
Real-time Path Planning for Virtual Agents in Dynamic Environments

Avneesh Sud Erik Andersen Sean Curtis Ming Lin Dinesh Manocha

{sud,andersen,seanc,lin,dm}@cs.unc.edu

Department of Computer Science, University of North Carolina at Chapel Hill

ABSTRACT

We present a novel approach for real-time path planning of mul-
tiple virtual agents in complex dynamic scenes. We introduce a
new data structure, Multi-agent Navigation Graph (MaNG), which
is constructed from the first- and second-order Voronoi diagrams.
The MaNG is used to perform route planning and proximity com-
putations for each agent in real time. We compute the MaNG using
graphics hardware and present culling techniques to accelerate the
computation. We also address undersampling issues for accurate
computation. Our algorithm is used for real-time multi-agent plan-
ning in pursuit-evasion and crowd simulation scenarios consisting
of hundreds of moving agents, each with a distinct goal.

Keywords: crowd simulation, Voronoi diagram, motion planning.

Index Terms: I.3.5 [Computing Methodologies]: Computa-
tional Geometry and Object Modeling—Geometric algorithms;
I.3.7 [Computing Methodologies]: Three-Dimensional Graphics
and Realism—Animation, virtual reality

1 INTRODUCTION

Crowds, ubiquitous in the real world from groups of humans to
schools of fish, are vital features to model in a virtual environment.
Realistic simulation of virtual crowds have diverse applications in
architecture design, emergency evacuation, urban planning, person-
nel training, education and entertainment. Existing work in this area
can be broadly classified into agent-based methods that focus more
on individual behavior, or crowd simulations that aim to exhibit
emergent phenomena of the groups.

In this paper, we address the problem of collision-free path compu-
tation for agents moving in a complex virtual environment. Since
individuals constantly adjust their behavior according to dynamic
factors (e.g. another approaching individual) in the environment,
agent-based techniques that focus on modeling individual behav-
iors and intents offer many attractive benefits. They often result in
more realistic and detailed simulations. One of the key challenges
in a large-scale agent-based simulation is global path planning for
each virtual agent. The path planning problem can become very
challenging for real-time applications with a large group of moving
virtual characters, as each character is a dynamic obstacle for other
agents. Many prior techniques are either restricted to static envi-
ronments or perform local collision avoidance computations. The
latter can result in unnatural behavior or “getting stuck” in local
minima. These problems tend to be more visible in a dynamically
changing scene with multiple moving virtual agents.

Main Results: In this paper, we present a novel, real-time al-
gorithm for path planning of multiple virtual agents in a dynamic
environment. We introduce a new data structure called “multi-agent

navigation graph” or MaNG and compute it efficiently using GPU-
accelerated discrete Voronoi diagrams. Voronoi diagrams have been
widely used for path planning computations in static environments
[6, 20] and we extend these approaches to dynamic environments.

Voronoi diagrams encode the connectivity of the space and provide
a path of maximal clearance for a robot from other obstacles. In
order to use them for multiple moving agents in a dynamic scene,
prior approaches compute the Voronoi diagram for each agent sep-
arately by treating the other agents and the environment as obsta-
cles. This approach can become very costly as the number of virtual
agents increases. Instead, we compute the second order Voronoi
diagram of all the obstacles and agents, and show that the second
order Voronoi diagram provides pairwise proximity information for
all the agents simultaneously. Therefore, we combine the first and
second order Voronoi graphs to compute the MaNG for global path
planning of multiple virtual agents.

The MaNG computes paths of maximal clearance for a group of
moving agents with different goals simultaneously and does not
require a separate path planning data structure for each virtual
agent. Furthermore, we compute a discrete approximation to this
graph structure by using the rasterization hardware and propose an
adaptive culling technique to accelerate the computation. We also
address the undersampling issues that arise due to discretization.
Some of our key results include:

1. A new global data structure, the “multi-agent navigation
graph” (MaNG) for parallel computation of maximal clear-
ance paths among multiple virtual agents moving indepen-
dently;

2. Interactive global path planning and local collision avoidance
for multiple virtual agents, each with possibly different goals,
in a complex virtual environment;

3. A fast two-pass algorithm with adaptive culling techniques for
computing a discrete MaNG using GPUs;

4. Resolving undersampling issues in discrete graph computa-
tion.

The resulting technique is scalable for global path planning of many
dynamic agents in a complex virtual world, not necessarily mov-
ing in groups. Although our approach is specifically well suited
for simulating multiple virtual agents with distinct intentions, it
can also be used in conjunction with a crowd simulation. We
have demonstrated our algorithm on two challenging scenarios: a
pursuit-evasion game of many fruit pickers chased by farmers and
crowd simulation. In both these environments, our algorithm is able
to perform real-time global path planning and collision avoidance
simultaneously for hundreds of virtual agents with distinct goals.

