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Abstract

Robust object tracking is a challenging task in comput-

er vision. To better solve the partial occlusion issue, part-

based methods are widely used in visual object trackers.

However, due to the complicated online training and updat-

ing process, most of these part-based trackers cannot run

in real-time. Correlation filters have been used in tracking

tasks recently because of the high efficiency. However, the

conventional correlation filter based trackers cannot deal

with occlusion. Furthermore, most correlation filter based

trackers fix the scale and rotation of the target which makes

the trackers unreliable in long-term tracking tasks. In this

paper, we propose a novel tracking method which track ob-

jects based on parts with multiple correlation filters. Our

method can run in real-time. Additionally, the Bayesian

inference framework and a structural constraint mask are

adopted to enable our tracker to be robust to various ap-

pearance changes. Extensive experiments have been done

to prove the effectiveness of our method.

1. Introduction

Visual tracking is an important technique in computer vi-

sion with various applications such as security and surveil-

lance, human computer interaction and auto-control sys-

tems [25, 43, 50]. With the development of single object

tracking methods, most of the tracking tasks in simple en-

vironment with slow motion and slight occlusion can be

solved well by current algorithms. However, in more com-

plicated situations, more robust tracking methods are re-

quired to realize accurate and real-time tracking.

Current tracking algorithms are classified as either gen-

erative or discriminative methods. Generative methods treat

tracking problem as searching for the regions which are the

most similar to the tracked targets [3, 4, 6, 22, 24, 26–

28, 46, 52]. The targets are often represented by a set of

basis vectors from a subspace (or a series of templates). D-

ifferent from generative trackers, discriminative approaches

cast tracking as a classification problem that distinguishes

the tracked targets from the backgrounds [2, 29, 42, 56].

It employs the information from both the target and back-

ground. For example, Avidan [3] proposed a strong classi-

fier based on a set of weak classifiers to do ensemble track-

ing. In [4], Babenko et al. used an online multiple instance

learning which puts all ambiguous positive and negative

samples into bags to learn a discriminative model for track-

ing. Kalal et al. [21] proposed a P-N learning algorithm

to learn tracking classifiers from positive and negative sam-

ples. In [16], Hare et al. used an online structured output

support vector machine to adaptively track the targets. This

category of approach is termed tracking-by-detection. Re-

cently, correlation filter based tracking-by-detection meth-

ods have been proven to be able to achieve fairly high speed

and robust tracking performance in relatively simple envi-

ronments [7, 17].

Recently part-based tracking methods [1, 9, 19, 34, 37,

47] become more popular partially because of their favor-

able property of robustness against partial occlusion. They

model the object appearance based on multiple parts of the

target. Obviously, when the target is partially occluded,

remaining visible parts can still provide reliable cues for

tracking. Most of these methods can be viewed as track-

ing by part-based object matching over time in a video se-

quence. Because computational complexity of these meth-

ods is high, it is difficult to realize real-time tracking.

In this paper, We aim to build a real-time part-based vi-

sual object tracker which is able to handle partial occlusion

and other challenging factors. Our key idea is to adopt the

correlation filters as part classifiers. Hence, the part evalu-

ation speed can be fast. However, it becomes very critical

to combine the tracking scores of different parts in a prop-

er way. If some parts are occluded, and we still assign big

weights to them, then there will be tracking errors. Our

contribution is to develop new criteria to measure the per-

formance of different parts, and assign proper weights to

them. Specifically, we propose to use Smooth Constrain-

t of Confidence Maps as a criterion to measure how likely

a part is occluded. The experiments proved the effective-

ness of the SCCM criterion. Besides, we developed the s-
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Figure 1: Each part tracker independently tracks the corresponding part and outputs a response map. The separate response

maps are combined by Eq. 4. We track the whole target based on the joint confidence map in the Bayesian inference

framework. When computing the likelihood, sampling candidates are shown as yellow rectangles. The solid yellow rectangle

shows the tracking result on the confidence map with the maximum likelihood.

patial layout constraint method to: 1) effectively suppress

the noise caused by combining of individual parts, 2) es-

timate the correct size of bounding box when the target is

occluded.

