
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

10-1-2006

Real-time optimisation of access control lists for
efficient internet packet filtering
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

John Davies
Glyndwr University, j.n.davies@glyndwr.ac.uk

John McGinn
Glyndwr University, j.mcginn@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer Engineering Commons

This Article is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been accepted for
inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout, V., McGinn, J., & Davies, J. (2007) ‘Real-time optimisation of access control lists for efficient Internet packet filtering’. Journal
of Heuristics,13(5), 435-454

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

Real-time optimisation of access control lists for efficient internet packet
filtering

Abstract
This paper considers an optimisation problem encountered in the implementation of traffic policies on
network routers, namely the ordering of rules in an access control list to minimise or reduce processing time
and hence packet latency. The problem is formulated as an objective function with constraints and shown to
be NP-complete by translation to a known problem. Exact and heuristic solution methods are introduced,
discussed and compared and computational results given. The emphasis throughout is on practical
implementation of the optimisation process, that is within the tight constraints of a production network
router seeking to reduce latency, on-line, in real-time but without the overhead of significant extra
computation.

Keywords
Access control lists, Internet packet filters, Real-time, optimisation, traffic policies

Disciplines
Computer Engineering

Comments
Original document can be found at www.sciencedirect.com Copyright © 2007, Springer Science+Business
Media, LLC

This article is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/3

http://dx.doi.org/10.1007/s10732-007-9019-1
http://epubs.glyndwr.ac.uk/cair/3?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F3&utm_medium=PDF&utm_campaign=PDFCoverPages

Journal of Heuristics, Vol. 13, No. 5, October 2006, pp435-454

REAL-TIME OPTIMISATION OF ACCESS CONTROL

LISTS FOR EFFICIENT INTERNET PACKET

FILTERING

Vic Grout, John McGinn and John Davies

Centre for Applied Internet Research (CAIR), University of Wales

NEWI Plas Coch Campus, Mold Road, Wrexham, LL11 2AW, UK

{v.grout|j.mcginn|j.n.davies}@newi.ac.uk

ABSTRACT

This paper considers an optimisation problem encountered in the implementation of traffic

policies on network routers, namely the ordering of rules in an access control list to minimise

or reduce processing time and hence packet latency. The problem is formulated as an

objective function with constraints and shown to be NP-complete by translation to a known

problem. Exact and heuristic solution methods are introduced, discussed and compared and

computational results given. The emphasis throughout is on practical implementation of the

optimisation process, that is within the tight constraints of a production network router

seeking to reduce latency. on-line, in real-time but without the overhead of significant extra

computation.

1. INTRODUCTION: ACCESS CONTROL LISTS

An Internetwork (Internet) is a network of networks. Key devices known as routers

switch, or route, communications traffic, usually in the form of discrete packets,

between networks. Routers are responsible for correct and appropriate delivery of

packets from source to destination through the use of routed and routing protocols (or

manually defined static routes) and the application of policies. The primary function

of a router is to forward each packet to the most suitable device, often another router,

at each step (hop) of the journey. However, a vital secondary role is to consider

whether a given packet should be passed at all, according to a set of tests, or rules,

against which it may be matched.

A typical rule, in the syntax of the Cisco Internetwork Operating System (IOS)

(Colton, 2002), might be:

 access-list 101 deny icmp any 10.0.0.0 0.255.255.255 echo-reply

This states that ICMP echo-reply packets from any source to the network 10.0.0.0

are to be blocked at this point. The first part of the rule assigns it to access list 101.

An access list, or Access Control List (ACL), is then a sequence of such rules designed

to implement a given objective or set of objectives. ACLs can be used simply to pass

or block packets or as filters for more sophisticated policies such as traffic shaping,

address translation, queuing or encryption. A packet may be matched against several

ACLs on a single router and many on its complete journey from source to destination.

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 2 of 20

Inefficient ACLs then may add significantly to packet delay and even small ACLs

will contribute to this latency simply by their aggregation across several routers.

An example of a complete ACL is given in Figure 1. Other than the ACL assignment,

a rule may consist of up to five parts: the permit or deny type, the protocol, a source

address, destination address and a flag function (as in the echo-reply parameter

above) for fine-tuning. Each parameter may be a single value or a range of allowable

matches. For example, the any parameter above matches all source addresses whilst

the 0.255.255.255 parameter matches destination addresses in the 10.0.0.0

network. The absence of any term, such as a protocol or flag, indicates the rule will

match a packet with any such values – provided the specified fields are matched.

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq telnet

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq ftp

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq http

access-list 101 deny ip 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 administratively-prohibited

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 echo-reply

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 packet-too-big

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 time-exceeded

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 unreachable

access-list 101 permit icmp 172.16.20.0 0.0.255.255

access-list 101 deny icmp any any

access-list 101 permit ip 202.33.42.0 0.0.0.255 any

access-list 101 permit ip 202.33.73.0 0.0.0.255 any

access-list 101 permit ip 202.33.48.0 0.0.0.255 any

access-list 101 permit ip 202.33.75.0 0.0.0.255 any

access-list 101 deny ip 202.33.0.0 0.0.255.255 any

access-list 101 deny tcp 210.120.122.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.183.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.114.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.175.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.136.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.177.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 permit tcp any 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp any any eq www

access-list 101 permit tcp any any

access-list 101 deny ip 195.10.45.0 0.0.0.255 any

access-list 101 permit ip any any

{access-list 101 deny all} {implicit}

Figure 1. An Access Control List (ACL)

Although the simple examples given in this section may appear to imply classful

routing, the rules can use wildcard masks to match any required subnet so that the

techniques discussed in this paper are fully suited to Classless Inter-Domain Routing

(CIDR) applications. However, a discussion of such Variable Length Subnet Mask

(VLSM) principles would extend this paper unnecessarily and can be found elsewhere

(Colton, 2002).