Organization: The rest of the paper is organized as follows. Sec-
tion 2 reviews prior literature in related areas. In Section 3, we
define our notation and give an overview of our approach. We in-
troduce our data structure, MaNG, and show how it can be used for
path planning of multiple agents in Section 4. Section 5 describes
our efficient algorithm to compute the MaNG in real-time using
GPUs. We describe the implementation and highlight two applica-
tions of our planning algorithm to complex virtual environments in
Section 6, and analyze the algorithm performance in Section 7.

2 RELATED WORK

In this section, we briefly survey related work on multi-agent sim-
ulation and Voronoi diagrams for path planning.

2.1 Multiple Agent Simulation

Agent-based methods, such as the seminal work of Reynolds [28],
generate fast, simple local rules that can create visually plausible
flocking behavior. Numerous extensions that account for social
forces [7], psychological models [26], directional preferences [34],
sociological factors [23], etc. have been proposed. Interesting tech-
niques for collision avoidance have also been developed based on
grid-based rules [22] and behavior models [37].

Most agent-based techniques perform local collision avoidance.
However, global path planning techniques are needed to provide
goal seeking capability. In practice, global planning algorithms typ-
ically use graph search techniques for each agent [2, 11, 19, 35].
Pettre et al. [27] proposed a graph structure that decomposes the
space into multi-layered terrains to support fast graph search for
multiple characters.

Most recently, a novel approach for crowd simulation based on con-
tinuum dynamics has been proposed by Treuille et al. [36]. This
work computes a dynamic potential field that simultaneously inte-
grates global navigation with local obstacle avoidance. The result-
ing system runs at interactive rates and demonstrate smooth traffic
flows for three to four groups of large crowds that are moving with
common goals. However this work does not address the case where
each person’s or agent’s path needs to be computed separately.
Multi-agent path planning has also been investigated extensively
in robotics, mostly for performing collaborative tasks [3, 21, 25].
In addition, crowd simulation has also been heavily studied in other
fields [14, 18, 29, 30]. We provide detailed comparisons with some
closely related methods in Section 7.

2.2 Voronoi Diagrams and Path Planning

Voronoi diagram is a fundamental proximity data structure used
in computational geometry and related areas [24]. Generalized
Voronoi diagrams (GVD) of polygonal models have been widely
used for motion planning [5, 20]. The boundaries of the generalized
Voronoi diagram represent the connectivity of the space. Moreover,
they are used to compute paths of maximal clearance between a
robot and the obstacles based on potential field approaches [4, 16]
or bias the sample generation for a randomized planner [10, 13, 39].
However, sampling-based methods are limited to static environ-
ments and the potential-field based planners have been used for 2D
environments with very few robots or agents.

A disadvantage of using the GVD is the practical complexity
of computing it efficiently and robustly. Hence, several ap-
proaches have been proposed to compute an approximation of the
GVD. Vleugels and Overmars[38] use adaptive spatial subdivision.
Choset and Burdick [5] define a related structure called hierarchical
generalized Voronoi graph which is computed using continuation
methods. Wilmarth et al. [39] compute points on the GVD without
explicitly computing a representation of the entire set. Another set
of approaches compute a discrete Voronoi diagram along a uniform
grid using graphics hardware [15, 33, 8].

3 BACKGROUND AND NOTATION

In this section we introduce the notation used in the paper, give
a background on Voronoi diagram based motion planning, and
present an overview of our approach.

3.1 Notation

A geometric primitive or an object (in 3-dimensions) is called a
site. In this work, a site refers to a point, an open edge, an open
triangle, or a connected polygonal object, and we restrict ourselves
to 2D environments. An entity for which a path needs to be com-
puted is called an agent (or a robot). All obstacles and agents are
represented as sites. The center of mass of a site pi is denoted as
π(pi).

Given a site pi, the scalar distance function d(q, pi) denotes the
distance from the point q ∈ R

n to the closest point on pi. Given a
set of sites P in domain D, and a subset T of P, with |T| = k, the
k-th order Voronoi region is the set of points closer to a site in T

than to any other site:

Vork(T|P) = {q ∈D | d(q, pi)≤ d(q, p j) ∀ pi ∈ T, p j ∈ P\T}.