2. Related work

Correlation filter based tracking methods

Correlation filter based trackers have been proven to be

competitive with far more complicated tracking methods

[7, 12, 17, 33]. In the correlation filter based trackers, the

target is initially selected based on a small tracking win-

dow centered on the object in the first frame. The target is

tracked by correlating the filter over a larger search window

in next frame; the location with the maximum value in the

correlation response indicates the new location of the target.

The filter (also called classifier when it is used for tracking)

is updated online based on the new location.

Particle filter based tracking methods Visual tracking

can be considered as an estimation of the state for a time

series state space model [8, 40]. The problem can be formu-

lated in probabilistic terms. Particle filtering is a technique

for implementing a Bayesian inference filter by Monte Car-

lo simulation, which is popular in visual tracking. It re-

cursively constructs the posterior probability density func-

tion of the state space using Monte Carlo integration. Be-

cause it is computationally efficient and insensitive to local

minima, particle filters have been widely used as tracking

framework. Based on the particle filter framework, Ross

et al. [34] incrementally learned the low dimensional sub-

space representation for target to adapt to the changes of

target appearance. In [31], a series of target trivial tem-

plates were used to model the tracked target with the spar-

sity constraints. Jia et al. [20] proposed a structural local

sparse coding model for the Bayesian inference based track-

ing method. In our method, the joint confidence maps are

used in the Bayesian inference framework to infer the candi-

date with maximum posterior probability. To better enforce

the spatial layout of parts, a structural constraint mask is

adopted to calculate the likelihood of the observation and

state.

Object tracking with parts

To handle the occlusion, many trackers divide the en-

tire targets into separate parts [10, 11, 15, 18, 30, 38, 39,

41, 45, 48, 51]. In [36], the foreground shape was mod-

elled as a small number of rectangular blocks. The algo-

rithm tracked objects by matching the intensity histogram-

s, and updated the shape by adjusting small blocks of the

tracked window. Kwon et al. [23] presented a local patch-

based appearance model which was updated online. In [54],

Zhang et al. tracked targets by parts matching among mul-

tiple frames. Another work similar to ours is [49], in which

the part-based tracking problem was solved by latent struc-

tured learning. However, the computational complexity of

these methods is high; consequently, it is difficult for multi-

ple part based trackers to run in real-time.

3. Part-based tracker via correlation filter

We aim to build a real-time part-based tracking system

which is robust to occlusion and deformation. As intro-

duced above, to realize efficient tracking in the real world,

complicated tracking systems cannot be extended to multi-

ple parts, since the computational complexity is high. Re-

cently, the tracking system with the Kernelized Correla-

tion Filter (KCF) [17] achieves very good performance with

high speed (360 frames per second). Due to the competitive

performance and efficiency, we develop our method based

on the KCF tracker. Our key idea is to employ the fast KCF

classifier as the part classifier, and develop a new method to



adaptively combine the part classification scores and adap-

tively update the model. Furthermore, to effectively solve

the scale, rotation, skew, etc. problems for real-time track-

er, a Bayesian inference framework is employed to achieve

more robust performance.

3.1. The KCF tracker

The Convolution Theorem states that in the Fourier do-

main, the convolution of two patches can be computed

by element-wise product, which is much more efficient.

Hence, for the correlation filter based trackers, correlation

is computed in the Fourier domain through Fast Fourier

Transform (FFT); and the correlation response can be trans-

formed back into the spatial domain using the inverse FFT.

Although the correlation filter based trackers have high ef-

ficiency, because they model the holistic appearance of the

target to train and update their models, the existing correla-

tion filter based trackers cannot handle the occlusion prob-

lem well. Once the targets are occluded heavily, the trackers

may fail to relocate the objects.

In this section, we briefly introduce the KCF tracking

method. Readers may refer to [17] for more details. The

classifier of KCF is trained using an image patch x of size

W × H. The training image patch is centred around the

target. Taking advantages of the cyclic property and ap-

propriate padding, KCF considers all cyclic shifts xw,h,

(w, h) ∈ {0, ...,W − 1} × {0, ...,H − 1} as the training

examples for the classifier. The regression targets y follow

a Gaussian function, which takes a value of 1 for a centered

target, and smoothly decays to 0 for any other shifts, ie.

y(w, h) is the label of xw,h.

