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Abstract—This paper presents a novel approach for detection 

and localization of standardized euro pallets, which are 

orientated up to 90° in relation to the sensor plane. There is no a 

priori information about the pallets pose needed. We use a time-

of-flight camera. Our algorithm is based on finding surfaces in 

the point cloud, which represent the three wooden blocks of a 

euro pallet. Different kinds of geometrical checks set up our 

detection pipeline, where no artificial markers on the pallets are 

needed. Since we perform the detection while driving a forklift, 

the algorithm must process the point cloud within a set time 

limit. The detection and localization result in the pallets position 

and orientation in relation to the camera coordinate system. This 

information can be provided to higher-level systems, like 

advanced driver assistance systems. The results show that the 

localization of pallets is possible in the scenario considered. 
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I. INTRODUCTION 

The detection and localization of pallets with sensors is a 
common task for different kinds of intra-logistical material 
handling purposes. The main objective is to detect whether any 
pallet is located in the field of view of the sensor and also its 
relative or absolute spatial orientation. Such positioning 
information is used mainly by automated guided vehicles 
(AGVs) or by human-operated forklifts to assist the pallet pick-
up process. 
In general, AGVs are designed for predetermined tasks, e.g. 
production supply or the simple transport of materials between 
two locations in-house. They determine their own absolute 
position in the operating area and acquire their destination for 
pallet pick-up or drop-off from a higher-level management 
system. Pallet detection itself is only performed when the AGV 
is more or less perfectly aligned to the front of a pallet. 
Whereas human-operated forklifts are used throughout the 
complete in-house transport process. The storage and retrieval 
of pallets from racks is one of its standard tasks. Usually, 
forklifts do not have any localization system enabling them to 
obtain their absolute position. Spatial orientation of the pallet is 
not known either and therefore this detection must be 
performed without any a priori knowledge. Pallet localization 
can be the basis to provide information to support the human 
operator during the pick-up process, in order to prevent any 
damages to goods or racks. 

Object detection in general can be seen as a basic task in 
computer vision. We define object detection as the question “is 
the object in the recorded image?” and localization as “what is 
the spatial orientation in relation to the sensor?”. In this paper, 
we introduce a novel approach for detecting and localizing 
pallets, which are orientated up to 90° in the direction of 
vehicle movement. Our method does not need any artificial 
markers to be placed on the pallet or any other modifications of 
the environment. For detection and localization purposes, a 3D 
camera with time-of-flight principle is used. Our work focusses 
on advanced driver assistance systems for forklift trucks. 

II. RELATED WORK 

As already mentioned, the detection and localization of 
pallets can generally be divided into two groups: systems 
which can locate themselves and know the position of the 
target pallet, and systems which do not have any localization 
function and do not know the position of the target pallet. In 
addition, the known approaches to this problem can be 
distinguished by the type of sensor used. The research on pallet 
detection and localization to date has mainly been carried out 
for AGVs. For detection purposes, image-processing sensors 
are used primarily. Many works are based on 2D cameras, both 
in color and in monochrome variant. In some cases, the pallets 
must be equipped with artificial markers. Newer publications 
report the use of 2D laser scanners and 3D cameras, which 
have the advantage of direct depth values. 

Already 20 years ago Garibotto introduced an autonomous 
forklift [1], where a 2D camera is mounted between the forks. 
An ultrasonic sensor determines the distance to the pallet. It is 
used to calculate the expected size of the openings for the forks 
in the current camera image. This calculated size is the basis 
for a search for dark areas of equal dimensions. If similar areas 
are found the centers of the openings can be determined. Byun 
and Kim follow the same approach [2]. They use a 2D camera 
and the back-projection method for the detection of such 
openings. 

Lecking et al. show the detection of pallets for an AGV [3]. 
They use a 2D laser scanner, which delivers direct depth 
values. The wooden blocks of the target pallets are modified 
with artificial reflectors. The detection is based on comparison 
between the scanned environment with a known pattern of the 
wooden blocks. Bellomo et al. show a similar approach in [4]. 



Wang et al. use a structured light sensor without any markers 
on the pallets to record the environment [5], but the general 
detection principle is the same. 

The first use of a 3D camera with the time-of-flight 
principle is shown by Kleinert et al. 2012 as part of an 
advanced driver assistance system for forklifts [6]. The camera 
is integrated in the front end of one fork arm. The developed 
system gives the driver visual recommendations for the correct 
alignment of the forks to pick up the pallet. Pallet detection is 
based on finding planes inside the openings for the forks, when 
the camera has a good alignment to the front of the pallet. 

