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Abstract—To achieve high performance control of modern DC-DC converters, using direct digital design techniques, an accurate 
discrete model of the converter is necessary. In this paper, a new parametric system identification method, based on a Kalman filter 
(KF) approach is introduced to estimate the discrete model of a synchronous DC-DC buck converter. To improve the tracking 
performance of the proposed KF, an adaptive tuning technique is proposed. Unlike many other published schemes, this approach 
offers the unique advantage of updating the parameter vector coefficients at different rates. The proposed KF estimation technique 
is experimentally verified using a Texas Instruments TMS320F28335 microcontroller platform and synchronous step down 
DC-DC converter. Results demonstrate a robust and reliable real-time estimator. The proposed method can accurately identify the 
discrete coefficients of the DC-DC converter. This paper also validates the performance of the identification algorithm with time 
varying parameters; such as an abrupt load change. The proposed method demonstrates robust estimation with and without an 
excitation signal, which makes it very well suited for real-time power electronic control applications. Furthermore, the estimator 
convergence time is significantly shorter compared to many other schemes, such as the classical Exponentially weighted Recursive 
Least Square (ERLS) method. 

Index Terms — DC-DC converter, Kalman Filter, Parameters Estimation, RLS method, System Identification. 

I. INTRODUCTION 

WITCH mode DC-DC power converters are widely used in a variety of applications, ranging from DC motor drives, personal 
computers, home appliances, and portable electronic devices [1, 2]. All of these applications require efficient and cost effective 
dynamic and steady state voltage or power regulation over a wide range of operating conditions.  Traditionally, pre-designed 
PID controllers are applied to achieve the required dynamic performance in these systems. However, poor knowledge of the 

power converter parameters may cause inaccuracies in controller design. Moreover, unpredicted behaviours such as sudden load 
variations, components aging, noise, and unpredictable changes in operating mode may degrade the controller performance and can 
lead to instability within the entire system [3, 4]. For these reasons adaptive and auto-tuning controllers, based on system 
identification of the converter parameters, are now gaining more attention. 

Recently, several techniques for system identification of DC-DC converters have been proposed. Two main classes of system 
identification are commonly employed: parametric and non-parametric techniques. In non-parametric identification methods, the 
system frequency response is determined directly, with no prior knowledge of the system model [5, 6]. Proposed strategies include 
correlation analysis [7, 8], transient response analysis [9, 10], Fourier, and spectral analysis [11, 12]. Typically, non-parametric 
system identification approaches assume steady state operation and the system identification process is carried out while the 
control loop is open to inject the excitation signal. In addition, the frequency response measurements are usually performed off-line 
on a host PC or an FPGA which increases the complexity and hence the cost of the implementation [6]. Also, by incorporating 
these techniques in real time applications such as DC-DC power converters, abrupt changes in the parameters can potentially yield 
unpredicted behaviour or even an unstable output response. The second paradigm, parametric system identification, assumes a 
known model structure with pre-specified order and number of coefficients to be estimated [5].  According to literature, 
conventional Least Squares (LS) [5, 13] and its recursive version, Recursive Least Squares (RLS) [4, 14, 15], are the most 
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commonly used algorithms for parameter estimation of DC-DC converters. In [4], the classical RLS algorithm is reviewed and 
tested in real-time on an open loop buck converter. It is confirmed that the classical RLS algorithm can result in accurate parameter 
estimation for systems with fixed, or slow varying, loads while operating at sampling frequency much lower than the switching 
frequency. However, the algorithm fails to track fast parameter changes. In order to overcome this problem, the Exponentially 
weighted RLS (ERLS) algorithm is often applied to estimate abrupt changes in converter parameters. An off-line parameter 
estimation approach is presented in [14] using the Biogeography-Based Optimization (BBO) method. Due to the low sampling rate 
used in this approach, the estimation process takes around 100 ms to converge to its final values. In addition, the proposed method 
has a considerably higher computational cost compared to ERLS. A low computational complexity ERLS identification technique, 
based on a Dichotomous Coordinate Descent (DCD) algorithm, is introduced in [2]. However, according to simulation and initial 
experimental results, the proposed method is tested off-line showing a slow convergence time for zero coefficients with modest 
fluctuation due to measurement noise. In addition, the performance of the proposed algorithm is not investigated during abrupt load 
changes. Regardless of the improvement introduced by ERLS in terms of estimating abrupt changes, it is reported that a 
compromise must be made between noise sensitivity and dynamic tracking performance [15]. Typically, this technique applies 
equal weight to all parameters during the estimation process. As a result, if the rate of variation of one of the estimated parameters 
is greater than the other parameters, the same adaptation gain correction is applied to all parameters irrespectively which greatly 
affects the estimator output [16]. The estimation of coefficients with small values will suffer from slow convergence speed and 
higher estimation error. Practically, the measurement noise may increase this deviation, which impacts on the reliability of the 
estimation results when used in fault detection applications or controller design on the fly. This scenario is illustrated in parameter 
estimation of DC-DC converters, where sluggish convergence of the zero coefficients is observed and their final value is highly 
affected by the measurement noise [2]. Another drawback of the ERLS implementation is the requirement of superimposing the 
input signal with a frequency rich signal (such as those generated by a Pseudo Random Binary Sequence: PRBS) to enhance the 
estimation accuracy and prevent estimator wind up due to an exponential growth of the adaptation gain matrix [16].  This 
necessitates keeping the output voltage perturbed for long periods or resetting the estimator periodically, which can lead to some 
abrupt changes not being observed. To overcome this, the error covariance matrix can be updated using a different approach to add 
more freedom to the adaptive algorithm when calculating the adaption gain. In this paper, a state of the art Kalman Filter (KF) 
algorithm is proposed for real-time parameter estimation of switch mode power converter (SMPC). The proposed technique has the 
advantage of providing an independent strategy for adaptation of each individual parameter. Compared to existing system 
identification approaches, the proposed algorithm can be readily implemented online and is well suited for real-time dynamic 
applications. Furthermore, unlike classical RLS approaches, the effects of the excitation signal and parameter uncertainty can be 
factored into the proposed algorithm. This results in greater precision parameter estimation and much faster convergence speed. 
The effectiveness of the proposed technique is experimentally verified on a synchronous buck converter operating in continuous 
conduction mode (CCM); however, it can be easily transferred to other converter topologies. Results also confirm the ability of the 
proposed KF algorithm to produce improved performance compared to commonly applied ERLS schemes. 

