.3. Constrained Sort 
 

A final heuristic considered for SMEL is a form of constrained sort process.  It may 

be seen as a restricted version of 2-OPT in which only adjacent rules are considered 
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for swapping.  Searching from the top of the ACL, each rule is compared with the one 

following it to see if swapping them would improve the expected latency of the list.  

The process continues through the list and repeats until there are no further 

improvements to be found.  This C-SORT approach is detailed in Figure 7. 

 
 

L := IZ; 

repeat 

   ∆ := 0; 
   for i := 1 to n-2 do 

       if di i+1 = 0 then 

           if E(L,T) – E(L<i i+1>,T) > 0 then 

               begin 

                  ∆ := 1; 
                  swap(ri(L), ri+1(L)) 

               end 

until 

                     ∆ = 0  
 

 

Figure 7.  SMEL C-SORT 

 

An essential difference between C-SORT and 2-OPT is that all swaps giving an 

improvement in expected latency are implemented immediately.  (∆ is only 

maintained to flag when no further reduction is possible).  C_SORT is considerably 

quicker than 2-OPT  (ΨO(n)) at the expense of being more inherently greedy, and 

hence (potentially) less accurate.  The next section discusses results. 

 

 

6. COMPUTATIONAL RESULTS 
 

For a given value of n, let m be the number of dependencies.  That is 

 

 ∑∑
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+=
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not including rule n, which is dependent with all other rules. 

 

Results have been obtained through simulation in two ways.  Firstly, a number of 

moderately sized (n ≤ 100) test instances were generated randomly and the 2-OPT and 

LK-OPT processes compared with the optimal solution as described below.  Without 

explicitly taking traffic into account, the only pertinent parts of a rule are its hit-rate 

and latency and these can be generated through stand-alone simulation.  Figures 8 and 

9, for example, show a 25 rule/12 dependency (n=25/m=12) case before and after 2-

OPT optimisation.  (Access list numbers are omitted for brevity.)  Secondly, a number 

of larger test instances (500 ≤  n ≤ 10,000) were produced to compare 2-OPT with C-

SORT. 

 

These random test instances were generated as follows. 
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Figure 8.  Simulated traffic policy 

 

 
 

Figure 9.  2-OPT optimised ACL 

 

• n=10/m=0,10,20: 100 instances of each and n=25/m=0,20,40: 50 

instances of each, solved to optimality by dynamic programming - Held-

Karp variant (Section 4.2) – and compared with 2-OPT and LK-OPT. 
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• n=50/m=0,40,80: 10 instances of each, solved to optimality by 

conventional LP (Section 4.3) – and compared with 2-OPT and LK-OPT. 

• n=100/m=0,100,200: 5 instances of each, solved to optimality by 

adaptive branch-and-bound methods (Section 4.4) – and compared with 

2-OPT and LK-OPT. 

• n=500/m=500,1000,5000,10000.  100 instances of each comparing 2-

OPT with C-SORT. 

• n=1000/m=1000,5000,10000,50000.  100 instances of each comparing 

2-OPT with C-SORT. 

• n=5000/m=5000,10000,50000,100000.  100 instances of each 

comparing 2-OPT with C-SORT. 

• n=10000/m=10000,50000,100000,500000.  100 instances of each 

comparing 2-OPT with C-SORT. 

 

Table 1.  Comparing 2-OPT and LK-OPT with optimal solution. 

 

n m cZ→→→→O cO→→→→2 ����2 S2 cO→→→→LK ����LK SLK 

10 0 29.84 0.00 100 6.60 0.00 100 20.56 

 10 14.28 0.87 56 4.92 0.80 61 16.23 

 20 8.22 0.67 72 3.20 0.59 78 9.97 

25 0 36.02 0.00 100 31.50 0.00 100 76.48 

 20 17.68 4.86 8 23.24 3.80 14 59.92 

 40 10.04 3.78 0 19.90 3.24 0 59.22 

50 0 43.80 0.00 100 204.30 0.00 100 432.50 

 40 20.20 6.70 10 170.20 5.50 20 335.10 

 80 13.70 4.20 0 150.30 3.60 0 305.60 

100 0 50.80 0.00 100 1389.40 0.00 100 2095.60 

 100 23.20 8.40 0 1193.00 5.20 0 1739.20 

 200 15.60 7.80 0 1003.80 4.80 0 1647.40 

n: number of rules.   m: number of dependencies. 

cZ→O: mean (%) saving of optimal solution over original policy. 

cO→2: mean (%) increase of 2-OPT solution over optimum. 