In general, it can be stated that in the presented works the 
detection is performed only when the vehicle is already very 
well positioned in front of the target pallet. The free openings 
for the forks are always orientated in the direction of 
movement. Deviations of up to 50° appear possible, but are not 
mentioned clearly by the authors. 

III. PROBLEM DEFINITION 

All known approaches for pallet detection and localization 
want to find the free openings for the fork arms. The alignment 
between the sensor and the front of the pallet has a 
considerable impact on the success of the detection process. 
With these state-of-the-art approaches, it is not possible to 
detect pallets where the front is orientated up to 90° in relation 
to the sensor. But this scenario is very common whenever a 
forklift drives through an aisle in a pallet rack storage unit. The 
relative position between the forklift and the target pallet is 
necessary data for higher-level systems, such as advanced 
driver assistance systems. It is obvious that pallet detection and 
determination of relative position must be performed while the 
vehicle is in motion. This task must be processed so quickly 
that higher-level systems can respond to the results. This 
results in a real-time requirement for the algorithm. The typical 
vehicle velocity for unloaded forklifts moving along an aisle 
vary from the forklift model used and the prescribed guidelines 
of the company using the forklift. 

IV. PALLET DETECTION AND LOCALIZATION 

A. Camera hardware 

We chose the Microsoft Kinect v2 camera, a 3D camera 
with time-of-flight principle, because it has certain advantages 
in comparison to 2D cameras. Logistical operation areas like a 
warehouse equipped with racks may have bad light conditions, 
especially at their lower levels. 2D cameras may need external 
illumination to work as expected. For object localization, some 
kind of depth values are needed. 2D cameras can not deliver 
these values directly. Whereas 2D laser scanners or 3D 
cameras acquire such data directly, due to the underlying 
physical work principle. 2D laser scanners have the 
disadvantage that their perception only operates on one level. 
3D cameras provide a built-in infrared illumination system, 
which makes the use of external illumination obsolete. The 
Kinect v2 has a depth resolution of 512 x 424 pixel and a frame 
rate of 30 fps. The depth camera records a grayscale depth 
image, which is transformed into a 3D point cloud on the 
connected computer. The point cloud consists of voxel, which 

represents the x, y and z Cartesian coordinates of each point in 
the camera coordinate system. Additionally, the Kinect v2 has 
a 2D color camera but these images are not used in our 
procedure. The camera is mounted on top of the fork back 
(Fig. 1). It is tilted downwards about 10°. Otherwise the tips of 
the forks are not within the field of view. This is necessary in 
order to detect and locate the pallet just before the forks are 
placed in the free openings during the pick-up process. To 
process the point clouds, we use the Point Cloud Library 
(PCL), which was first released in 2011 by Rusu and Cousins 
[7]. The open source C++ library is released under the terms of 
the BSD license. 

B. Point cloud preprocessing 

The transformed point cloud consists of 217 088 points. To 
meet the real-time requirements, the number of points must be 
reduced as much as possible for downstream algorithms. Most 
of the PCL methods iterate through all present points. Hence, a 
lower number of points results in a faster iteration speed 
respectively computation time. The following steps describe 
the processing of one camera frame or rather one point cloud. 
Obviously, the steps are performed in a loop during reception 
of a live stream from the Kinect camera. Because of the 
physical function principle of the time-of-flight camera, 
different image areas, especially with different depths, have a 
different point density. To make the point cloud the same 
density, a voxel grid filter is applied. The filter divides the 
point cloud up into boxes with predefined dimensions and 
determines the centroid of all points included. The original 
points are replaced with the centroids. Compared to determine 
just the geometrical center, this filter leads to better 
representation of the underlying surface [8]. 

 

 

 

Fig. 1. Forklift with mounted Kinect camera and close-up view showing 

camera coordinate system. 

xc 

zc 

yc 



In this paper, we focus on pallets, which are placed on the 
ground. Therefore, the next preprocessing step is to determine 
the ground plane and to remove all associated points from the 
point cloud. For plane detection, the well-known RANSAC 
algorithm is used. To prevent finding vertical planes like walls, 
the algorithm is configured to discard any planes with an 
angular deviation greater than 15° in relation to the axis zc. The 
outputs of the plane detection process are the plane unit normal 
vector n̂  and the distance p from the origin of the camera 
coordinate system (Fig. 1). The ground plane equation can be 
written in the Hessian normal plane form (1). 