The k-th order Voronoi diagram is a partition of of the domain D

into the k-th order Voronoi regions:

VDk(P) =
⋃

pi∈P

Vork(T,P) , |T|= k.

The standard Voronoi diagram is the same as the 1st order Voronoi
diagram VD1(P). We are specifically interested in the 1st and

2ndorder Voronoi diagrams, denoted as VD1(P) and VD2(P), re-

spectively. A 1storder Voronoi region Vor1(pi|P) contains points

closest to site pi, and the 2ndorder Voronoi region Vor2({pi, p j}|P)
contains points closest to two sites pi and p j. For ease of notation,

we drop the superscript for the 1st order Voronoi diagram VD(P).
The complement of a sub-domain X is denoted as X

c and given by
D\X.

The set of closest k-tuples of sites to a point is called the k-th order
governor set. For a point q∈D, let the set of closest k-tuple of sites

be U = {T0, . . . ,Tm}, |Ti| = k, i.e. q ∈ Vork(Ti|P). Then the k-th

order governor set of q is denoted as Govk(q|P) = U. The 1st order

governor set is the set of closest sites, while the 2nd order set of a
point is the set of closest pairs of sites.

In 2D, the boundaries of Voronoi regions consist of Voronoi edges
which are subsets of the bisector between two sites, and Voronoi
vertices which are equidistant from three or more sites. The ar-
rangement of all Voronoi edges and vertices in the k-th order
Voronoi diagram is called the k-th order Voronoi graph, denoted

VGk(P). Formally, VGk(P) = (V,E), where,

V ={v ∈D | |Govk(v|P)| ≥ 3}

E ={e | e = (v1,v2),v1 ∈ V,v2 ∈ V,∃ connected curve c, s.t.

c = Vork(pi|P)∩Vork(p j|P),v1 ∈ c,v2 ∈ c}

The k-th order Voronoi diagram is closely related to the k-th near-
est neighbor diagram. The k-th nearest neighbor diagram is the
partition of D into k-th nearest neighbor regions. The k-th nearest
neighbor region of site pi is the set of points for which pi is the k-th
nearest site. Similarly, the arrangement of the vertices and edges in
the k-th nearest neighbor diagram is called the k-th nearest neigh-

bor graph, denoted NGk(P). Examples of the 1st and 2nd order
Voronoi diagrams, Voronoi graphs, and nearest neighbor diagrams
are shown in Figure C.2. The 1st nearest neighbor diagram is iden-
tical to the 1st order Voronoi diagram. Further properties of higher
order Voronoi diagrams are presented in [9, 24].

3.2 Motion Planning Using Voronoi Diagrams

Voronoi diagrams have been used in motion planning in many ways,
including roadmap computation, sample generation, or combined
with potential field methods. The set of sites P is the set of ob-
stacles, and the Voronoi diagram of the workspace VD(P) is com-
puted. The Voronoi graph VG(P) captures the connectivity of the
workspace and provides paths of maximal clearance between the
obstacles. The Voronoi vertices closest to the robot and goal are
classified as source and destination and the minimum weight path
is then computed.

For complex 3D environments, an approximate Voronoi diagram is
computed. The computation of discrete Voronoi diagrams and dis-
crete Voronoi graphs can be accelerated using GPUs and has been
used for motion planning in dynamic 2D [17] and 3D environments
[33]. The Voronoi vertex closest to the agent is set as an interme-
diate goal and the Voronoi diagram is recomputed as the obstacles
move.

However, these approaches are inefficient for computing the path
of multiple agents in a dynamic environment. For an agent pi, the
remaining agents need to be considered as obstacles, i.e. the set of
obstacles is P \ {pi}. Hence to compute the path for agent pi, the
modified Voronoi graph VG(P\{pi}) needs to be computed. Thus
the cost of computing the path for all agents is O(nc), where n is the
number of agents and O(c) is the cost of computing each modified
Voronoi graph VG(P\ pi) for 1≤ i≤ n.

3.3 Overview

Our approach for motion planning of multiple agents uses the 1st

and the 2nd order Voronoi diagrams to compute a global navigation
data structure, the MaNG. The MaNG graph is the union of the 1st

and the 2nd order Voronoi graphs and is formally presented in Sec-
tion 4. We treat each agent as a site (in addition to other obstacles
in the environment) and the MaNG is computed. The MaNG can be
computed in time O(c), and provides a path of maximal clearance
for each agent. In addition, we compute the proximity information
from the second order Voronoi diagram [31] and apply it within a
potential-field based simulator [16].