The goal of training is to find a function f(z) = wT z that

minimizes the squared error over samples xw,h and their

regression targets y(w, h),

min
w

∑

w,h

|〈φ(xw,h), w〉 − y(w, h)|2 + λ‖w‖2 (1)

where φ represents the mapping to the Hilbert space in-

duced by the kernel κ. The inner product of x and x′ is

computed as 〈φ(x), φ(x′)〉 = κ(x, x′). λ is a parameter for

the regularization term.

After mapping the inputs of a linear problem to a non-

linear feature-space φ(x), the solution w can be expressed

as w =
∑

w,h α(w, h)φ(xw,h).

α = F−1

(

F(y)

F(kx) + λ

)

(2)

where F and F−1 denote the Fourier transform and its in-

verse, respectively; (kx) = κ(xw,h, x). Note that the vector

α contains all the α(w, h) coefficients. The target appear-

ance x̂ is learned over time. In the KCF tracker, the model

consists of the learned target appearance x̂ and the trans-

formed classifier coefficients F(α).

In the tracking, a patch z with the same size of x is

cropped out in the new frame. The confidence score is cal-

culated as

f̂(z) = F−1(F(kz)⊙F(α)) (3)

where ⊙ is the element-wise product; (kz) = κ(zw,h, x̂). x̂
denotes the learned target appearance.

3.2. Adaptive weighting for part-based tracker

In visual tracking, partial occlusion is one of the main

challenging factors that limit the performance. Intuitive-

ly, we can divide the target into small parts and track these

parts independently. When some of the parts are occlud-

ed or deform, we can still locate the entire target correctly

relying on the other parts. However, multi-part tracking is

usually slow, because of the complicated training and updat-

ing processes. In this paper, we aim to develop a real-time

part-based tracking system that is robust to occlusion and

deformation.

The location of the target object is given in the 1st frame

of the video, and the tracker is then required to track the

object (by predicting a bounding box containing the object)

from the 2nd frame to the end of the video. The target is di-

vided into several parts. For each part of the object we run

an independent KCF tracker that outputs a response map

(confidence map). The response map is the correlation re-

sponse used to locate the position of target part. The maps

are then combined to form a single confidence map for the

whole target that is used in the Bayesian inference frame-

work.

The difficulty in this method is how to combine the con-

fidence maps of different part trackers. In different frames,

different parts of targets may suffer different appearance

changes, illumination variation or occlusion. If we sim-

ply combine confidence maps with the same weight, the

response of falsely tracked parts may be unfairly empha-

sized. Given the detection result of each part tracker, the

contribution made for the joint confidence map should be

different from each part, ie. the response of more reliable

parts should be given larger weights. Through adaptively

weighting each part response, the joint confidence map puts

more emphasis on reliable parts and eliminates the clutters

caused by drifting parts. For correlation filter based classi-

fier, the peak-to-sidelobe ratio (PSR) (Eq. 6) can be used to

quantify the sharpness of the correlation peak. The higher

PSR value means more confident detection (in tracking sys-

tem, it means the matching score between current frame and

previous frames is high). Therefore, the PSR can be adopt-

ed to weight the confidence maps of parts under different

situations. In addition, for tracking problems, the tempo-

ral smoothness property is helpful for detecting whether the

target is occluded. Taking this observation into considera-

tion and as validated from our experiments, we propose that



the smooth constraint of confidences maps should be con-

sidered for the weight parameters. As shown in Fig. 2, the

responses of occluded parts should be combined with small-

er weights. We define the smooth constraint of confidence

maps (SCCM) in Eq. 7.