The rules of an ACL are processed in order. That is, each incoming packet is tested

against the first rule; if it matches, it is passed or blocked accordingly and no further

rules are considered; otherwise it is tested against the second rule, and so on. There is

an implicit {deny all} rule at the end of each ACL to block all packets not

otherwise matched. Some rules are more likely to match packets than others and,

depending on the method of implementation, some rules may take longer to process

than others (for example if multiple parts of protocol units at different layers have to

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 3 of 20

be examined). The time to process an ACL is then the total time taken to test a packet

against each rule up to and including the one it matches.

Whatever the purpose of an ACL, it is clearly advantageous to have the rules ordered

in such a way as to minimise, or at least reduce, processing time. However, the

relationship between rules prohibits arbitrary reordering. For example, in Figure 2, an

IP packet from network 192.168.16.0 to network 10.0.0.0 will match both rules

shown. The packet will be passed in 2(a) but blocked in 2(b). Clearly then, rules may

not be reordered if this changes the underlying intention of the policy.

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

{access-list 102 deny all} {implicit}

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

{access-list 102 deny all} {implicit}

Access list 2(b)

Access list 2(a)

Figure 2. The importance of dependent rule order

The short history of the study of ACL design is as follows. The issue of efficiency in

packet filters was first addressed in this context by Stoica (2001) but largely as an

aside and without significant outcome. Shih & Qian (2002) discuss the crucial

question of how to identify rule dependencies in ACLs although the subject is first

considered in any form in Hari et al. (2000), again as an aside. The first attempt at

optimisation comes from Cisco (2003) but this work ignores individual rule latencies:

that is, all rules are assumed to take the same time to process. Bukhatwa & Patel

(2003) show the value of ACL optimisation but ignore both differences in rule

latencies and, more crucially, rule dependencies. Bukhatwa (2004) gives a simplified

method for ordering a list efficiently, based on the classification of rules by latency,

but still fails to consider rule dependencies. In these approaches, rules are permitted

to migrate freely within the list. Al-Shaer & Hamed (2004) give a much-improved

treatment of the problem – with an awareness of rule dependency, but only for the

purpose of discovering rule anomalies. All the above methods are off-line, that is,

although rule hit-rates may be recorded automatically, any optimisation of rule order

takes place as a separate, semi-manual process and the revised ACL loaded back on to

the router. With the introduction of Turbo Access Lists (Cisco, 2004), the searching

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 4 of 20

of ACLs is made more efficient. The list is pre-compiled into tables for which the

packet header can then be used as a search key. Whilst this may be seen as the first

semi-automatic implementation of ACL optimisation, it is actually a batch process -

there is no attempt to change rule order in response to traffic flow. Also different rule

latencies are still not considered.

This paper undertakes an entirely deeper study of the optimal ACL problem, suitable

for implementation, on a larger scale, within the router IOS or embedded in hardware.

We consider rule hit-rates, latencies and variable traffic flow in the optimisation of

ACL order. It is proposed that the optimisation of rules within ACLs should take

place in real-time (on-line) and automatically. Such processes must be efficient and

worthwhile – reducing packet latency without adding significant computational

overhead. They must also be practical and not conflict with the requirements and

expectations of the Network Administrator (NA) configuring and maintaining the

ACLs.

We proceed now to a formal development of the problem, which is essentially to find

the optimal ordering of the rules of an ACL that satisfies the original policy.

2. DEFINITIONS AND NOTATION

Where appropriate in this paper, abbreviations are used as follows: ∃, ‘there is’ or

‘there exists’; ∀, ‘for all’ or ‘for every’; ∧, ‘and’; ⇔, ‘if and only if’; and →, ‘such

that’.

Define A* to be the set of all addresses available within a given system, define B* to

be the set of all protocols recognised by the system and define F* = {0, 1}
w
 to be the

set of w flag vectors ({0, 1} w-tuples acting on B*) valid for the system. For

completeness, X* represents the set of payloads.

2.1. Packets

A packet, pk = (Sak, Dak, bk, fk, Xk), is defined by its constituents: Sak ∈ A*, the source

address; Dak ∈ A*, the destination address; bk ∈ B*, the protocol; fk ∈ F*, the flags

vector and Xk ∈ X*, the payload.

A traffic flow, T = [p1, p2, ..., pq], is a sequence of q packets. For sufficiently large q,

this may be regarded as a distribution of packets and we simply refer to the traffic, T.

2.2. Rules

A rule, ri = (ti, SAi, DAi, Bi, σi), consists of: a type, ti ∈ {permit, deny}, SAi ⊆ A*: the

source range, DAi ⊆ A*: the destination range, Bi ⊆ B*: the protocol range, and a

flags predicate, σi: F* a {true, false}. Only ti is a required component in all

syntaxes. If any other components are absent then SAi = A*, DAi = A*, Bi = B* or σi ≡

true by default.

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 5 of 20

A packet, pk, matches a rule, ri (for which we write pk ∇ ri), if its addresses and

protocols are within the range of the rule and if its flags vector satisfies the rule’s

flags predicate. That is,

 pk ∇ ri ⇔ (Sak ∈ SAi) ∧ (Dak ∈ DAi) ∧ (bk ∈ Bi) ∧ σi (fk), (1)

in which case the packet will be permitted or denied according to ti.

2.3. Policies and Dependencies

A policy, Z = [r1, r2, ..., rn] is an (ordered) sequence of n rules to achieve some

purpose. It is assumed here that the rules of a policy are correctly ordered, by the NA,

to achieve this purpose. Also, the last rule implicitly denies all traffic; that is, tn =

deny, SAn = A*, DAn = A*, Bn = B* and σn ≡ true.

A dependency exists between two rules, ri and rj, if they are of opposite type and it is

possible that there exists a packet, pk, that matches both rules ((pk ∇ ri) ∧ (pk ∇ rj));

that is ri and rj are dependent if

 (ti ≠ tj) ∧ ∃ pk → (Sak ∈ SAi ∩ SAj) ∧ (Dak ∈ DAi ∩ DAj) (2)

∧ (bk ∈ Bi ∩ Bj) ∧ σi(fk) ∧ σj(fk).