II. PARAMETER ESTIMATION OF SWITCH MODE POWER CONVERTER 

A. Discrete Time Modelling 

Generally, in parametric paradigms, the candidate model of the unknown system should be known in advance. In this research, a 
synchronous DC-DC buck converter is considered (see Fig.1). The analytical model of this converter is well understood and 
defined in the literature [2, 14]; consequently, the validated result will be used directly in this paper. Furthermore, the derivation of 
the average model for the buck converter is well reported [17]; and hence, it is not shown in detail. Therefore, starting here from the 
state-space model, the transfer function relating the output voltage (vout), to input duty cycle (d) of the buck converter can be 
expressed as follows: 

 
ṽo(s)
d̃(s)

=
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s2L C (RC+Ro
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) +S (CRC+C ( RORL
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) + L
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In (1), Vin is the input voltage,  RO is the load resistance , L is the inductance with DC resistance RL, and C is the output capacitance 
with equivalent series resistance RC. In Fig 1, the parasitic elements are included to improve the model accuracy and to demonstrate 
the importance of considering non-ideal components for system identification in applications such as power electronic converters. 
For instance, in the buck converter the equivalent series resistor RC cannot be ignored because it adds a zero to the transfer function 
(1), which has a negative impact on the dynamic behaviour of the converter [18]. In addition, its value may be used as a diagnostic 
indicator of capacitor aging [14].  In real time applications, it is typical to use discrete analysis, hence the digital equivalent transfer 
function is preferred [5, 14]. The transfer function parameters rely on the actual component values including the parasitic elements; 
(such as  RL , RC , and the  conduction losses of the switch), therefore, a more accurate digital controller can be designed when the 
converter losses are considered.   In this paper, a zero-order-hold mapping technique is applied to compute the equivalent discrete 
transfer function as follows: 
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  𝐺𝑣𝑑 = 𝑏1𝑧−1  + 𝑏2𝑧−2 1 + 𝑎1𝑧−1 +  𝑎2𝑧−2 (1) 