 𝐧̂ ⋅ 𝐱 = −p (1) 

When all points representing the ground plane are known, 
they can be removed from the point cloud, so as to reduce the 
number of points. The plane equation itself is used for an 
additional reduction. The idea is to crop the point cloud 
vertically, so as to obtain only the points between the ground 
plane and a plane above and parallel to it (Fig. 2). The distance 
between the two planes is chosen so that one pallet fits well 
taking account of its height. We can use the point-plane 
distance equation (2) to obtain all the points with a distance d 
smaller than the height dthreshold chosen (3). 

 d = 𝐧̂ ⋅ 𝐱𝟎 + p (2) 

 d ≤ dthreshold (3) 

Distance d is the shortest distance and therefore, the 
perpendicular distance between point x0 and the plane. The 
resulting point cloud has the shape of a flat cuboid. These 
preprocessing steps are performed for every point cloud, 
because the height of the forks or the tilt angle of the mast can 
be changed by the operator. This can result in a new Kinect 
camera position and orientation with respect to the ground 
plane. 

C. Geometrical pallet detection 

Based on the preprocessing carried out, a geometrical pallet 
detection is performed. Our work is focused on standardized 
euro pallets [9]. All dimensions of the components are known. 
The main parts are wooden blocks and boards. We want to 
detect pallets, which are orientated up to 90° in direction of 
vehicle movement. This scenario represents a warehouse aisle 
with pallets left and right. When pallets are arranged near to 
each other, only the shorter pallet front side is visible. The 
short side of a pallet is characterized by three wooden blocks 
separated by two openings for the forks. Our approach is to 
detect the wooden blocks in the point cloud. Other parts of the 
pallet are not considered because they can be hidden by the 
load. Fig. 3 gives an overview of our detection pipeline. 

The pallet detection starts with a segmentation of the point 
cloud. We use the region growing algorithm implemented in 
PCL. Starting with the preprocessed point cloud, the algorithm 
searches for related points representing a surface. It takes into 
account the point normals and the point curvatures. Both are 
determined by considering a given number of Cartesian 
neighbor points. The current point will be added to the 
temporary surface if the angle between two point normals is 
within the given threshold. The same procedure is used for the 
curvature. 

 

Fig. 2. Schematic of the Kinect v2 camera mounting position and the 

cropped ground plane. 

 

Fig. 3. Pallet detection and localization pipeline. 

Points belonging to a determined surface are removed from 
the point cloud, so they are not considered in the next iteration. 
The results are point cloud clusters. Each cluster represents one 
found surface and is a subset of the original point cloud. The 
centroid, which can here be assumed as the surface center, and 
the surface normal of each cluster are needed for further 
processing. The surface normal is used to determine if a 
surface is perpendicular in the relation to the ground plane. The 
angle φ between two surface normals is calculated with the y-
components of the normal vectors (4). 

 φ = tan−1 (
cluster_normaly

ny
) (4) 

Since we want to detect the wooden blocks, all horizontal 
or inclined surfaces are discarded. Theoretically, a perfect 
perpendicular surface has a normal angle of 90°. Due to noise, 
in practice, this value must be extended to an interval ε1, so that 
almost perpendicular surfaces are also allowed for further 
processing. The idea here is to find three centroids, which 
represents the front side surface of the three wooden blocks. 
The centroids determined are used for the first step of the 
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geometrical pallet detection. The Euclidean distance between 
all remaining centroids is calculated. The ideal distance 
between the outer blocks and the middle block is 0.350 m. 
Again, in practice, noise must be considered. Therefore, the 
hard threshold value is changed to a useful interval ε2. To sum 
up, we have two necessary conditions (5) and (6), which need 
to be fulfilled until here. 

 φ ≶ 90° ± ε1 (5) 

 d ≶ 0.350 m ± ε2 (6) 

The results are pairs of points, which have a distance that is 
within the interval. In these pairs of points, it is now necessary 
to find those with a common point. A common point is a good 
candidate for the centroid of the middle block. The 
constellations found are then grouped into three-point pairs. 
The next steps examine the three-point pairs geometrically. 
The first is derived directly from the dimensions of the pallet. 
Since we want to detect the wooden blocks, all cluster 
centroids should be situated more or less in the geometrical 
middle of the front side of the wooden blocks. This leads to the 
third condition; namely, that all three centroids have to be 
located on the front side of the respective wooden block. The 
fourth condition is that the centroids of one three-point pair 
must be almost the same height above the ground plane. All 
four conditions are shown in the schematic in Fig. 4. The gray 
areas visualize the possible interval for each condition. 