The joint confidence map at the t-th frame is defined as:

Ct =
N
∑

i=1

wt
i f̂

t
p(i), (4)

where f̂ t
p(i) is the confidence map (Eq. 3) of the i-th part at

time t. p(i) denotes the relative position of part response in

the joint confidence map Ct; it is determined by the maxi-

mum value of the part confidence map. N is the number of

parts used to divide the target. wt
i is the weight parameter

of corresponding part.

wt
i = PSRi + η ·

1

SCCMi

(5)

PSRi =
max

(

f̂ t
p(i)

)

− μi

σi

. (6)

SCCMi =
∥

∥

∥
f̂ t
p(i) − f̂ t−1

p(i)⊕∆
∥

∥

∥

2

2
(7)

where, μi and σi are the mean and the standard deviation of

the i-th confidence map respectively. η is the trade-off be-

tween correlation sharpness and smoothness of confidence

maps; in our experiments, it is simply set as 1. ⊕ means

a shift operation of the confidence map, and ∆ denotes the

corresponding shift of maximum value in confidence maps

from frame t− 1 to t. f̂ t−1
p(i) and f̂ t

p(i) denote the individual

response maps of part i, as shown at the right of Fig. 2(a)

and 2(b). Because the location of part may shift in corre-

sponding response maps, ∆ is considered when calculating

the smoothness of them in consecutive frames. As shown

in Fig. 2(b), when the target part is occluded by the leaf,

the PSR value is similar to that of the correctly tracked part.

In this case, the term of SCCM is required to suppress the

contribution of responses from the occluded parts.

3.3. Adaptive classifier updating

In tracking, the object appearance will change because of

a number of factors such as illumination and pose changes.

Hence it is necessary to update the part classifiers over time.

In the KCF tracker, the model consists of the learned tar-

get appearance and the transformed classifier coefficients.

They are computed by only taking the appearance of current

appearance into account. The tracker then employs an ad-

hoc method of updating the classifier coefficients by simple

linear interpolation: F(α)
t
= (1 − γ)F(α)

t−1
+ γF(α),

where F(α) is the classifier coefficients and γ is a learning

rate parameter. KCF used a fix learning rate, which mean-

s that the appearance and correlation filter will be updated

#27

(a)

#28

(b)

Figure 2: Tracking target from frame #27 and #28, in which

two parts are marked in bright and dark red bounding box-

es respectively. The corresponding confidence maps of two

part trackers are shown at the right with corresponding color

bounding boxes. For the bright red part, it is tracked correct-

ly between the consecutive frames. For the dark red part, it

drifts in (b) because of the occlusion. To better evaluate the

joint confidence map, the response of drifting part should

contribute less. If we only consider PSR to weight the con-

fidence maps, bright red and dark red parts will contribute

equally. Different from the dark red part, the confidence

maps of the bright red part in (a) and (b) have the smooth

property. Hence, we should consider the smooth constraint

to make weight selection more robust.

without adaptation to specific video frames. Once the track-

er loses the object, the whole model will be contaminated in

the remaining frames. We tackle this problem by adaptively

updating the tracking model.

It is apparent that the model of an occluded part should

not be updated to avoid introducing errors. Similar to the

weight parameters discussed in section 3.2, a threshold is

used to adaptively update each part tracker separately. The

learning rate for the model is set proportional to the weight

value (Eq. 5), ie. the part trackers with higher detection

scores should be updated more because they are seen as

more robust tracking parts. Therefore the update scheme

is defined as:

F(α)ti =
{

(1− βwt
i)F(α)t−1

i + βwt
iF(α)i if wt

i > threshold
F(α)t−1

i else
(8)

x̂t
i =

{

(1− βwt
i)x̂

t−1
i + βwt

ixi if wt
i > threshold

x̂t−1
i else

(9)

Contrary to traditional correlation filter based trackers, due



to the adaptive updating scheme, even when all the parts

of target are occluded at one frame, our method can still

maintain the accuracy of the classifier by using classifiers of

previous frames. Hence, it is able to relocate the occluded

target when it appears in the following frames.

For KCF tracker, when the target is tracked under normal

conditions, the PSR typically ranges between 8.0 and 15.0,

which indicates very strong peaks. We found that when PSR

drops to around 5.0, it is an indication that the detection of

corresponding part is not reliable. When the value of SCCM

is larger than 0.5, it means that the parts may suffer heavy

occlusion. We set the threshold in Eq. 8 and Eq. 9 as 7. The

other learning rate β is fixed as 0.01.