Here, the values of coefficients a and b are dependent on the Laplace transfer function coefficients defined in (1), and on the 
digital sampling time, T [2, 4]. 
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Fig. 1. Synchronous buck converter 

B. ERLS for Parameter Estimation  

In this paper, we apply the conventional ERLS scheme as a testbed for assessing the performance of the proposed KF algorithm. To 
estimate the parameters in (2), the relation between the input and output signals can be re-written as follow: 

 yk+a1yk-1+a2yk-2=b1uk-1+b2uk-2 (2) 

Where,  𝑦𝑘  and 𝑢𝑘 denote the output voltage and the duty cycle control signal respectively at sampling instant 𝑘. For system 
identification purposes, the difference equation in (3) is rewritten in linear regression form: 

 𝑦𝑘 = 𝜑𝑇𝑘𝜃𝑘 (3) 

By comparing (2) with (4), the unknown coefficients [a1 a2 b1 b2] are lumped in a vector 𝜃𝑘 ∈ R𝑁, while the data vector  𝜑𝑘 
(regression vector) contains the sampled input and output measurements. It is important to emphasise that minimizing the weighted 
sum of the quadratic error in (5), yields an accurate estimation of 𝜃 ̂[2, 16]. 

  𝐸𝑚𝑖𝑛 = ∑ λ𝑛−𝑘(𝑦𝑘 − 𝜑𝑇𝑘�̂�𝑘)2𝑛
𝑘=1  (4) 

where (λ) ∈ [0,1] is the forgetting factor, and 𝑛 is the number of available samples to date. The estimated parameter vector �̂�𝑘 =[�̂�1 �̂�2  �̂�1 �̂�2] is updated at every sampling instant through simple modification of �̂�𝑘−1. For conciseness, details of the algorithm 
are depicted in Table I  [16] . In Table I, 𝑃𝑘 ∈ R𝑁×𝑁is the error covariance matrix, 𝐾𝑘 ∈ R𝑁is the adaptation gain vector or Kalman 
gain, and 𝑁 is the number of parameters to be estimated. The initial choices of the system parameters �̂�0 and covariance matrix  𝑃0 
are selected by the designer, and the role of experience and intuition is paramount [19].  

C. Kalman Filter Configured for Parameter Estimation 

The Kalman Filter is a mathematical method widely used to estimate unmeasured states using the measured input and output [20]. 
In this paper, the classical KF recursive algorithm is applied to estimate the set of unknown parameters 𝜃𝑘 instead of the states. This 
offers reduced convergence time, tracking performance and estimation accuracy compared to other recursive algorithms [21]. As a 
result, one can consider a parameter variation model and a linear regression equation described by: 

  𝑦𝑘 = 𝜑𝑇𝑘𝜃𝑘 + 𝑣𝑘 𝜃𝑘 = 𝜃𝑘−1 + 𝑤𝑘  

(5) 

Here, the parameter changes are driven by random vector 𝑤𝑘  with covariance matrix Q ∈ R𝑁×𝑁 , and 𝑣𝑘 is the observation noise 
with variance 𝑟 ∈ R [22].  
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TABLE I 

ERLS ADAPTIVE ALGORITHM  

Step Formula  

Initialization  𝑃0 = 𝑔 ∗ 𝐼 , and 𝜃0 = 0 , where 𝐼  is an 𝑁 ×𝑁 identity matrix , 𝑔 is large number usually >1, 
(λ) ∈ (0,1], 

  Do for k ≥ 1 

1- Prediction error 
calculation 

ℇ𝑘 = 𝑦𝑘 − 𝜑𝑇𝑘𝜃𝑘−1 

2-Calculate Kalman 
gain 𝐾𝑘 =  𝑃𝑘−1𝜑𝑘(𝜆 + 𝜑𝑇𝑘𝑃𝑘−1𝜑𝑘) 

3-Update the 
parameter vector 𝜃 

𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘  (𝑦𝑘 − 𝜑𝑇𝑘𝜃𝑘−1) 

4-Update the 
covariance matrix 𝑃 𝑃𝑘 = 1λ [𝑃𝑘−1 − 𝑃𝑘−1𝐾𝑘𝜑𝑇𝑘 ] 