�2: mean (%) optimum found by 2-OPT.    S2: mean number of iterations for 2-OPT to converge. 

cO→LK: mean (%) increase of LK-OPT solution over optimum. 

�LK: mean (%) optimum found by LK-OPT.    SLK: mean number of iterations for LK-OPT to converge. 

 

In each case, hit rates were generated randomly (uniformly) and normalised so that 

 

 1)),((
1

=∑
=

n

i

i TZrh          (9) 

 

and latencies generated randomly (uniformly) in the intervals [1,2] for 10 ≤  n ≤ 100 

and [0.1,0.3]  for 500 ≤  n ≤ 10000.  1 to 2µs are typical observed rule latencies across 

a range of (slower) access routers of the kind likely to be implementing smaller ACLs 

with reduced times for more powerful processors (Davies and Grout, 2005).  In each 

case, the required number of dependent rule pairs (m) is also generated/assigned 

randomly (uniformly). 
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The first summary of results is given in Table 1.  For each instance, 2-OPT and LK-

OPT solutions were compared with the optimum obtained as described above.  cZ→O 

gives the mean improvement (%) of the optimum EL over the EL of the original 

policy; cO→2 gives the mean deterioration (%) of the 2-OPT solution from the 

optimum and cO→LK the equivalent figure for LK-OPT.  �2, �LK, S2 and SLK, give the 

percentage of instances for which each method found the true optimum and the mean 

number of iterations (the number of passes through the central loop) for each method 

to converge.  Timings in seconds are not given as this will depend entirely on the 

processor within the router – see the next section for a full discussion. 

 

Although there is experimental variance in these figures, some patterns are clear.  The 

heuristic 2-OPT and LK-OPT methods are extremely accurate for smaller rule sets 

and, although they deviate more from optimality for larger sets, still give significant 

improvements over non-optimised policies.  LK-OPT, as expected, gives generally 

better results than 2-OPT but at a considerable expense in terms of run-time.  

Although the ratio of LK-OPT steps to 2-OPT steps decreases as n increases, 2-OPT 

gives excellent solutions for 10 or 20 rule ACLs and finds tolerable approximations 

reasonably quickly for ACLs of 50 or 100 rules.  It appears that the computationally 

intensive LK-OPT is unnecessary for these values. 

 

Table 2.  Comparing 2-OPT with C-SORT 

 

n m c2→→→→CS S2 SCS 

100 100 6.44 2,525 764 

 500 6.05 2,203 675 

 1,000 5.91 1,996 599 

 5,000 5.83 1,789 552 

500 500 5.29 44,932 2,225 

 1,000 5.09 39,102 1,803 

 5,000 5.02 35,079 1,654 

 10,000 4.95 29,441 1,559 

1,000 1,000 4.30 344,183 3,145 

 5,000 4.22 308.949 2,672 

 10,000 4.17 270,056 2,209 

 50,000 4.11 224,721 1,992 

5,000 5,000 3.61 12,101,000* 9,032 

 10,000 3.56 10,884,000* 7.962 

 50,000 3.52 10,069,000* 7,110 

 100,000 3.48 9,170,000* 6,282 

10,000 10,000 3.11 128,336,000* 17,219 

 50,000 3.07 115,508,000* 14,843 

 100,000 3.02 109,910,000* 12,055 

 500,000 2.98 93,991,000* 10,276 

n: number of rules.   m: number of dependencies. 

c2→CS: mean (%) increase of C-SORT solution over 2-OPT solution . 

S2: mean number of iterations for 2-OPT to converge.    (* rounded ) 

SCS: mean number of iterations for C-SORT to converge. 