Algorithm 1 Multiple part tracking

1: Inputs: t-th frame Ft, the previous tracking state

st−1;

2: Calculate the confidence map of each part;

3: Combine the confidence maps based on Eq. (4);

4: Apply the affine transformation on st−1 to obtain a

number of tracking states stj ;

5: Calculate the posterior probability p(stj |O
t ) according

to Eq. (11) and Eq. (13);

6: Predict the tracking state by ŝt = argmax
st
j

p(stj |O
t );

7: if wt
i > threshold Eq. (8, 9) then

8: Update the model;

9: else

10: Keep the model unchanged;

11: end if

12: Output:

13: Find the location of each part p(i).
14: Find the target location ŝt on confidence map and

the corresponding position on the video frame;

3.4. Tracking based on confidence map

Based on parts, a naive method to determine the posi-

tion of the whole target is to compute the geometric cen-

ter based on the tracking results of all the parts. However,

due to the heavy occlusion and shape deformation, some of

the part trackers may drift and the final bounding box may

not be able to locate the target correctly. In [4, 16], dense

sampling methods have been adopted to search for the s-

tate of the target objects. However, dense sampling requires

high computational load and reduces the speed of the whole

tracking system. In this paper, we carry out the tracking

problem as a Bayesian inference task.

Let st denote the state variable describing the affine mo-

tion parameters of an object at the time t (e.g. location or

motion parameters) and define Ot = [o1, o2, · · · , ot] as a

set of observations with respect to joint confidence maps.

The optimal state ŝt is computed by the maximum a poste-

(a)

(b)

(c)

(d)

(e)

Figure 3: (a) and (b) are the response maps of two part

trackers. (c) is the summation of (a) and (b). (d) is the

structural constraint mask to enforce the spatial layout of

individual parts. (e) is the confidence map used for state

parameter searching after convolving with the mask.

rior (MAP) estimation

ŝt = argmax
st
j

p(stj
∣

∣Ot ) (10)

where stj is the state of the j-th sample. The posterior prob-

ability is calculated recursively by the Bayesian theorem,

p(st|Ot) ∝ p(ot|st)

∫

p(st|st−1)p(st−1|Ot−1)dst−1

(11)

The p(ot|st) is the observation model.

The dynamics between states in this space is usually

modelled by the Brownian motion. Each parameter in st

is modelled independently by a Gaussian distribution given

its counterpart in st−1.

p(st|st−1) = N (st, s1:t−1,Ψ) (12)

where Ψ is a diagonal covariance matrix whose elements

are the corresponding variances of affine parameters. The

observation model p(ot|st) denotes the likelihood of the ob-

servation ot at state st. Maximizing the posterior in Eq. 10

is equivalent to maximizing the likelihood p(ot|st). Thus,

the likelihood calculation is one of the most important fac-

tors in our tracker.

In the traditional Bayesian inference based tracking

methods, because more complicated features are adopted

to represent the objects, a set of basis vectors or templates

need to be built to calculate the likelihood. However, we are

applying the Bayesian inference framework into confidence

maps. We can simply calculate the sum of confidence scores

in the candidate box as the likelihood value. In this process,

we should enforce the spatial constraint: the summation be-

tween neighbouring part responses should not influence the

likelihood calculation. Hence, we introduce a spatial layout



constraint mask as shown in Fig. 3(d). By applying this

mask, we enforce the structural relationships among parts.

In our method, the observation model is constructed by

p(ot|st) =
1

|M t|

∑

Ct(st)⊙M t (13)

where ⊙ is the element-wise production. M t is a spatial

layout constraint mask built by N cosine windows which

gradually reduce the pixel values near the edge to zero. The

relative positions of these cosine windows are determined

by the maximum value of corresponding part response map-

s. The size of cosine window is determined by the size of

tracking part. |M t| is the number of pixels within the mask.

Ct(st) means a candidate sample in the joint confidence

map (the yellow rectangles in Fig. 1(c)). The summation

is based on all the pixels within the candidate window. Be-

sides the effect on spatial layout enforcement, by using such

a structural constraint mask, we can make our method ro-

bust to the response noise of correlation filters.