Eliminating the packet, pk, from this expression, allows a {0, 1} dependency matrix, D

= (dij: 1≤i,j≤n), to be defined:

 dij ⇔ (ti ≠ tj) ∧ (SAi ∩ SAj ≠ ∅) ∧ (DAi ∩ DAj ≠ ∅) (3)

 ∧ (Bi ∩ Bj ≠ ∅) ∧ (Σi ∩ Σj ≠ ∅),

where Σi ⊆ F* is the subset of flag vectors satisfying σi.

If dij = 1 then the order of rules i and j must be preserved if the behaviour of the

policy is to be maintained.

2.4. Redundancies

A rule, rj, in a policy, Z, is redundant (written ri � rj) if there exists a rule, ri (i < j), in

Z, such that all packets matching rj will be matched by ri.

 ri � rj ⇔ (ti = tj)∧ (SAi ⊇ SAj) ∧ (DAi ⊇ DAj) ∧ (Bi ⊇ Bj) ∧ (Σi ⊇ Σj). (4)

A redundant rule may be removed from the policy without changing its purpose.

A rule, ri, in a policy, Z, is potentially redundant if there exists a rule, rj (i < j), in Z,

such that all packets matching ri will be matched by rj. A redundant rule may be

removed from the policy without changing its purpose provided that no other rules

between ri and rj are dependent upon rj; that is,

 ri � rj ⇔ (ti = tj)∧ (SAi ⊆ SAj) ∧ (DAi ⊆ DAj) ∧ (Bi ⊆ Bj) (5)

∧ (Σi ⊆ Σj) ∧∀ v → (i < v < j), dvj = 0.

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 6 of 20

Both forms of redundancy include the case, ri = rj.

Finally, and in brief, rules, rα, rβ, .., rω , are said to be co-redundant if there can be

found a rule, ri (i < α, β, .., ω), such that ri can replace rα, rβ, .., rω . Equivalent

definitions may be derived for co-redundancy with respect to source/destination

address and protocol/flags, and for potential co-redundancy.

A useful tutorial approach to the management of redundancies is given in Shih and

Qian (2003). Al-Shaer & Hamed (2004) give an updated treatment. Although

interesting, these concepts are not central to this work. The techniques discussed in

this paper will work whether or not the policy, Z = [r1, r2, ..., rn], contains

redundancies. Techniques for removal and detection of redundancies may be applied

independently if required.

2.5. Lists and Hit Rates

An access list, or simply list, L, implements a policy, Z = [r1, r2, ..., rn], if it is a

permutation of the rules of Z such that the order of dependencies is preserved. Let

ri(L) be the rule at position i in L. A special case of a list implementing a policy, Z, is

the identity list, IZ = [r1, r2, ..., rn], for which ri(IZ) = ri ∀ i (1≤i≤n).

The hit-rate, h(ri(L),T), of rule ri in a list L, is the probability that a packet from a

traffic flow T will match ri in L. Hit-rates can be calculated dynamically using

counters within the IOS or hardware (Cisco, 2002, 2003).

2.6. Latencies

The latency, λ(ri), of a rule ri is the time taken to (independently) process ri. This

may be calculated from the length of a rule, the nature of the protocols involved or

taken from stored tables. In some systems, latencies may be constant for all rules but

this is not assumed in this paper.

The cumulative latency, κ(ri(L)), of ri in a list L, is the time taken to process ri and all

rules preceding it in L.

 ∑
=

=
i

i LrLr
1

))(())((
ϕ

ϕλκ . (6)

The expected latency, E(L,T), of a list L, in traffic T, is then given by

 ∑ ∑∑
= ==

==
n

i

i

ii

n

i

ii LrTLrhLrTLrhTLE
1 11

))(()),(())(()),((),(
ϕ

λκ . (7)

For a given traffic flow, T, we require to find (or approximate) the list, L,

implementing a policy, Z, that minimises E(L,T).

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 7 of 20

3. THE PROBLEM AND ITS COMPLEXITY

The problem, SEQUENCING TO MINIMISE EXPECTED LATENCY (SMEL), can

be expressed, in standard terms (Garey and Johnson, 1979) as

INSTANCE: Traffic flow T, Policy Z of n rules, partial order on N given by

dependency matrix D, for each rule r ∈ Z a latency λ(r) and a hit-rate

h(r), and a target K.

QUESTION: Is there an ordering L of the rules of Z, obeying the dependency

 constraints D, such that the expected latency E(L,T) as defined in (7)

 is K or less?

For the purposes of this section only, we assume the traffic flow T to have a constant

packet distribution. The size of the solution space for (the unconstrained) SMEL is

(n-1)!, taking the last deny all rule to be fixed. This is identical to that for the

TRAVELING SALESMAN PROBLEM (TSP), the classic NP-complete

combinatorial optimisation (CO) problem. The unconstrained problem (i.e. with no

dependencies) has TSP complexity. The dependencies serve to reduce the size of the

solution space by making certain orderings invalid but have no effect on the

complexity as shown here.

THEOREM: SEQUENCING TO MINIMISE EXPECTED LATENCY (SMEL)

is NP-complete

PROOF: Transformation to SEQUENCING TO MINIMIZE WEIGHTED

 COMPLETION TIME (SMWCT) (Lawler, 1978).

A direct mapping from SMEL to SMWCT is achieved by setting

 SMEL SMWCT

 Z to N

 r to t

 D to ⋖ [by taking ti ⋖ tj ⇔ (i < j) ∧ dij = 1]

 λ(r) to l(t)

 h(r) to w(t)

(using the notation from Garey and Johnson, 1979) for any given flow, T.