Table II demonstrates the implementation sequence of the Kalman filter as a parameter estimator [22] . As shown in Table II, at 
the prediction step the error covariance matrix is computed by the additional inclusion of a diagonal matrix 𝑄 to account for time 
varying parameters. The size of the diagonal elements are conducive to the corresponding parameter variation in a random walk. 
Thus, the adaptation gain is adjusted for each parameter individually. This yields improved estimation accuracy for all elements in 
the vector θ with comparable convergence time and more flexibility in tuning. In contrast to the ERLS illustrated in Table I, a linear 
growth of the covariance matrix 𝑃 is observed in the Kalman filter. As a result, the estimator may work for longer periods without 
any significant output perturbation and yet continues to exhibit operational responsiveness. This makes the KF approach an 
excellent option for real-time applications such as DC-DC converters where long periods of perturbation in the output voltage are 
highly undesirable.  

D. Kalman Filter Tuning  

The tracking capability of the KF relies entirely on the value of  Q, which has to be determined by the designer using off-line 
tuning, until the desired filter output response is attained [19, 23]. However, this is a major challenge when using the KF for 
real-time state or parameter estimation. In this paper, an adaptive tuning method for determining Q is introduced. This approach 
was initially suggested for KF based state estimation in [24]. However, here a modified version of this tuning scheme is applied; 
each diagonal element in the matrix Qk is calculated based on its related innovation term and Kalman gain. Therefore, individual 
parameters with different rates of variation can potentially be tracked more accurately. This is fundamentally different to many 
existing schemes. Referring to Table II, in step 2 the parameter variation can be estimated from: 

 �̂�𝑘 = �̂�𝑘 − �̂�𝑘−1 = 𝐾𝑘[ 𝑦𝑘 − 𝜑𝑘�̂�𝑘]  (6) 

As a result, a different variance estimate is obtained for each element in the vector �̂�𝑘 as follows: 

     Q̂𝑖𝑖(𝑘) = [�̂�𝑖(𝑘)]2
 (7) 

 

 

The deduced model error covariance in (9) is used to improve the tracking capability of the filter in the event of any sudden change 
in system parameters, such as abrupt load change in dc-dc converters 

    Q̂𝑘 = diag[[�̂�1(𝑘)]2; [�̂�2(𝑘)]2; [�̂�3(𝑘)]2; [�̂�4(𝑘)]2]  (9) 

Using this matrix in step (4), each diagonal element in the error covariance matrix P will be updated according to the corresponding 
innovation term, hence the components of parameter vector �̂�𝑘 will have a different variance estimate due to the assigned 
adaptation gain. This new tuning approach, overcomes the difficulties faced in ERLS in estimating small parameters from noisy 
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real time data. Therefore, the estimation accuracy and the tracking performance can be improved significantly for all transfer 
function coefficients. Simulation Results 

TABLE II 

KF CONFIGURED FOR PARAMETER ESTIMATION 

Step Formula 

Initialization  
𝑃(0) = 𝑔 ∗ 𝐼, and 𝜃(0) = 0, where 𝐼 is an 

N×N identity matrix, 𝑔 is large number , 𝑟 is 
scaler > 0, Q is diag [Q11, Q22,..,QNN] 

 Do for 𝑘 ≥  1 

`1-Kalman gain 𝐾𝑘 = 𝑃𝑘−1+ 𝜑𝑘𝑇[𝜑𝑘𝑃𝑘−1+ 𝜑𝑘𝑇 + 𝑟𝑘]−1 

2-Parameters estimate 𝜃𝑘 = 𝜃𝑘−1 + 𝐾𝑘[ 𝑦𝑘 − 𝜑𝑘𝜃𝑘−1] 

3-Estimate dispersion 
update 𝑃𝑘 = 𝑃𝑘−1+ (𝐼 − 𝐾𝑘𝜑𝑘) 

4-Covariance matrix             
project ahead 𝑃𝑘+ =  𝑃𝑘 + Q 

III. SIMULATION RESULTS 

In order to verify the performance of the proposed identification algorithm, a voltage controlled synchronous DC–DC buck 
SMPC circuit is implemented in MATLAB/Simulink. The component values for the converter depicted in Fig. 1 are: Vin =10 V, RO 
= 5 Ω, L= 220 μH, C=330 μF, RC =25 mΩ, RL = 63mΩ, RDS(on)= 18 mΩ, the switching frequency and sampling rate are 20 kHz, and 
the sensing gain is 0.5. The output voltage is regulated at 3.3V using digital PID controller (10), designed based on pole placement 
technique. 