4 MULTIPLE AGENT PLANNING USING HYBRID VORONOI

GRAPH

In this section we introduce the multi-agent navigation graph and
demonstrate its application to multiple agents planning.

4.1 Multi-agent Navigation Graph (MaNG)

For multi agent planning, each moving agent represents a dynamic
obstacle for the remaining agents. Hence, our goal is to compute
a global navigation data structure that provides the clearance in-
formation for each agent. In particular, for each agent we want to
compute a graph that provides maximal clearance to the obstacles
and remaining agents.

We partition the set of sites P into two subsets - the set of obsta-
cles Po and the set of agents Pa. The multi-agent navigation graph
(MaNG), denoted MG(P), is a union of the first order Voronoi

graph VG1(P) and a subset of the second order Voronoi graph

VG2(P) contained inside the 1st order Voronoi region of each agent.

Formally,

MG(P) = (V,E), where

V = {v | v ∈ V
1∪ (V2∩Vor(pi|P))∀pi ∈ Pa},

E = {e | e ∈ E
1∪ (E2∩Vor(pi|P))∀pi ∈ Pa},

VG1(P) = (V1,E1) and VG2(P) = (V2,E2).

The MG(P) consists of vertices and edges from the 1st and the

2nd order Voronoi graphs VG1(P) and VG2(P). Some vertices

in MG(P) are common to both VG1(P) and VG2(P), however

VG1(P) and VG2(P) do not share any edge [24].

We assign a coloring to each edge and vertice in MG(P) based on its

membership in VG1(P) or VG2(P). Edges from VG1(P) are col-

ored red and edges from VG2(P) are colored black. Further, ver-

tices in VG1(P) are colored red, and vertices in VG2(P)\VG1(P)
are colored black. Finally, each edge in the MaNG is assigned
weight based on the cost of traveling that segment. Details on
weight computation are presented in Section 5. A 2D example of
the MaNG for some point agents and obstacles is shown in Fig-
ure C.2.

MG(P) is closely related to the 2nd nearest neighbor graph NG2(P).
In particular, we state the following result about their relation. De-
tailed proofs are provided in a technical report.

Lemma 1. Given a set of sites P, the 2nd nearest neighbor graph
NG2(P) and the MaNG MG(P):

• MG(P)⊆ NG2(P),

• Given an edge e∈NG2(P) incident on two 2nd nearest neigh-
bor regions of sites pi and p j. For any point x ∈ e: If

d(x, pi) = d(x, p j) = d(x,P)⇒ e ∈ VG1(P). If d(x, p j) =

d(x, pi) > d(x,P)⇒ e ∈ VG2(P).

As a consequence of lemma 1, both the 1st and 2nd order Voronoi
graphs can be extracted from the 2nd nearest neighbor diagram. We
use this result to efficiently compute the MaNG from the 2nd nearest
neighbor diagram in Section 5.

4.2 Multiple Agent Planning

In this section, we present our approach for efficient path planning
of multiple agents using the MaNG. The path planning problem for
each agent is defined as follows: we are given an agent pi ∈ Pa,
its current position in the workspace given by its center of mass
π(pi), and a goal position of the center of mass gi. We wish to
compute a path for pi from π(pi) to gi, which is maximally clear
and collision free to the remaining sites P \ {pi}. Such a path can

be computed using the Voronoi graph VG1(P \ {pi}). We state a
result on the equivalence of the paths computed using the 1st order
Voronoi graphs and the MaNG.
Lemma 2. Given an agent pi, and the Voronoi graphs VG1(P \
{pi}), MG(P):

1. VG1(P\{pi})⊆MG(P)

2. VG1(P\{pi})∩Vor(pi|P) = MG(P)∩Vor(pi|P).

Lemma 2 provides an approach for extracting the Voronoi graph
VG1(P \ {pi}), for each agent pi, from MG(P). The complete
algorithm for computing a path for an agent pi is given in Algo-
rithm 1, and an example path is shown in Figure C.4. The function
LocatePoint(gi) returns the 1st order Voronoi region which contains
gi. The source and goal positions are connected to vertices in the
MaNG using green edges. ShortestPath(pi,gi,MG(P)) computes

the minimum weight path from π(pi) to gi following only the green
and red edges in MG(P). This is equivalent to computing the short-

est path by following the 2nd order Voronoi graph inside the 1st

order Voronoi region of agent pi, and the 1st order Voronoi graph
everywhere else (see Figure C.4). The first vertex along this path is
chosen as an intermediate goal for agent pi.