GROUT, McGINN & DAVIES  Internet ACL Optimisation 

Page 16 of 20 

 

However the 2-OPT heuristic, with its ΨO(n
2
) complexity will not be suitable for 

large n within the tight constraints of a production router.  (In fact, as n increases the 

gap in convergence steps between 2-OPT and LK-OPT is decreasing.)  In such cases, 

C-SORT (ΨO(n)) is the last resort.  Table 2 compares 2-OPT with C-SORT.  The 

exact solutions are no longer available for larger problem instances but the 

deterioration of C-SORT compared to 2-OPT is given instead.  Using the notation 

from Table 1, in Table 2,  c2→CS  gives the mean percentage increase in expected 

latency from the C-SORT method over 2-OPT,  S2 and SCS give the mean number of 

iterations (the number of passes through the central loop) for each method to 

converge, the larger values for S2 being rounded to the nearest thousand.   

 

It can bee seen from Table 2 that C-SORT performs well.  Although less accurate than 

2-OPT, the difference decreases as n increases.  It’s convergence time, however, is 

much better.  C-SORT appears a better choice for larger ACLs.  All the lessons from 

this section are discussed in the next. 

 

 

7.  PRACTICAL IMPLEMENTATION 
 

In principle, we now have the necessary techniques to allow ACL rule order 

optimisation to be carried out on-line (in real time) on a router.  This section discusses 

their practical implementation. 

 

7.1.  Choosing Processes 
 

We have discussed, in varying depth, the following ACL optimisation algorithms: 

 

• Exhaustive search (ES) 

• Held and Karp dynamic programming (H-K) 

• Linear programming (LP) 

• Branch and bound (BB) 

• 2-OPT 

• 3-OPT 

• LK-OPT 

• C-SORT 

 

Our discussions lead us to reject ES (too complex), LP & BB (difficult to automate) 

and 3-OPT & LK-OPT (poor return for increased complexity) in favour of H-K, 2-

OPT and C-SORT. 

 

ACLs vary considerably in size.  Many are extremely small and, for these cases, H-K 

may be entirely viable.  Some are larger (requiring 2-OPT) and some are very large 

(where only C-SORT can be expected to run).  Depending on the processing power of 

the router, it is proposed that two limit values be set.  (This will be an inbuilt feature 

of the processor/IOS.) 

 

 maxsmall:  the maximum number of rules in a ‘small’ ACL 

 maxmedium:  the maximum number of rules in a ‘medium’ ACL 

 

Thus, ‘small’ and ‘medium’ are terms specific to each router with the ACL 

optimisation process being controlled at the top level as follows. 
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  if n ≤ maxsmall then 
   H-K 

  else if n ≤ maxmedium then 
   2-OPT 

  else 

   C-SORT 

 

 

7.2.  Measuring Hit-Rates and Timing 
 

Traffic characteristics may change over time and with them packet hit-rates.  This is 

not a problem in itself but, considering implementation, other factors arise.  In reality, 

a router’s only knowledge of traffic flow will come from logging packet types and 

this will probably take the form of incrementing counts and recalculating the hit-rates 

themselves.  On this basis, the hit-rate, h(ri(L),T), of  rule ri in L under T changes 

constantly and two issues have to be addressed. 

 

1. As the hit-rate of a rule is known only for its current position in the list and 

will be higher - the higher its position, how can the objective change, E(L,T) – 

E(L<ij>,T), say, of a swap/permutation be calculated accurately? 

2. How frequently should (re)optimisation be performed? 

 

There is no practical method by which ‘absolute’ hit-rates can be calculated so there is 

no simple solution to the first question.  Fortunately, the inequality is at least such that 

the process will be stable; that is, the hit-rate of a rule being considered for promotion 

up the list will always be under- rather than over-estimated so may not be swapped as 

far up the list as it should be but it will not be swapped too far.  Constant re-swapping, 

then, will not occur unless the nature of the underlying traffic flow itself is oscillatory. 

 

This suggests an answer to the second question.  There is no practical value in 

(re)optimizing too frequently.  Observed hit-rate probabilities will change with every 

packet processed, even if the packet distribution remains the same.  There is no need 

to recalculate expected latencies at this level, it being simpler to automatically 

promote (a fixed number of places or to the top of the list) the rule matched by the 

current packet.  However, such an approach will be both unstable and resource-

hungry. 