 𝐺𝐶(𝑧) =    4.672 − 7.539 𝑧−1  + 3.184 𝑧−2 (1 − 𝑧−1)(1 +  0.374 𝑧−1)  
(8) 

 

In the early stages of the estimation process, no preliminary knowledge of the converter parameters is assumed. The same initial 
values of covariance matrix and parameter vector for both ERLS and KF are selected to be P(0) = 10000 I, and �̂� (0) = 0. A 9 bit 
PRBS signal (a rich frequency excitation signal) is injected into the control signal to enhance the parameter estimation 
performance. To justify the identification results, the discrete transfer function of the average model in (11) is calculated in 
advance, at a sampling time of 50 μs. In line with many other sources of literature, convergence time and accuracy are considered 
to be the important metrics in evaluating the adaptive algorithm performance [2, 4]. 

 𝐺𝑣𝑑  =    
0.2262 +  0.1119 𝑧−2 1 − 1.913 𝑧−1 +  0.946 𝑧−2 

(9) 

 

For the ERLS, the forgetting factor λ= 0.95 is carefully chosen to facilitate a compromise between estimator sensitivity and 
convergence speed. Unlike the preliminarily simulation results presented by the authors in [19], the modified tuning method in (9) 
is adopted in this paper to mitigate the disadvantages of using a trial and error procedure in the KF tuning and the measurement 
noise variance r is set to 0.095. Fig. 2 shows the parameter estimation results obtained using the ERLS identification algorithm and 
KF identification algorithm during the steady state operation. As depicted in Fig. 2, both estimation algorithms rapidly identify the 
transfer function coefficients with final estimation values very close to the average model in (11). However,  the KF estimation  
convergence to steady state is less than 0.5 ms, while the ERLS estimator takes around 1.5 ms to converge to the final values.  
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Fig. 2. On-line parameter estimation results using ERLS and KF. (a) Denominator coefficients. (b) Numerator coefficients. 

To further evaluate the performance of the propsed KF algorithm, a sudden and significant load change is applied at 0.02 s. The 
simulation results, illustrated in Fig.3, indicate that after a sudden change in the load the KF identifies the transfer function 
denominator coefficients accurately with a convergence time less than 1 ms. In contrast, the ERLS estimation exhibits under/over 
shoot before it settles to the final values with a convergence time more than 5 ms. The stability of both identification algorithms is 
evaluated during the absence of the PRBS signal. The estimation results, shown in Fig. 4, demonstrate that the KF estimator has the 
ability to produce a smooth and stable estimation with no effect of the estimator wind up. In contrast, the ERLS suffers from 
estimator the wind up phenomenon as the adaptation gain value increases over time and yields a clear offset in the final estimation 
value.  

 
Fig. 3. On-line parameters estimation during a step load change from 5 Ω to 1 Ω at 0.02s for ERLS and KF 

 
Fig. 4. Estimator win-up effect on ERLS and KF. 

IV. EXPERIMENTAL RESULTS 

To validate the proposed algorithm, experimental verification is conducted on a 5 W synchronous buck converter. Fig.5 shows the 
experimental setup for the proposed real time parameter estimation algorithm. In order to compare the simulation and the 
experimental results, the converter parameters are selected to be the same as those outlined in Section III. In addition to the digital 
controller described in (10), the entire identification process including PRBS generation, filtering, and the adaptive algorithm is 
performed online on a Texas Instruments TMS320F28335 digital signal processor (DSP) platform to validate the proposed 
structure in real-time. This is accomplished using the Embedded Coder Support package in MATLAB/Simulink to generate C code 
for all related blocks in the Simulink model and to run this model in ‘External Mode’. This feature enables the user to tune and 
monitor the algorithm parameters in real time without stopping the application. The obtained real-time results are transferred to 
Simulink via a RS232 communication interface as shown in Fig.5. To demonstrate the previously explained advantages of the KF 
over the ERLS algorithm, the identification process is enabled for 20 ms, while the PRBS signal is injected into the duty cycle for 
10ms only as depicted in Fig.6.  A small amplitude signal is selected for the excitation signal to keep the perturbation within 5% of 
the nominal output voltage during the identification procedure; it then reverts back to normal operation as shown in Fig.6. Before 
real-time implementation, the proposed algorithm is tested off-line to investigate the suitability of the data being used, the selected 
model structure, and the filter type. The logged output voltage and the control signal are both sampled at 20 kHz and exported to 
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Fig. 7. Experimental filtered data sampled at 20 kHz (a) output voltage (zoom-in) (b) duty cycle 