The baseline method KCF used a fixed size of bound-

ing box, which might lead to drifting when the scale of the

object changed significantly. Benefiting from the multi-part

scheme and Bayesian framework, our tracker is capable of

solving the challenges of scale changes of targets. Fig. 4

shows one example of scale changes. Although the size of

individual part trackers is fixed, the size of the whole tar-

get is determined through the Bayesian framework which is

able to solve the challenges such as scale change, rotation

and skew.

Ideally, the individual parts should stay close to each oth-

er to cover the entire target. However, in some challenging

situations, such as significant appearance and illumination

changes, some part trackers may move far away from the

target. When this happens, we relocate the drifting parts

using the correctly tracked parts based on spatial layout.

4. Experiments

To evaluate our proposed tracker, we compile a set of 16

challenging tracking sequences. These videos are recorded

in indoor and outdoor environments and have variations of

occlusion, illumination, pose changes , etc. We compared

the proposed algorithm with thirteen state-of-the-art visu-

al trackers: Frag[1], TLD [21], IVT [34], DFT [35], ORIA

[44], LOT [32], CXT [13], L1apg [5], MTT [53], ASLA

[20], MIL [4], Struck [16] and KCF [17]. All our experi-

ments are performed using MATLAB R2012b on a 3.2 GHZ

Intel Core i5 PC with 16 GB RAM. We use the source codes

provided by the authors. The parameters of these trackers

are adjusted to show the best tracking performance.

The size of part is selected by experimental validation on

a number of sequences. We find when the size is between

1/4 and 1/6 of the object size,the results do not change

(c)

(a)

(d)

(b)

#377

Figure 4: (a) The target is near the camera and caught with

a larger bounding box. (b)The target is far away from the

camera with a small bounding box. (c) The corresponding

joint confidence map of (a). (d) The corresponding join-

t confidence map of (b). Because of the occlusion, the

responses of bottom part are suppressed by the weighting

method

much. However, when it is too big or too small, the results

can be worse because a part should be at the right size to

contain enough information while to be robust to occlusion.

We also find the number of part doesn’t affect the result-

s much when it is larger than 5. We use 5 parts and 400

candidate samples.

4.1. Speed analysis

The major computational cost of the proposed method

is KCF tracking for the N parts and candidates sampling.

When using 5 parts and 400 sampled windows, the speed of

the proposed method is 30 frames per second without code

optimization. We compare the speed of our method with

several part-based trackers [10, 15, 18, 36, 49, 55]. The

running speed of trackers [15], [10] and [36] on the same

hardware mentioned above is 10 FPS, 2 FPS and 3.7 FPS

respectively. We didn’t find the code of the other 3 tracker-

s. To fairly compare with them, we have tested our method

on the same hardware of [18] [55] (DualCore 2.7 GHz,4GB

RAM) and [49] (Core2 2.6 GHz,4GB RAM); the average

speed on them is 20 and 22 FPS respectively, which is faster

than the corresponding ones. It can be observed that our al-

gorithm is faster than all of these part-based trackers. More

speed comparison with other state-of-the-art trackers is list-

ed at the end of Table 1.

4.2. Quantitative evaluation

To assess the performance of the proposed tracker, two

criteria, the center location error as well as the overlap rate,



Table 1: Average center location error (in pixels). The best two results are shown in red and blue fonts. The average fps

follows in the end.