In general, the clear localization of any rigid body in three-
dimensional space requires three components of translation and 
three components of rotation. Hence, the rigid body has six 
degrees of freedom. The intra-logistical environment allows us 
to make some assumptions that reduce the degrees of freedom. 
The pallet lies directly on the ground, which is a flat surface, 
with no major bumps in it. 

 

 

Fig. 4. All four geometrical conditions for pallet detection, when the pallet 

has an orientation of 90° to the Kinect camera. Gray areas indicate the range 

of valid values. 

Thus, we can assume that the pallet has no roll or pitch 
angle. Also, the height perpendicular to the ground can be 
assumed to be zero. We chose the geometric middle of the 
pallet front side as our reference point for localization 
purposes. Therefore, the centroid of the middle wooden block 
surface is used for the remaining two components of 
translation. Since our algorithm works with a point cloud, the 
Cartesian coordinates can be read directly from the 
corresponding variable field. The yaw angle is calculated 
considering the two outer wooden blocks. Fig. 5 shows a 
schematic top view illustrating the relationships for the yaw 
angle calculations. Starting with the Cartesian coordinates from 
the outer wooden blocks the yaw angle is calculated with the 
arctangent function (7). 

 Ψ = tan−1 (
Δzpallet

Δxpallet
) (7) 

 

Fig. 5. Schematic showing for calculation of pallet yaw angle. 

V. TEST AND RESULTS 

To prove our detection and localization pipeline we 
selected two scenarios. The first scenario is designed to 
compare our algorithm to other, state-of-the-art approaches. It 
consists of a single pallet, which is arranged at an angle of 45°. 
The second scenario consists of a single pallet, which is 
oriented at 90° in relation to the direction of movement. The 
second arrangement can be compared to the lowest level of a 
pallet rack. In both scenarios, there is no a priori information 
about the pose of the pallets. The pallets are unloaded and not 
modified with any kind of artificial reflector or marker. We 
have tested both scenarios in two settings. The first one is 
static, which means that the forklift stands still. In the second 
setting, we test our algorithm in a dynamic way, where we 
drove the forklift so that we approached the pallet in different 
distances xc. The pallet was placed in the field of view of the 
Kinect camera. 
The Kinect v2 camera is connected via USB 3.0 to a laptop 
running Ubuntu 16.04. The laptop is equipped with an Intel 
Core i7-6820HK CPU and 16 GB ram. The Kinect v2 camera 
driver [10] is configured to maximum depth values of 5.5 m. 
The Kinect driver uses the Nvidia CUDA pipeline for 
calculating the point cloud from the depth image. The laptop 
has a Nvidia GeForce GTX 1070 GPU. 

In Fig. 6 the detection pipeline is shown with recorded 
point clouds. The first point cloud a) shows the 90° scenario. 
The ground plane found is colored blue. In the front area the 
forks are visible. The next point cloud b) is cropped down to 
the pallet. It shows the result of the segmentation. Every 
vertical plane found is visualized. The colorization is random 
and just for better visualization. Black points do not belong to 
any segments. 
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Fig. 6. a) point cloud of the 90° scenario with detected ground plane (blue), 

b) point cloud segmentation of vertical planes with region growing algorithm, 

c) and d) visualization of the geometrical pallet detection 

The point cloud c) in the lower row shows the computed 
centroids as small light blue spheres on the planes found. 
Between the visualized centroids a red line is drawn, that 
shows a valid pallet by the geometrical pallet detection. The 
last point cloud d) is another view for the purpose of better 
understanding. All conditions from Fig. 4 are fulfilled. The 
black points around the pallet are noise. Some of them belong 
to the ground plane, but are not taken into account, because 
they do not match the criteria defined for the ground plane. 
Other points have their origin in the multipath effect, which is a 
known handicap of time-of-flight cameras [11]. 

The static localization results are shown in Table 1. The 
mean of all valid localizations and the standard deviation are 
shown. The latter is in the low centimeter region respectively 
below 1°, which are suitable values for our purpose. As we did 
not have a calibrated measuring instrument available to obtain 
the ground truth of our tests, our results are evaluated with the 
maximum depth error from the Kinect camera, as determined 
from Khoshelham and Elberink in [12]. The maximum depth 
error reaches 0.04 m at a distance of 5.0 m. Based on our use 
case of a pallet pick-up, a fork width of 0.1 m can be assumed. 
One opening hole has a width of 0.228 m, so that a gap of 
0.064 m remains left and right, when the fork enters the 
opening hole in the middle (Fig. 7). The maximum Kinect 
camera error, combined with the values of the standard 
deviation, generally do not exceed the dimensions of the gap. 
There is just one violation of the limits, which is the case of the 
z standard deviation in the 90° scenario. However, this small 
excess can be neglected, because it is only 0.001 m and the 
maximum error mentioned for the Kinect camera is valid for a 
distance of 5.0 m. The error is smaller at shorter distances. 
Therefore, the accuracy of our localization approach is 
considered sufficiently good. 