It follows that (unless P=NP) guaranteed exact solutions are not reasonably to be

expected for large values of n.

4. EXACT ALGORITHMS

ACLs vary considerably in size. An ACL to select addresses for translation, for

example, may have only two or three rules. A typical filter may have between 10 and

100 rules. Large enterprise and service providers may have ACLs with anything from

several hundred rules to tens of thousands. However, smaller ACLs are more

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 8 of 20

common so there is some value in considering exact approaches to optimising rule

order (if only to have a benchmark against which to compare approximated solutions).

Four standard methods are discussed briefly here. There is a close relationship

between the order of the n rules in an ACL and the n arcs of the TSP, with the

dependencies of the ACL denoting infeasible arcs of the TSP. Consequently, TSP

notation and terminology may be used interchangeably with SMEL where

appropriate.

4.1. Exhaustive Search

The simplest, but least efficient, approach to exact ACL optimisation will be to

generate, by iteration or recursion, each ordering, L, of the rules in turn, test for

validity against dependency constraints, D, and record the solution that minimises

E(L,T). The time complexity of such a process will be O(n!) but with space

complexity of O(n). Although minimising space complexity may be of some value in

environments with limited (storage) capacity, this time complexity is unacceptable in

most practical circumstances.

4.2. Dynamic Programming

A more efficient dynamic programming technique is given by Held and Karp (1962)

and adapted in various forms to the present day (Lawler et al., 1985 and Gutin and

Punnen, 2002). The generic algorithm has time complexity O(2
n
), space complexity

O(2
n
) and can be adapted for SMEL as follows.

 Z = {r1, r2, …, rn} (with rn fixed)

 For Y = {r1, r2, …, rn-1} and r∈ Y, let |SMEL|(Y, r) be the minimum

expected latency of the sublist Y ∪ {rn}. Then

≠+−

=
=

∈≠ }{))(()},{(||min

}{))((
),(||

rYYssrYSMEL

rYYr
rYSMEL

Ysr κ
κ (8)

 SMEL can then be calculated as min r |SMEL|(Z, r) + κ(r(Z)).

Although an improvement on exhaustive search, the time complexity is still

exponential. The exponential space complexity may be a significant problem in

restricted environments and, in practice, often translates to increased time complexity

on implementation. However this method, on more powerful processors, may be a

reasonable option for smaller lists and provides good benchmarks for comparison with

heuristics for smaller values of n.

4.3. Linear Programming

Linear Programming (LP) techniques are well established in solving large CO

problems (Papadimitriou, 1994). The formulation of SMEL as an LP problem from

an objective function (7) subject to the constraints of dependencies, D, is non-trivial

but achievable. On a stand-alone processor, this provides faster solutions than from

Section 4.1 and 4.2. However, the implementation of LP solution software within the

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 9 of 20

very tight constraints of router IOS and capacity, or in hardware, is unrealistic. For

comparison purposes, such methods are only appropriate for small numbers of tests

since each new instance has to be programmed into the system before solving. This is

impractical for large repetitive test runs.

4.4. Branch and Bound

The most efficient known exact (or near-exact) solutions to large CO problems are the

various branch-and-bound or branch-and-cut algorithms developed in relation to LP

methods. Possibly the most efficient of these is the algorithm of Applegate et al.

(2003). With these techniques, processing in parallel and often with human

intervention, it is possible to derive exact (or near-exact) solutions to extremely large

problems (Applegate et al., 2004). Such methods are clearly not suitable for on-line

implementation in routers although they are, however, useful for small numbers of

larger comparisons.

5. APPROXIMATIONS AND HEURISTICS

Even for relatively small problems, heuristics will be necessary for implementation in

real-time in operational networks. A typical access router may have a processor

(clock) speed of about 80KHz and less than 50MB of dynamic memory whereas large

distribution or core routers use GHz processors and multi-GB memory. The relative

significance of reducing packet latency, however, remains acute in all cases, as does

the requirement that any attempt to optimise packet processing be worthwhile.

Nothing should be permitted to add to the inherent latency of the packet matching and

routing process so any optimisation of ACL structure, implemented in the IOS or

hardware, must be both time- and space-efficient. Some of the more well-known and

recent search techniques such as tabu search, simulated annealing and genetic

algorithms (Aarts and Lenstra, 2003) produce very good results but are either too

complex or difficult to implement within the strict constraints of the router IOS or

hardware. Fortunately there are simple heuristics for the TSP and other problems,

simultaneously fast and compact, which extend well to SMEL.

5.1. k-OPT

The simplest, and most easily implemented, heuristic algorithms for large CO

problems are the local search methods known collectively as k-OPT (Rego and

Glover, 2002). For the TSP, starting from some initial solution, arcs are swapped

(k=2) or permuted (k>2) in a search to find superior solutions. For SMEL, these

swaps/permutations correspond to k-wise re-orderings of the rules of the list, L. An

example of 2-OPT applied to SMEL is given in Figure 3.

The initial solution, for a policy Z is the identity list, IZ. L<ij> is the list, derived from

L, with rules i and j swapped. The algorithm works by applying a sequence of 2-

swaps to the current list, L, and implementing the best while an improvement exists.

The procedure swap(r,s) reverses the places of r and s in L. The space complexity

of this algorithm is O(n). Its time complexity is ΨO(n
2
) where Ψ is the number of

passes through the indefinite loop. The 2-OPT algorithm is easily extended to the 3-

OPT of Figure 4, in which L<ijk> and the procedure permute(r,s,t) have the natural

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 10 of 20

interpretation. 3-OPT has space complexity O(n) and time complexity ΨO(n
3
). If the

algorithms are truncated in time to suit their environment (processor speed) by Ψ ≤ Κ,

where Κ is constant, then both time- and space-complexity are polynomial and the

algorithms can be constrained to run within the tight restrictions of a router IOS or

even in hardware. The nature of the algorithms also aids easy implementation: swaps

and permutations make for simple IOS code and/or logic design in hardware.