A. ERLS Real-Time Results 

Similar to the simulation procedure, the ERLS with forgetting factor λ= 0.95 is investigated. The online estimation results of the 
unknown parameters of the DC-DC model in (12) are illustrated in Fig. 8. As shown in Fig. 8, the ERLS requires around 5 samples 
(0.25 ms, at sampling time 50µs) to converge to a steady state value for the denominator coefficients (𝑎1, 𝑎2 ) with accuracy range 
±7%, while the numerator taps take a longer time to converge (around 1 ms), and there is a clear offset in the final estimation. The 
limited accuracy of the ERLS estimator during the excitation period can be clearly demonstrated via the estimation error signal, as 
shown in Fig 9.  Consequently, if the estimated coefficients are used for health monitoring purposes, as introduced in [14], 
inaccurate decisions may be taken in terms of predicting the health or age of the circuit components. In comparison with the 
simulation results presented earlier, the estimation accuracy of the ERLS estimator is highly affected by the measurement noise in 
the experimental implementation. To study the impact of the excitation signal on the estimation results, the PRBS signal is actively 
disabled after 10 ms, as shown in Fig. 6. Due to the scaler-forgetting factor used in ERLS, the estimated parameters start to deviate 
from steady state, which agrees with the simulation results in Fig.4. This phenomenon is known as estimator wind-up, where the 
error covariance matrix grows exponentially and yields a high adaptation gain, as applied in the correction step [9]. Therefore, the 
ERLS is not a reliable estimator if a self-tuning controller is desired. Hence, in direct digital control design, such as the pole 
placement approach, the estimation results are fed to the controller directly and can potentially cause the system to be unstable 
since the values of (𝑏1, 𝑏2) are not guaranteed to be accurate.  

B. KF Real-time Results 

In this section, the proposed KF algorithm is evaluated. Similar to ERLS, the poles and zeroes parameters in (11) are compared 
with the average model parameters at a resistive load equal to 5 Ω. In Fig. 9, the parameters a1, a2 converge to steady state values in 
less than 0.15 ms, which is faster than the ERLS method with less over/undershoot and 0.3% estimation error. This confirms the 
simulation result depicted in Fig. 2. In comparison with ERLS, the parameters 𝑏1, 𝑏2 are estimated within a similar period of time, 
but with enhanced accuracy. Importantly, the execution time of the proposed KF, measured in real time using Code Composer 
Studio, is only 3μs longer than the ERLS. Similarly, to ERLS, the stability of the KF is examined when the PRBS signal is disabled. 
As shown in Fig.10 KF has the ability to produce a smooth and stable estimation with no effect of the estimator wind up. Therefore, 
the obtained results can provide a stable self-tuning compensator since the zero coefficients do not fluctuate and stay very close to 
the pre-calculated ones.  In addition, the observed prediction error illustrated in Fig.10 confirms the advantages of the KF over the 
ERLS in terms of accuracy and improved convergence speed for transfer function estimation. The results obtained for both 
investigated algorithms are summarised in Table III, which demonstrates that the KF outperforms ERLS in terms of accuracy and 
convergence time. Only a very small amount of additional execution time is required, due to the tuning step introduced in (9). In 
Table III, the achieved real-time results show that the KF approach outperforms the classical ERLS in terms of accuracy of all 
transfer function coefficients, as well as the minimal convergence time required to reach the steady state. Importantly, in 
comparison to similar tests introduced in [14] and [2], in this paper all system identification steps, including filtering and the 
adaptive algorithm implementation, are performed online without interrupting the normal system operation. Here, the sampling 
frequency is set similar to the converter switching frequency to take one sample of the output voltage and the control signal every 
switching period, while in [14] a slow sampling rate is selected which leads to a very slow convergence time.  Furthermore, the 
impact of the excitation signal on the estimator behaviour is examined here and confirms that the KF approach does not require 
long perturbation periods to achieve accurate and robust estimation results. Therefore, if a similar mapping method to that 
presented in [14] is applied on KF estimation, the values of the converter components such as L,C  can be easily and  accurately 
extracted online.  Even though low computational effort is required in the estimation algorithm proposed in [2], the same 
shortcoming of the ERLS is observed where the numerator parameters are highly effected by measurement noise hence the final 
estimation cannot be used for health monitoring or self-tuning controller design. 
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Fig. 8. The estimation results using ERLS with λ=0.95. (a) Denominator coefficients. (b) Numerator coefficients. 