Input: Agent pi, Goal position gi, Set of sites P, MaNG
MG(P)

Output: Path Si from current position to goal position

k← LocatePoint(gi)
if k = i then

Si← edge(π(pi),gi)
return

Compute Vi← set of black vertices in Vor(pi|P)
Compute Ei← set of black edges in Vor(pi|P)
if Vi 6= /0 and π(pi) /∈Vi then

Augment MG(P) with green edges
e j = (π(pi),v j)∀v j ∈Vi

Assign weight to e j,w(e j)← d(π(pi),v j)
else

foreach edge e j ∈ Ei do
Compute v j ← closest point on e j to π(pi)
Augment MG(P) with green edge e j = (π(pi),v j)
Assign weight to e j,w(e j)← d(π(pi),v j)

end

Compute Vk← set of red vertices in Vor(pk|P)
Augment MG(P) with green edges e j = (gi,v j)∀v j ∈Vk

Assign weight to e j,w(e j)← d(gi,v j)
Add green labels to each edge e j ∈ Ei

Si← ShortestPath (pi,gi,MG(P))
Remove green labels from each edge e j ∈ Ei

Remove all green edges from MG(P)

Algorithm 1: ComputePath(pi, gi, P, MG(P)): Computes
a path for agent pi to goal gi given the set of sites P and the
MaNG MG(P)

5 MANG COMPUTATION

In this section we present our approach for efficiently computing
the MaNG, which is based on the 1st and the 2nd order Voronoi
diagrams. However, exact computation of generalized Voronoi dia-
grams of polygonal models is non-trivial. Rather, we compute the
discrete Voronoi diagram along a uniform grid using graphics hard-
ware [15]. The 2nd nearest neighbor diagram is computed using
a second pass with depth peeling, as presented in [9]. We com-
pute the generalized 2nd nearest diagram of higher order sites (lines,
polygons) by rendering the generalized distance function for each
site [32]. We compute the 1st order Voronoi diagram in the first
pass, and compute the 2nd nearest neighbor diagram in the second
pass. Finally we extract the 1st and the 2nd order Voronoi graphs
from the 2nd nearest neighbor diagram and compute the MaNG.

5.1 Culling Techniques

The distance field is computed by evaluating the distance function
to each site at each pixel, and this computation is efficiently per-
formed using the rasterization capabilities of the GPU. However,
for a large number of sites, this leads to redundant computation for
each pixel, and the computation becomes fill bound. Hence, we use
culling techniques to compute conservative bounds on the 1st and
the 2nd order Voronoi regions. The distance function to each site
is computed on the pixels that are contained within its conservative
Voronoi region.

Our goal is to efficiently derive a tight upper bound on the 1st and
the 2nd order Voronoi regions for each site. We compute these
bounds by determining the closest site (and closest 2 sites) along
each principle direction (+X ,−X ,+Y ,−Y). We compute the bounds
using a quadtree, which subdivides the domain. Each node in
the quadtree contains the number of sites contained in the subtree
rooted at the node. Using this quadtree we can efficiently determine
the set of nearest neighbors for each site.

The quadtree is constructed as follows. Each leaf nodes contains
the number of sites contained within the node. Let δ be the size of
a leaf node. Each intermediate node contains the number of sites
contained in each of its 4 children. Let the function E(l) com-
pute the closest non-empty leaf node to the right of node l in the
quadtree. Similarly, W (l) and N(l), S(l), respectively, return clos-
est leaf nodes to the left, top and bottom of node l. To compute
the bound along +X for the 1st order Voronoi region of a site pi,
we first identify the leaf node li that contains the centroid of the
site π(pi). Next we compute the closest leaf nodes E(li), W (li),
N(li) and S(li). Finally we compute the bisectors of the pairs of
nodes E(li),S(li) and W (li),S(li). Then the bound on the first order
Voronoi region along X axis is given by the intersection of these
two bisectors. Similarly, the bounds along Y -axis are computed,
and the first order Voronoi region of site pi is bounded by a quad
covering these bounds. In addition, for a leaf node li, we store the
locations of its closest neighbors E(li), W (li), N(li) and S(li).

We compute the bounds on all the 2nd order Voronoi regions of
site pi in the second pass as follows. Along +X axis, we check
the number of sites stored in the closest node E(li). If the number
of sites in node E(li) is 2 or more, then the bound along +X is
∆X+ = d(li,E(li)) + 2δ . If number of sites in node E(li) is less
than 2, then we lookup the node E(E(li)) (this has been computed

in the 1st pass), and the bound along +X is ∆X+ = d(li,E(E(li)))+
2δ . Similarly we compute bounds along −X ,+Y and −Y axes and
compute the distance function of site pi in a quad that covers these
bounds.