Frag TLD IVT DFT ORIA LOT CXT L1apg MTT ASLA MIL Struck KCF Ours

car4 131.5 12.8 2.9 61.9 37.4 67.3 58.1 16.4 2.0 4.3 50.8 8.7 19.1 2.0

girl 20.7 9.8 22.5 21.6 27.6 22.8 11.0 2.8 3.9 2.7 32.0 2.6 19.3 2.8

coke 124.8 25.1 83.0 7.2 50.0 69.4 25.7 50.4 30.0 60.2 21.0 12.1 13.6 9.7

deer 63.9 25.7 107.5 142.4 149.2 74.4 9.0 10.2 9.2 8.0 66.5 7.5 21.6 4.5

tiger1 74.3 6.4 106.6 6.5 87.0 31.4 45.4 58.4 64.4 55.9 15.0 12.8 69.9 5.5

couple 8.8 2.5 123.5 108.6 64.6 37.1 41.8 28.4 27.8 73.4 34.5 11.3 74.6 7.2

singer1 22.6 8.0 11.3 18.8 8.0 41.4 11.4 7.1 1.4 5.3 15.4 14.5 14.0 5.0

singer2 88.6 58.3 175.5 21.8 124.0 76.8 63.6 80.9 89.7 75.3 22.5 15.3 105.5 12.5

shaking 192.1 37.1 85.7 26.3 28.4 82.6 129.2 109.8 97.9 22.4 24.0 30.7 17.2 5.6

carScale 19.7 22.6 11.9 75.8 7.9 31.2 24.5 79.8 87.6 24.6 33.5 36.4 83.0 7.5

football 7.4 11.2 14.3 9.3 13.6 6.6 12.8 12.1 6.5 6.1 12.1 17.3 16.2 4.8

football1 15.7 45.4 24.5 2.0 63.8 6.8 2.6 9.2 12.7 12.2 5.6 5.4 16.5 2.5

walking2 57.5 44.6 2.5 29.1 20.0 64.9 34.7 5.1 4.0 37.4 35.6 11.2 17.9 3.1

sylvester 23.8 5.9 40.7 15.9 13.3 16.8 20.5 7.4 12.2 14.6 11.0 7.8 10.2 5.6

freeman1 10.1 39.7 11.6 10.4 96.1 86.9 26.8 62.4 117.8 25.7 11.2 14.3 125.5 10.0

freeman3 40.5 29.3 35.8 32.6 39.3 40.5 3.6 33.1 15.6 3.2 87.6 16.8 53.9 3.0

Speed 6 fps 28 fps 16 fps 13 fps 9 fps 1 fps 15 fps 2 fps 1 fps 2 fps 28 fps 15 fps 360fps 30 fps

Table 2: Average overlap rate(%). The best two results are shown in red and blue fonts.

Frag TLD IVT DFT ORIA LOT CXT L1apg MTT ASLA MIL Struck KCF Ours

car4 22 63 86 25 23 34 31 70 80 89 26 49 47 90

girl 45 57 17 28 24 42 55 73 66 71 40 79 57 80

coke 4 40 12 61 19 32 42 17 44 17 55 67 57 72

deer 17 60 22 26 24 20 70 60 61 73 21 74 75 76

tiger1 26 70 10 53 13 14 32 31 26 29 12 70 46 65

couple 57 77 7 8 4 45 48 47 49 28 50 54 28 68

singer1 34 73 66 35 65 19 49 28 34 79 36 36 36 75

singer2 20 22 4 63 13 26 17 24 34 34 51 24 24 82

shaking 8 39 13 64 44 13 12 28 34 46 43 35 58 72

carScale 42 45 63 41 66 35 68 50 49 61 41 41 41 70

football 70 56 56 66 51 66 54 68 71 57 59 53 55 72

football1 36 38 56 87 10 54 76 56 56 49 66 67 46 78

walking2 27 31 80 40 45 34 37 76 79 37 28 51 46 82

sylvester 71 67 52 60 65 57 63 55 65 59 53 58 60 71

freeman1 37 28 43 39 29 20 34 20 21 27 34 34 24 47

freeman3 32 44 39 31 36 12 71 35 46 75 21 26 30 82

are employed in our paper. A smaller average error or a

bigger overlap rate means a more accurate result. Given

the tracking result of each frame RT and the corresponding

ground truth RG, we can get the overlap rate by the PAS-

CAL VOC [14] criterion, score = area(RT∩RG)
area(RT∪RG) . Table 1

and 2 report the quantitative comparison results respective-

ly.

From Table 1 and 2, we can see clearly that our proposed

method is comparable to other state-of-the-art trackers, es-

pecially when there is significant appearance changes and

occlusion. Due to the limitation of pages, we compare our

method with KCF and Struck on the remaining sequences

of [43] in Table 3.

4.3. Qualitative evaluation

We also plot the results of Frag, TLD, IVT, DFT, ORI-

A, LOT, CXT, L1apg, MTT, ASLA, MIL, Struck and KCF

trackers for qualitative comparison.