                
Fig. 9. The estimation error for ERLS during steady state operation. (a) Denominator coefficients. (b) Numerator coefficients. 

    
Fig. 10. The estimation results using KF. (a) Denominator coefficients. (b) Numerator coefficients. 

                   
Fig. 11. The estimation error for KF during steady state operation. (a) Denominator coefficients. (b) Numerator coefficients  
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C. Parameter Estimation During Abrupt Load Change 

In SMPC it is well recognised that the mode of operation can potentially be diverted from continuous conducting mode (CCM) to 
discontinuous conducting (DCM) if a wide load variation is applied, as a result loop stability margins are decreased and the 
converter may exhibit instability upon the mode transition [25]. Traditionally, this phenomenon is treated by designing a 
conservative controller (effectively a worst-case design) to cope with any abrupt changes and ensure the system stability.  

 

Fig. 12. Output voltage recorded on the DSP during a step load change from 5 Ω to 1 Ω at 0.015 s 

Therefore, it is a great benefit if the load value is estimated and the controller is tuned to meet the desired bandwidth and stability 
margins. For this reason, a wide and abrupt load change is applied to further investigate the performance of the proposed self-tuned 
KF. Fig.12 shows the dynamic response of the output voltage when the load is changed from 5 Ω to 1 Ω at 0.015 s. As previously 
confirmed, the KF provide excellent estimation performance without any perturbation in the observed data. This can be seen 
clearly in the recorded output voltage in Fig.12, where no excitation signal is injected. This scenario is deliberately applied, 
because in the case of ERLS the estimated parameters deviate immediately once the PRBS is disabled, so if the load changes after 
this instant the ERLS is unable to detect the new variation and another perturbation period is required to perform the estimation 
process. Therefore, a PRBS signal is injected before the step change applied to investigate the performance of ERLS during load 
variation. On the other hand, the KF estimator stays alert to the situation for a longer period, hence no perturbation is required to 
detect the load change. Fig.13 (a), shows the KF estimation results, with the transfer function poles accurately estimated before and 
after the load change with convergence time less than 1ms.  In contrast, the ERLS estimation has a clear offset during steady state, 
which improves after the load change as illustrated in Fig.13 (b). This behaviour confirms that the ERLS estimator requires a large 
perturbation signal to provide accurate and reliable estimation. It is worth noting that, the numerator parameters are not illustrated 
here due to the small effect of the load change that can be ignored according to the computed transfer function (12). 

 𝐺𝑣𝑑  =    0.2243 𝑧−1  + 0.1062 𝑧−2 1 − 1.814 𝑧−1 +  0.8437 𝑧−2 (10) 

To demonstrate the advantages of using the proposed tuning method, the related adaptation gains of a1 and a2 are recorded in steady 
state and during the load change as illustrated in Fig.14 (a). As stated in (11), each element in the matrix Q is tuned accordingly to 
the contribution of the related parameter vector component in the estimator output (𝜑𝑘�̂�𝑘). Therefore, the assigned Kalman gain 
elements for K1 for a1, and K2 for a2, vary with different rates in the correction step. This yields improved overall tracking 
performance to the newly applied load. This variation is confirmed by referring to (12) and (13), where parameter a1 decreases by 
5.5% and a2 simultaneously decreases by 1% when the load abruptly reduces from 5Ω to 1 Ω. Therefore, the impact of load change 
varies between one coefficient and another in the discrete transfer function. In contrast, the ERLS algorithm react to the load 
change by applying similar magnitude with different directions for both a1 and a2 in the correction step, due to the single forgetting 
factor scheme as shown in Fig.14 (b). Thus, the KF approach is considered to be the ideal candidate in this case to provide reliable 
estimation for time varying parameters; such as load change which is a common scenario in power converter applications. 
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