To compute the bounds for a higher order site (a line segment or
a convex polygon), we store the position of the centroid of the site
in the quadtree. We compute the distance bounds for the centroid
using the quadtree, and add the distance between the centroid and a
vertex to compute the distance bounds for the site.

5.2 Undersampling Errors

Computation of the Voronoi graph on a uniform grid may result in
undersampling errors, which may lead to the Voronoi regions to be-
come disconnected [33],and the computed discrete Voronoi graph
may have many small disjoint components [16]. As a result, for
complex environments with a large number of sites, the combinato-
rial complexity of the MaNG becomes very high.

We address the issue of undersampling for motion planning, by re-
ducing the combinatorial complexity of the MaNG without chang-
ing its connectivity. We reduce the complexity by appropriately
modifying the MaNG near undersampled areas. We rely on the fact
that when two Voronoi edges are arbitrarily close, then the agent
might follow either edge, as long as the path connectivity does not
change. Such edges can be removed from the MaNG provided their
removal does not change the connectivity of the MaNG.

We present the details of our algorithm for reducing the complexity
of MaNG. We treat an edge with an adjacent edge less than one
pixel away as a candidate for removal. Such edges are exactly those
edges that bound a discrete Voronoi region of width 1 pixel. Thus
the test for eliminating such edges is equivalent to removing certain
pixels from a discrete Voronoi region, which does not change the

connectivity of the Voronoi graph. Hence our test for removal of a
pixel from a discrete Voronoi region relies on a local 3× 3 stencil
around a pixel. Let pa be the governor of a pixel (i, j), and the set
α denote the governor set of the 4 adjacent pixels (i− 1, j),(i +
1, j),(i, j− 1),(i, j + 1). Then the pixel (i, j) can be removed if
either of the following conditions holds (see Figure C.5):

1. pa /∈ α . Then site pa has an isolated discrete Voronoi region
at pixel (i, j), with 4 Voronoi edges surrounding it. Removal
of this Voronoi region does not change the path connectivity
in the stencil.

2. pa ∈ α and pa occurs in α exactly once. Then the pixel (i, j)
represents an end point of a discrete Voronoi region of site pa

and its removal does not change the path connectivity in the
stencil.

After a pixel (i, j) satisfies the criteria for removal, we assign it
to another discrete Voronoi region to maintain the connectivity of
Voronoi edges. The pixel is assigned to a site in α \{pa} with the
minimum distance to pixel (i, j). The distance of a site in α to pixel
(i, j) can be efficiently computed by relying on the fact that distance
vectors are bi-linearly interpolated [32]. Thus distance computation
involves a vector summation with a basis vector and vector norm
computation.

The operation performed at each pixel is a read followed by a con-
ditional write, and the output of one pixel may affect the connec-
tivity of adjacent pixels. Thus an efficient parallel algorithm is not
feasible, and we perform a sequential scan of the discrete Voronoi
diagram to update the Voronoi graph.

5.3 Graph Construction

We now present our algorithm to compute the MaNG. We compute
the 1st order Voronoi diagram VD1(P) and the 2nd nearest neigh-
bor diagram on the GPU, and refine the connectivity information
based on the algorithm described in Section 5.2. We then perform
sequential tracing of vertices and edges to compute the 2nd nearest
neighbor graph [15].

We use the result presented in Lemma 1 to classify the edges in the
2nd nearest neighbor graph, NG2(P). An edge is classified as be-
longing to the 1st order Voronoi graph if the distance to closest site
for all pixels on the edge is identical in VG1(P) and NG2(P). Due
to pixel resolution errors, we treat two distance values as identical if
they are within one pixel width of each other. Each edge is assigned
a weight proportional to its length and inversely proportional to the
minimal clearance along the edge. An edge belonging to VG1(P)
is labeled red, and the remaining edges are labeled black. A vertex
is labeled red if it has at-least one red edge incident on it, otherwise
it is labeled black. These colors are used by Algorithm 1 to search
for an optimal path.

6 IMPLEMENTATION AND RESULTS

In this section we describe the implementation of our multi agent
planning algorithm and highlight its application to various multi-
agent simulations.