 

A better solution will be to (re)optimize after a fixed period of time or number of 

packets or when the router is otherwise idle.  Routing protocol packets between 

neighbouring routers, for example, are exchanged at intervals of between 5 and 120 

seconds – depending on the protocol in use (Colton, 2002) – and an optimization 

period in this range may be intuitive.  However, the formal optimization of this 

period/number, itself dependent upon the changing traffic flow, goes beyond the 

scope of this paper and is suggested as an avenue for future research. 

 

7.3. Traffic Shaping, Queuing and Prioritisation 
 

Another consideration comes from the application of packet prioritisation and other 

forms of traffic shaping.  In a weighted fair-queuing (WFQ) system, for example, 
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certain high-priority packets, such as voice, video or other multimedia traffic, are 

processed ahead of low-priority traffic such as emails or file transfers.  If ACLs are to 

be used to filter such traffic then it is essential that the rules identifying these packets 

are to be found, and remain, toward the top of the list (otherwise the delay in 

matching the packet against each ACL may increase the latency unacceptably). 

 

In fact, the implementation of such fixed rules may be achieved through the existing 

system of dependencies.  However, this is unlikely to be particularly efficient.  On this 

basis, a fixed rule will have a dependency with all other rules in the policy.  Testing 

such a large number of constraints through each 2-OPT iteration, for example, will be 

complex and itself likely to increase latency.  An alternative may be simply to 

implement a flag for each rule, identifying whether it can be moved.  However, this in 

turn is not particularly flexible.  If it is acceptable to move a rule only so far or to 

swap it with rules of particular types but not others, then the notion of dependencies is 

required once more.  The ideal solution may be a compromise or hybrid method of 

marking the freedom of a rule, or a different method entirely?  This problem also is 

suggested for future research. 

 

7.4.  The Network Administrator (NA) 
 

There is a final practical consideration concerning the NA maintaining the ACL.  

ACLs often (in fact, usually) evolve over time.  The NA will add new rules from time 

to time to add new policies, etc.  They need to be fully aware of the current structure 

of the ACL.  Whilst, they will want the ACL to be as efficient, as possible, they will 

not tolerate an actual re-ordering of the list with which they work on a day-to-day 

basis.  As the purpose of this paper is to explicitly re-order the ACL for greater 

efficiency, how is this conflict to be resolved? 

 

We suggest a simple system of pointers.  The NA maintains the primary ACL.  An 

array of pointers is used, however, to indicate the working order of the list.  

Optimisation and packet-matching itself takes place with regard to the indexed list.  

The pointer array will be of inconsequential size compared to the original ACL and 

the extra processing minimal 

 

 

8. CONCLUSIONS 
 

This is a very real optimisation problem, albeit largely unaddressed until now.  ACLs 

are used in many different ways in applying traffic policies on network routers and 

large, poorly-designed rule sets can add significantly to packet delay across internets.  

By comparison, any improvement that may be found through the valid reordering of 

these rules will be worthwhile, particularly applied across a sequence of routers.  

However, there is little value in the application of complex and time-consuming 

procedures in seeking optimum or improved orderings in such environments.  Fast, 

simple heuristics, giving inexact but acceptable solutions, are to be preferred. 

 

This paper has formulated and discussed the problem in its most general form and 

compared various exact and inexact methods of optimisation.  The eventual 

conclusion is that, while exact optimisation may be a possibility for small ACLs, a 
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simple, adapted and constrained, 2-OPT  process is preferable for medium ACLs (the 

limits depend on the router in question) since 

 

1. it has minimal space-complexity, making it ideal for implementation in router 

operating systems or even hardware, 

2. it has moderate time-complexity, contributing little to processing delays in the 

router, and 

3. although sub-optimal, it provides very good results in practice. 

 

However, for larger ACLs, the C-SORT process is to be preferred since 

 

1. it has the same minimal space-complexity as 2-OPT, 

2. it has minimal time-complexity, contributing as little as possible to processing 

delays in the router, 

3. it can be implemented more frequently than 2-OPT, and 

4. although less accurate than 2-OPT, it provides very good results in practice, at 

least sufficient to make optimisation worthwhile. 

 

Some issues raised in the previous section (7) are left as open research questions. 
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