L := IZ;

repeat

 ∆max := 0;
 for i := 1 to n-2 do

 for j := i+1 to n-1 do

 if dij = 0 then

 begin

 ∆ := E(L,T) – E(L<ij>,T);
 if ∆ > ∆max then
 begin

 ∆max := ∆;
 i* := i;

 j* := j

 end

 end;

 if ∆max > 0 then
 swap(ri*(L), rj*(L))

until

 ∆max = 0

Figure 3. SMEL 2-OPT

L := IZ;

repeat

 ∆max := 0;
 for i := 1 to n-3 do

 for j := i+1 to n-2 do

 for k := j+1 to n-1 do

 if (dij = 0) and (djk = 0) and

 (dik = 0) then

 begin

 ∆ := E(L,T) – E(L<ijk>,T);
 if ∆ > ∆max then
 begin

 ∆max := ∆;
 i* := i;

 j* := j;

 k* := k

 end

 end;

 if ∆max > 0 then
 permute(ri*(L), rj*(L), rk*(L))

until

 ∆max = 0

Figure 4. SMEL 3-OPT

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 11 of 20

5.2. Lin and Kernighan

The Lin-Kernigham (LK) approach to local search optimisation represents a family of

heuristics concerned with varying the k of k-OPT. There have been a number of

variations since the original algorithm (Lin and Kernighan, 1973) but all have the

same essential premise: to extend the scope and resolution of a fixed search.

Appropriate LK algorithms are known to generally produce the best results of all local

search methods (Johnson and McGeoch, 2002 and Johnson et al., 2002).

L := IZ;

repeat

 single_smel_2-opt {2-OPT}
until

 ∆max = 0

L := IZ;

repeat

 single_smel_3-opt {3-OPT}
until

 ∆max = 0

Figure 5. SMEL 2-OPT and 3-OPT using procedures single_smel_2-opt and
single_smel_3-opt

Let single_smel_2-opt and single_smel_3-opt be procedures that implement

single iterations of the SMEL 2-OPT and 3-OPT processes (so that the algorithms of

Figures 3 and 4 can be rewritten as in Figure 5, for example). Then the simplest, and

fastest, version of an LK algorithm for SMEL will be the (2,3)LK-OPT algorithm as

shown in Figure 6. This is the LK variant used in the computational results to follow.

As with most, local search processes, it has space complexity, O(n). It’s time

complexity, however, is less predictable. Empirical results are given in Section 6.

L := IZ;

repeat

 repeat

 single_smel_2-opt
 until

 ∆max = 0;
 single_smel_3-opt

until

 ∆max = 0

Figure 6. SMEL LK-OPT

5.3. Constrained Sort

A final heuristic considered for SMEL is a form of constrained sort process. It may

be seen as a restricted version of 2-OPT in which only adjacent rules are considered

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 12 of 20

for swapping. Searching from the top of the ACL, each rule is compared with the one

following it to see if swapping them would improve the expected latency of the list.

The process continues through the list and repeats until there are no further

improvements to be found. This C-SORT approach is detailed in Figure 7.

L := IZ;

repeat

 ∆ := 0;
 for i := 1 to n-2 do

 if di i+1 = 0 then

 if E(L,T) – E(L<i i+1>,T) > 0 then

 begin

 ∆ := 1;
 swap(ri(L), ri+1(L))

 end

until

 ∆ = 0

Figure 7. SMEL C-SORT

An essential difference between C-SORT and 2-OPT is that all swaps giving an

improvement in expected latency are implemented immediately. (∆ is only

maintained to flag when no further reduction is possible). C_SORT is considerably

quicker than 2-OPT (ΨO(n)) at the expense of being more inherently greedy, and

hence (potentially) less accurate. The next section discusses results.

6. COMPUTATIONAL RESULTS

For a given value of n, let m be the number of dependencies. That is

 ∑∑
−

=

−

+=

=
2

1

1

1

n

i

n

ij

ijdm , (8)

not including rule n, which is dependent with all other rules.

Results have been obtained through simulation in two ways. Firstly, a number of

moderately sized (n ≤ 100) test instances were generated randomly and the 2-OPT and

LK-OPT processes compared with the optimal solution as described below. Without

explicitly taking traffic into account, the only pertinent parts of a rule are its hit-rate

and latency and these can be generated through stand-alone simulation. Figures 8 and

9, for example, show a 25 rule/12 dependency (n=25/m=12) case before and after 2-

OPT optimisation. (Access list numbers are omitted for brevity.) Secondly, a number

of larger test instances (500 ≤ n ≤ 10,000) were produced to compare 2-OPT with C-

SORT.

These random test instances were generated as follows.

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 13 of 20

Figure 8. Simulated traffic policy

Figure 9. 2-OPT optimised ACL

• n=10/m=0,10,20: 100 instances of each and n=25/m=0,20,40: 50

instances of each, solved to optimality by dynamic programming - Held-

Karp variant (Section 4.2) – and compared with 2-OPT and LK-OPT.

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 14 of 20

• n=50/m=0,40,80: 10 instances of each, solved to optimality by

conventional LP (Section 4.3) – and compared with 2-OPT and LK-OPT.

• n=100/m=0,100,200: 5 instances of each, solved to optimality by

adaptive branch-and-bound methods (Section 4.4) – and compared with

2-OPT and LK-OPT.

• n=500/m=500,1000,5000,10000. 100 instances of each comparing 2-

OPT with C-SORT.

• n=1000/m=1000,5000,10000,50000. 100 instances of each comparing

2-OPT with C-SORT.

• n=5000/m=5000,10000,50000,100000. 100 instances of each

comparing 2-OPT with C-SORT.

• n=10000/m=10000,50000,100000,500000. 100 instances of each

comparing 2-OPT with C-SORT.