6.1 Implementation

We have implemented our algorithm on a PC running Windows XP
operating system with an AMD Opteron 280 CPU, 2GB memory
and an NVIDIA 7900 GPU. We used OpenGL as the graphics API
and Cg language for implementing the fragment programs. The
discrete Voronoi diagram and distance field are computed at 32-bit
floating point precision using floating point buffers. The Voronoi

diagram is stored in the red channel, and the distance field in the
depth buffer. We use stencil tests to disable 2nd order Voronoi di-
agram computation in the 1st order Voronoi regions of the obsta-
cles. In the first pass, the stencil mask is set for all pixels in the 1st

order Voronoi regions of the agents. In the second pass, distance
functions are evaluated at pixels with stencil mask set. This opti-
mization speeds up both discrete Voronoi diagram computation and
MaNG construction. We perform readback of the discrete Voronoi
diagrams and construct the MaNG on the CPU. The optimal path
is computed using an A∗ search with Euclidean distance metric to
guide the search.

We use a complete quadtree for Voronoi region culling described
in Section 5.1. The depth of the quadtree is set such that one leaf
node corresponds to a block of 32× 32 pixels. We need to deter-
mine if a node contains up to 2 sites - hence the number of sites
per node is encoded in 1 byte. By using a complete quadtree, the
node addresses can be efficiently computed using bit shifts, avoid-
ing pointer addressing.

6.2 Demos

We describe two multi-agent simulations, demonstrating the effec-
tiveness of the MaNG for real-time path planning. The first sim-
ulation involves a coverage problem, while the second one is of a
crowd simulation.

Fruit Stealing Game: The first simulation is of fruit stealing in a
dense orchard (see Figure C.1). There are several agents (thieves)
which attempt to steal the fruit on the trees. The environment also
contains some old farmers who chase the thieves. As the thieves
move through the orchard, they steal fruit in close proximity. The
goal is for each thief to move towards denser regions of fruit while
avoiding the farmers, the trees and other thieves. The thieves, farm-
ers and trees are treated as cylindrical sites. The trees are fixed
obstacles, farmers are dynamic obstacles and the thieves are the
agents. A coarse density map is used to track the density of fruit
remaining in the orchard. Trees with desirable fruit are assigned
higher density. The agents are initially spread near the boundary of
the orchard, and the goal position is set to a distant high density re-
gion. The goal position for each agent is also dynamically updated
as the density of the current goal drops below a certain threshold.

The global path of each agent is computed using the approach pre-
sented in Algorithm 1. We compute the proximity to nearest site for
each agent from the 2nd nearest neighbor diagram, which is used in
a potential planner for local planning. Finally, we also use the 2nd

order Voronoi diagram to compute the closest agent (thief) for each
farmer. This is set as the goal for each farmer and the farmer moves
directly towards this agent. The farmers do not use the MaNG for
path planning, however they use the potential and repulsive forces
to stay clear of other farmers and trees. A thief is eliminated if
caught by a farmer. Hence it is desirable for each thief to compute
shortest paths of maximal clearance from the farmers (dynamic ob-
stacles) and other thieves (agents) in order to collect the most fruit.

Crowd Simulation: We simulate a crowd of people moving in an
urban environment with dynamic obstacles (Figure C.3). We sim-
ulate only the individual behavior and not the group behavior. The
set of sites consists of buildings, cars and humans. The humans
enter the scene from one of the buildings and exit through another
building or the sidewalks. Each human is an individual agent with
an independent goal. The cars are dynamic obstacles, while the
buildings, benches, fountains are static obstacles. Similar to fruit
picking, the proximity information for local planning is computed
using the 2nd order Voronoi diagram. The total force applied on
each agent is a sum of an attractive force to move it towards the
intermediate goal computed by the MaNG, and the repulsive forces

from the nearest neighbors. For goals in close proximity, only the
local potential field planner is used, disregarding the MaNG.

6.3 Results

We now highlight the performance of our algorithm in complex
dynamic environments. Our approach can perform real-time path
planning for each agent in environments up to 200 agents with dif-
ferent destinations, at the rates of 5 to 20 fps. The discrete Voronoi
diagrams are computed on grid of resolution 1K× 1K pixels. The
fruit stealing simulation has 64 trees with a varying number of
thieves and farmers. The crowd simulation has 15 static obstacles
and between 2 and 5 moving cars, with a varying number of hu-
mans. The performance of our approach, with a timing breakup is
presented in Table 1.