Table 2 gives an overview of the detection rate related to 
the number of recorded point clouds and the average 
calculation rate. In the first scenario, almost all pallets were 
detected. In the second scenario, the pallet was correctly 
localized in only 55 % of the recorded point clouds. 

 
Fig. 7. Side view of a standardized euro pallet, which provides an overview 

of the dimensions of the opening hole, one fork and the free gap. 

TABLE I.  MEAN AND STANDARD DEVIATION OF THE PALLET 

LOCALIZATION FOR THE STATIC PALLET SCENARIOS 

scenario 
mean standard deviation 

x (m) z (m) Ψ (°) x (m) z (m) Ψ (°) 

45° 0.323 3.390 44.715 0.015 0.005 0.220 

90° 1.886 3.716 90.506 0.018 0.025 0.871 

TABLE II.  LOCALIZATION RATE UND CALCULATION RATE FOR THE 

STATIC PALLET SCENARIOS 

scenario 
recorded 

point clouds 

valid pallet 

localizations 

localization 

rate (%) 

calculation 

rate (fps) 

45° 877 874 99.66 18.99 

90° 853 470 55.10 18.80 

 

This seems insufficient, but considering the depth image 
frame rate of 30 fps and the calculation rate measured, our 
algorithm delivers new localization values every 10.34 fps ≙ 
96.71 ms. This is adequate for our purpose. 

During movement with our dynamic setting the number of 
points obviously depends on the objects in the field of view. In 
Fig. 8 the influence of the number of points after the 
preprocessing on the calculation rate is shown. The number of 
points are plotted over time. As we did not have any other 
objects in the field of view, the rise shown in the black graph is 
the pallet. Additionally, the calculation rate is plotted over 
time. The calculation rate drops when the pallet enters the field 
of view, but did not drop permanently under 15 fps. The 
detection and localization is therefore considered to be real-
time. 

The detection and localization results for the dynamic 
setting can be seen in Fig. 9 and Fig. 10. The average velocity 
was 0.55 m/s for the 45° scenario and 0.42 m/s for the 90° 
scenario. The pallets drawn in the charts are not true-to-scale, 
but they are still helpful for a general overview. The charts 
show that our approach can detect and localize pallets while 
the forklift is in motion. The detection range in both axes is 
limited due to the field of view of the Kinect camera. Every 
marker stands for a valid pallet localization. Markers with the 
same shape and color represent one drive. For both scenarios 
six drives with variable distances in direction xc were made. In 
the 90° scenario, the pallet could no longer be recognized if the 
distance xc was greater than 2.0 m. The most valid detections 
were possible with the distances xc of 0.5 m (45° scenario) and 
1.0 m (90° scenario). 

a b

c d

0.064 m 0.228 m 0.1 m



 

Fig. 8. Number of points over time (black) and calculation rate over time 

(blue) of the dynamic setting for the 90° scenario. 

 

Fig. 9. Localization results for a single pallet in the dynamic 45° scenario. 

 

Fig. 10. Localization results for a single pallet in the dynamic 90° scenario.  

VI. CONCLUSION AND OUTLOOK 

In this paper, a new approach for detection and localization 
of euro pallets is proposed. We can detect pallets, which are 
orientated up to 90° in relation to the sensor plane. Our 
detection pipeline is based on geometrical features of the 
wooden blocks of the pallets. The Kinect v2 camera is used to 
record depth images, which are transformed into point clouds. 
The point clouds are processed with the help of the open source 
Point Cloud Library. Experiments showed that we can detect 

pallets under both static and dynamic conditions. Hence, a 
Kinect v2 camera was mounted on the front of a forklift. We 
showed that it is possible to detect and localize pallets with at 
least 15 fps, while driving the forklift. 

Future work will focus on improvement of the calculation 
rate, in order to make higher forklift velocities possible. Also, 
the robustness of our algorithm could be improved if we can 
consider more points of the recorded point cloud at the same 
time. The algorithm will be extended so that palettes can be 
located at different levels as long as they are in the field of 
view of the camera. 
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