As an example of occlusion, the Walking2 sequence is

captured in the shopping center with occlusion caused by a

man. When the man appears in the video and occludes the

target, KCF, MIL, CXT, TLD, ASLA and LOT start track-

ing the man instead of the target woman. L1apg, MTT, IVT

and our method handle the problem well. Another exam-

ple of occlusion is the Tiger1 sequence, all other trackers

fail to track the tiger at frame 320 as it is partially occluded

by the leaves. For the other sequences with occlusion such

as Girl, Coke, Football and Football1, our method preforms

reliably through the entire sequence. This can be attributed

to the multiple part and adaptive updating schemes. When

the target is partially occluded, the trackers of visible parts

still work robustly. Once the occlusion disappears, because

of the adaptive updating method, the classifiers of all the

parts are able to relocate the target in the following frames.

In the sequences of Car4, CarScale, Singer1, Singer2,

Freefman1 and Freeman3, the main challenge is the signif-

icant scale change. From Fig. 5(j), we can see that MTT,

LOT, DFT, IVT and KCF failed to locate the car when it

moves closer to the camera. However, benefiting from the

multi-part and Bayesian framework, the proposed method

adapts to the scale change and covers the car correctly till

the end. Similar to the Car4 sequence, when the car drives

far away from the camera, the scale of target decreases. Al-

though the bounding box of KFC method still covers the



Table 3: Average center location error comparison with KCF and Struck.

Basketball Bolt Boy Cardark Cross David1 David2 David3 Dog Doll Dudek Faceocc1 Faceocc2 Fish Fleetface Freeman4 Ironman

KCF 6.5 9.4 12.1 3.2 9 17.6 25.6 56.1 3.8 44.7 13.4 11.9 5.9 12.5 25.6 78.9 66.7

Struck 18.3 28.8 3.8 5.2 2.8 12.3 11.6 36.5 5.7 8.9 11.4 18.8 6 9 23 48.7 80.3

Our 6.3 8.2 3.5 3.1 7.6 8.5 10.3 16.4 4.2 8.5 10.9 10.8 5 8.7 8.5 20.1 73

Jogging Jumping Lemming Liquor Matrix Mhyang Motor MntBike Skating1 Skiing Soccer Subway Suv Tiger2 Trellis Walking Woman

KCF 64.7 9.9 24.2 36.6 56.3 20.6 61.1 6.5 7.8 75.6 69.1 64.4 73.2 59.6 23.5 7.2 37.3

Struck 77.7 6.5 37.8 91 36.5 24.4 85.7 8.6 9 51.9 10.3 4.5 49.8 21.6 13.5 4.6 4.2

Our 14.6 7 22.4 15.6 26 17.3 67.8 6.5 7.9 86.2 55.6 4.3 9 12.3 10.6 5.3 4.1

(a) Car4 (b) Girl (c) Coke (d) Deer

(e) Tiger (f) Couple (g) Singer1 (h) Singer2

(i) Shaking (j) CarScale (k) Football (l) Football1

(m) Walking2 (n) Sylvester (o) Freeman1 (p) Freeman3

Figure 5: Comparison of our approach with state-of-the-art trackers in challenging situations.

target, because of the fixed scale size, the center location

errors increase for the rest of the sequence. The proposed

tracker handle the scale changes well.

In the Couple sequence, two people are tracked outdoor,

which makes the appearance of target change significantly

when the view is changed (as shown in Fig. 5(f)). The

traditional KCF method failed at the beginning of the video.

However, our part-based method treats the entire target as

separate parts and succeeds to locate the target though parts.

Frag and TLD also work well on this sequence. For the

other sequences with illumination and fast movement, the

proposed method also achieves better results and covers the

target more correctly.

5. Conclusion

Based on the framework of correlation filter tracker and

Bayesian inference, we developed a real-time part-based

tracker with improved tracking performance. By using the

adaptive weighting, updating and structural masking meth-

ods, our tracker is robust to occlusion, scale and appearance

changes. Extensive experiments have been done to verify

the reliability of our proposed method.
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