Table 1. Comparing 2-OPT and LK-OPT with optimal solution.

n m cZ→→→→O cO→→→→2 ����2 S2 cO→→→→LK ����LK SLK

10 0 29.84 0.00 100 6.60 0.00 100 20.56

 10 14.28 0.87 56 4.92 0.80 61 16.23

 20 8.22 0.67 72 3.20 0.59 78 9.97

25 0 36.02 0.00 100 31.50 0.00 100 76.48

 20 17.68 4.86 8 23.24 3.80 14 59.92

 40 10.04 3.78 0 19.90 3.24 0 59.22

50 0 43.80 0.00 100 204.30 0.00 100 432.50

 40 20.20 6.70 10 170.20 5.50 20 335.10

 80 13.70 4.20 0 150.30 3.60 0 305.60

100 0 50.80 0.00 100 1389.40 0.00 100 2095.60

 100 23.20 8.40 0 1193.00 5.20 0 1739.20

 200 15.60 7.80 0 1003.80 4.80 0 1647.40

n: number of rules. m: number of dependencies.

cZ→O: mean (%) saving of optimal solution over original policy.

cO→2: mean (%) increase of 2-OPT solution over optimum.

�2: mean (%) optimum found by 2-OPT. S2: mean number of iterations for 2-OPT to converge.

cO→LK: mean (%) increase of LK-OPT solution over optimum.

�LK: mean (%) optimum found by LK-OPT. SLK: mean number of iterations for LK-OPT to converge.

In each case, hit rates were generated randomly (uniformly) and normalised so that

 1)),((
1

=∑
=

n

i

i TZrh (9)

and latencies generated randomly (uniformly) in the intervals [1,2] for 10 ≤ n ≤ 100

and [0.1,0.3] for 500 ≤ n ≤ 10000. 1 to 2µs are typical observed rule latencies across

a range of (slower) access routers of the kind likely to be implementing smaller ACLs

with reduced times for more powerful processors (Davies and Grout, 2005). In each

case, the required number of dependent rule pairs (m) is also generated/assigned

randomly (uniformly).

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 15 of 20

The first summary of results is given in Table 1. For each instance, 2-OPT and LK-

OPT solutions were compared with the optimum obtained as described above. cZ→O

gives the mean improvement (%) of the optimum EL over the EL of the original

policy; cO→2 gives the mean deterioration (%) of the 2-OPT solution from the

optimum and cO→LK the equivalent figure for LK-OPT. �2, �LK, S2 and SLK, give the

percentage of instances for which each method found the true optimum and the mean

number of iterations (the number of passes through the central loop) for each method

to converge. Timings in seconds are not given as this will depend entirely on the

processor within the router – see the next section for a full discussion.

Although there is experimental variance in these figures, some patterns are clear. The

heuristic 2-OPT and LK-OPT methods are extremely accurate for smaller rule sets

and, although they deviate more from optimality for larger sets, still give significant

improvements over non-optimised policies. LK-OPT, as expected, gives generally

better results than 2-OPT but at a considerable expense in terms of run-time.

Although the ratio of LK-OPT steps to 2-OPT steps decreases as n increases, 2-OPT

gives excellent solutions for 10 or 20 rule ACLs and finds tolerable approximations

reasonably quickly for ACLs of 50 or 100 rules. It appears that the computationally

intensive LK-OPT is unnecessary for these values.

Table 2. Comparing 2-OPT with C-SORT

n m c2→→→→CS S2 SCS

100 100 6.44 2,525 764

 500 6.05 2,203 675

 1,000 5.91 1,996 599

 5,000 5.83 1,789 552

500 500 5.29 44,932 2,225

 1,000 5.09 39,102 1,803

 5,000 5.02 35,079 1,654

 10,000 4.95 29,441 1,559

1,000 1,000 4.30 344,183 3,145

 5,000 4.22 308.949 2,672

 10,000 4.17 270,056 2,209

 50,000 4.11 224,721 1,992

5,000 5,000 3.61 12,101,000* 9,032

 10,000 3.56 10,884,000* 7.962

 50,000 3.52 10,069,000* 7,110

 100,000 3.48 9,170,000* 6,282

10,000 10,000 3.11 128,336,000* 17,219

 50,000 3.07 115,508,000* 14,843

 100,000 3.02 109,910,000* 12,055

 500,000 2.98 93,991,000* 10,276

n: number of rules. m: number of dependencies.

c2→CS: mean (%) increase of C-SORT solution over 2-OPT solution .

S2: mean number of iterations for 2-OPT to converge. (* rounded)

SCS: mean number of iterations for C-SORT to converge.

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 16 of 20

However the 2-OPT heuristic, with its ΨO(n
2
) complexity will not be suitable for

large n within the tight constraints of a production router. (In fact, as n increases the

gap in convergence steps between 2-OPT and LK-OPT is decreasing.) In such cases,

C-SORT (ΨO(n)) is the last resort. Table 2 compares 2-OPT with C-SORT. The

exact solutions are no longer available for larger problem instances but the

deterioration of C-SORT compared to 2-OPT is given instead. Using the notation

from Table 1, in Table 2, c2→CS gives the mean percentage increase in expected

latency from the C-SORT method over 2-OPT, S2 and SCS give the mean number of

iterations (the number of passes through the central loop) for each method to

converge, the larger values for S2 being rounded to the nearest thousand.

It can bee seen from Table 2 that C-SORT performs well. Although less accurate than

2-OPT, the difference decreases as n increases. It’s convergence time, however, is

much better. C-SORT appears a better choice for larger ACLs. All the lessons from

this section are discussed in the next.

7. PRACTICAL IMPLEMENTATION

In principle, we now have the necessary techniques to allow ACL rule order

optimisation to be carried out on-line (in real time) on a router. This section discusses

their practical implementation.

7.1. Choosing Processes

We have discussed, in varying depth, the following ACL optimisation algorithms:

• Exhaustive search (ES)

• Held and Karp dynamic programming (H-K)

• Linear programming (LP)

• Branch and bound (BB)

• 2-OPT

• 3-OPT

• LK-OPT

• C-SORT

Our discussions lead us to reject ES (too complex), LP & BB (difficult to automate)

and 3-OPT & LK-OPT (poor return for increased complexity) in favour of H-K, 2-

OPT and C-SORT.

ACLs vary considerably in size. Many are extremely small and, for these cases, H-K

may be entirely viable. Some are larger (requiring 2-OPT) and some are very large

(where only C-SORT can be expected to run). Depending on the processing power of

the router, it is proposed that two limit values be set. (This will be an inbuilt feature

of the processor/IOS.)

 maxsmall: the maximum number of rules in a ‘small’ ACL

 maxmedium: the maximum number of rules in a ‘medium’ ACL

Thus, ‘small’ and ‘medium’ are terms specific to each router with the ACL

optimisation process being controlled at the top level as follows.

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 17 of 20

 if n ≤ maxsmall then
 H-K

 else if n ≤ maxmedium then
 2-OPT

 else

 C-SORT

7.2. Measuring Hit-Rates and Timing

Traffic characteristics may change over time and with them packet hit-rates. This is

not a problem in itself but, considering implementation, other factors arise. In reality,

a router’s only knowledge of traffic flow will come from logging packet types and

this will probably take the form of incrementing counts and recalculating the hit-rates

themselves. On this basis, the hit-rate, h(ri(L),T), of rule ri in L under T changes

constantly and two issues have to be addressed.

1. As the hit-rate of a rule is known only for its current position in the list and

will be higher - the higher its position, how can the objective change, E(L,T) –

E(L<ij>,T), say, of a swap/permutation be calculated accurately?

2. How frequently should (re)optimisation be performed?

There is no practical method by which ‘absolute’ hit-rates can be calculated so there is

no simple solution to the first question. Fortunately, the inequality is at least such that

the process will be stable; that is, the hit-rate of a rule being considered for promotion

up the list will always be under- rather than over-estimated so may not be swapped as

far up the list as it should be but it will not be swapped too far. Constant re-swapping,

then, will not occur unless the nature of the underlying traffic flow itself is oscillatory.

This suggests an answer to the second question. There is no practical value in

(re)optimizing too frequently. Observed hit-rate probabilities will change with every

packet processed, even if the packet distribution remains the same. There is no need

to recalculate expected latencies at this level, it being simpler to automatically

promote (a fixed number of places or to the top of the list) the rule matched by the

current packet. However, such an approach will be both unstable and resource-

hungry.

A better solution will be to (re)optimize after a fixed period of time or number of

packets or when the router is otherwise idle. Routing protocol packets between

neighbouring routers, for example, are exchanged at intervals of between 5 and 120

seconds – depending on the protocol in use (Colton, 2002) – and an optimization

period in this range may be intuitive. However, the formal optimization of this

period/number, itself dependent upon the changing traffic flow, goes beyond the

scope of this paper and is suggested as an avenue for future research.

7.3. Traffic Shaping, Queuing and Prioritisation

Another consideration comes from the application of packet prioritisation and other

forms of traffic shaping. In a weighted fair-queuing (WFQ) system, for example,

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 18 of 20

certain high-priority packets, such as voice, video or other multimedia traffic, are

processed ahead of low-priority traffic such as emails or file transfers. If ACLs are to

be used to filter such traffic then it is essential that the rules identifying these packets

are to be found, and remain, toward the top of the list (otherwise the delay in

matching the packet against each ACL may increase the latency unacceptably).

In fact, the implementation of such fixed rules may be achieved through the existing

system of dependencies. However, this is unlikely to be particularly efficient. On this

basis, a fixed rule will have a dependency with all other rules in the policy. Testing

such a large number of constraints through each 2-OPT iteration, for example, will be

complex and itself likely to increase latency. An alternative may be simply to

implement a flag for each rule, identifying whether it can be moved. However, this in

turn is not particularly flexible. If it is acceptable to move a rule only so far or to

swap it with rules of particular types but not others, then the notion of dependencies is

required once more. The ideal solution may be a compromise or hybrid method of

marking the freedom of a rule, or a different method entirely? This problem also is

suggested for future research.

7.4. The Network Administrator (NA)

There is a final practical consideration concerning the NA maintaining the ACL.

ACLs often (in fact, usually) evolve over time. The NA will add new rules from time

to time to add new policies, etc. They need to be fully aware of the current structure

of the ACL. Whilst, they will want the ACL to be as efficient, as possible, they will

not tolerate an actual re-ordering of the list with which they work on a day-to-day

basis. As the purpose of this paper is to explicitly re-order the ACL for greater

efficiency, how is this conflict to be resolved?

We suggest a simple system of pointers. The NA maintains the primary ACL. An

array of pointers is used, however, to indicate the working order of the list.

Optimisation and packet-matching itself takes place with regard to the indexed list.

The pointer array will be of inconsequential size compared to the original ACL and

the extra processing minimal

8. CONCLUSIONS

This is a very real optimisation problem, albeit largely unaddressed until now. ACLs

are used in many different ways in applying traffic policies on network routers and

large, poorly-designed rule sets can add significantly to packet delay across internets.

By comparison, any improvement that may be found through the valid reordering of

these rules will be worthwhile, particularly applied across a sequence of routers.

However, there is little value in the application of complex and time-consuming

procedures in seeking optimum or improved orderings in such environments. Fast,

simple heuristics, giving inexact but acceptable solutions, are to be preferred.

This paper has formulated and discussed the problem in its most general form and

compared various exact and inexact methods of optimisation. The eventual

conclusion is that, while exact optimisation may be a possibility for small ACLs, a

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 19 of 20

simple, adapted and constrained, 2-OPT process is preferable for medium ACLs (the

limits depend on the router in question) since

1. it has minimal space-complexity, making it ideal for implementation in router

operating systems or even hardware,

2. it has moderate time-complexity, contributing little to processing delays in the

router, and

3. although sub-optimal, it provides very good results in practice.

However, for larger ACLs, the C-SORT process is to be preferred since

1. it has the same minimal space-complexity as 2-OPT,

2. it has minimal time-complexity, contributing as little as possible to processing

delays in the router,

3. it can be implemented more frequently than 2-OPT, and

4. although less accurate than 2-OPT, it provides very good results in practice, at

least sufficient to make optimisation worthwhile.

Some issues raised in the previous section (7) are left as open research questions.

ACKNOWLEDGEMENTS

The comments and suggestions from the referees were invaluable in improving this

paper and preparing it for publication and were gratefully received.

REFERENCES

Al-Shaer, E. & Hamed, H., (2004) Modeling and Management of Firewall Policies, IEEE

Transactions on Network and Service Management, Vol. 1-1, April 2004.

Applegate, D., Bixby, R., Chvátal, V. and Cook, W. (2003) CONCORDE TSP Solver,

Princetown University, http://www.math.princeton.edu/tsp/concorde.html.

Applegate, D., Bixby, R., Chvátal, V. and Cook, W. (2004) National Traveling Salesman

Problems, Princetown University, http://www.math.princeton.edu/tsp/world/countries.html.

Aarts, E. and Lenstra, J.K. (2003) Local Search in Combinatorial Optimisation, Princetown

University Press.

Bukhatwa, F. & Patel, A. (2003) Effects of Ordered Access Lists in Firewalls, Proceedings

of IADIS WWW/Internet 2003, Algarve Portugal, 5
th
-8

th
 November, pp257-264.

Bukhatwa, F., (2004) High Cost Elimination Method for Best Class Permutation in Access

Lists, Proceedings of IADIS WWW/Internet International Conference (W3I 2003), Madrid,

Spain, 6
th
-9

th
 October 2004, pp287-294.

Cisco (2002) ACL Optimizer and Hits Optimizer, Cisco Systems,
www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/cw2000/ fam_prod/acl_mgr/aclm_1_x/1_5/u_guide/ac1js.pdf

Cisco (2003) ACL Manager, Cisco Systems,
http://www.cisco.com/en/US/partner/products/sw/cscowork/ps402/products_user_guide_book09186a00801f42b9.html

Cisco (2004) Turbo Access Control Lists, Cisco Systems,
http://www.cisco.com/univercd/cc/td/doc/product/software/ios120/120newft/120limit/120s/120s6/turboacl.htm

GROUT, McGINN & DAVIES Internet ACL Optimisation

Page 20 of 20

Colton, A. (2002) Cisco IOS for IP Routing, Rocket Science Press Inc.

Davies, J.N. and Grout, V. (2005) Network Monitoring and Measurement, First

International Conference on Internet Technologies and Applications (ITA 05), Wrexham,

North Wales, UK, 7
th
 – 9

th
 September 2005.

Garey, M.R. and Johnson, D.S. (1979) Computers and Intractability: A Guide to the Theory

of NP-Completeness, W.H. Freeman, New York.

Gutin, G. and Punnen, A.P. (2002) The Traveling Salesman Problem and its Variations,

Kluwer Academic.

Hari, B., Suri, S. & Parulkar, G., (2000) Detecting and Resolving Packet Filter Conflicts,

Proceedings of the 19
th
 Joint Conference of the IEEE Computer and Communications

Societies (INFOCOM00), pp1203-1212.

Held, M. and Karp, R.M. (1962) A Dynamic Programming Approach to Sequencing

Problems, Journal of the Society of Industrial and Applied Mathematics (SIAM), Vol. 10,

pp196-210.

Johnson, D.S. and McGeoch, L.A. (2002) Experimental Analysis of Heuristics for the STSP,

in ‘The Traveling Salesman Problem and its Variations (eds. G. Gutin & A. Pullen), Kluwer

Academic.

Johnson, D.S., Gutin, G., McGeoch, L.A., Yeo, A., Zhang, W. and Zverovitch, A. (2002)

Experimental Analysis of Heuristics for the ATSP, in ‘The Traveling Salesman Problem and

its Variations (eds. G. Gutin & A. Pullen), Kluwer Academic.

Lawler, E.L. (1978) Sequencing Jobs to Minimize Total Weighted Completion Time Subject

to Precedence Constraints, Annals of Discrete Mathematics, Vol. 2, pp75-90.

E.L., Lenstra, J.K., Rinnooy Kan, A.H.G. and Shmoys, D.B. (1985) The Traveling Salesman

Problem: A Guided Tour of Combinatorial Optimisation, John Wiley & Sons.

Lin, S. and Kernighan, B.W. (1973) An Effective Heuristic Algorithm for the Traveling

Salesman Problem, Operations Research, Vol. 21, pp972-989.

Papadimitriou, C.H. (1994) Computational Complexity, Addison Wesley Longman.

Rego, C. and Glover, F. (2002) Local Search and Metaheuristics, in The ‘Traveling

Salesman Problem and its Variations’ (eds. G. Gutin & A. Punnen), Kluwer Academic.

Shih, C-S. and Qian, J. (2003) Security Policy Derivation, in CS497: Cryptography and

Computer Security, University of Illinois at Urbana Champaign,

http://www-sal.cs.uiuc.edu/~steng/cs497_01/qian.ppt.

Stoica, I. (2001) Route Lookup and Packet Classification, CS 268, February 2001,

Department of Electrical Engineering and Computer Science, University of California,

Berkeley USA.

	Glyndŵr University
	Glyndŵr University Research Online
	10-1-2006

	Real-time optimisation of access control lists for efficient internet packet filtering
	Vic Grout
	John Davies
	John McGinn
	Recommended Citation

	Real-time optimisation of access control lists for efficient internet packet filtering
	Abstract
	Keywords
	Disciplines
	Comments