Demo Agents Graph Time(ms)

|V| |E| DVD MaNG Plan Total

Crowd 10 206 1051 7 20 0.23 52

Crowd 25 330 1949 9 22 0.8 57

Crowd 50 560 3500 10 36 2.0 73

Crowd 100 946 7058 15 65 5.6 110

Crowd 200 1927 14669 20 150 18 213

Fruit 10 565 2282 8 25 1.0 59

Fruit 100 1378 6099 15 70 20 130

Table 1: Performance of multi-agent path planning algorithm (av-
erage over all frames): |V| and |E| denote number of vertices and

edges in the MaNG. DVD = Time to compute the 2nd order discrete
Voronoi diagram on the GPU, and removing undersampled regions.
MaNG = Time to extract the MaNG from the discrete Voronoi di-
agram. Plan = time for path planning for all agents. Time for
readback of discrete Voronoi diagram and depth buffers at 1K×1K
resolution = 25ms.

7 ANALYSIS AND COMPARISON

In this section, we analyze the performance of our algorithm. We
highlight its computational complexity and compare it with other
approaches for multi-agent path planning.

7.1 Analysis

Let the number of sites be n, and the size of the grid used to compute
the discrete Voronoi diagrams be m×m. We assume the number of
agents |Pa| = O(n). We now present the time complexity of each
stage in our algorithm.

The cost of computing the 1st and 2nd order discrete Voronoi dia-
grams is as follows. The size of the quadtree is O((m

32
)2), and depth

= O(logm). Then the cost of computing the bounds for each site
(see Section 5.1) is O(logm). The cost of rasterizing the distance

function for a site pi is O(r|Vork(pi|P)|), where |Vork(pi|P)| is the
number of pixels in the Voronoi region of pi and r depends on the
tightness of the computed Voronoi region bounds, 1 < r < O(n).
Typically, we have observed r = O(1). Then the cost of com-

puting the Voronoi diagram is O(n logm + Σ
n
i=1

(r|Vork(pi|P)|)) =

O(rm2 +n logm).

The cost of reading back the framebuffers is O(m2). The cost of
extracting the MaNG is O(|E|), where |E| is number of edges in

MaNG. From lemma 2, the number of edges in MaNG, |E| ≤ |E1|+

|E2|, where |Ek| is number of edges is VDk(P), and |Ek| = O(kn)
[9]. Thus cost of extracting the MaNG is O(n). The cost of path

planning using A∗ is typically polynomial in O(|E|+ |V|). There-

fore cost of computing all paths is O(n(|E|+|V|))= O(n2). In prac-
tice, as shown by Table 1 the associated constant with path planning
is much smaller and the bottleneck is the discrete Voronoi diagram
computation and graph construction.

7.2 Comparisons

Next we provide qualitative comparisons of our approach with prior
methods for multi-agent planning.

Comparison with 1st order Voronoi diagram: Our approach pro-
vides a global solution for path planning of each agent using the
MaNG. The MaNG computes a roadmap of maximal clearance col-
lision free paths for each agent in O(1) passes, as compared to O(n)
passes for computing O(n) Voronoi roadmaps. In particular, using

the 2nd order Voronoi graph for path planning guarantees that the
position selected as the first intermediate goal along the computed
path is unique. This prevents adjacent agents from moving towards
the same intermediate goal and getting stuck in a local minimum
of the potential function. An example is presented in Figure C.6.
In this example, adjacent agents select the same intermediate goal
from 1st order Voronoi diagram, whereas the intermediate goals
from the 2nd order Voronoi diagram are unique. In addition, the
path computed has maximal clearance. More specifically, vertices
on the Voronoi diagram are used to compute the area of maximum
coverage for a new site [1]. Hence by following the vertices on the
MaNG, our planning approach ensures a maximum coverage region
for each agent.

The closest related work by Pettre et al. [27] computes an initial
roadmap of a static environment using Voronoi diagrams, and con-
structs a set of homotopic paths for a group of agents. This work
implicitly groups agents by their origins and goals. Furthermore,
local collision avoidance is not guaranteed. In contrast our algo-
rithm is able to handle dynamic environments as the roadmap is
updated in real-time, and the use of 2nd order Voronoi diagrams
provides pairwise proximity information which is used to guaran-
tee collision avoidance.

The work on continuum crowds [36] computes a dynamic potential
field and updates the position of each agent by moving along the
gradient of the potential function. The potential field is computed
for a small number of groups of agents moving with common goals.
However, due to the use of a potential function the agents may get
stuck in a local minimum. In contrast, our approach allows for an
independent goal for each agent.

In comparison to agent based methods, our MaNG based path plan-
ning algorithm provides global paths, and may be combined with
rule-based techniques to simulate more complex and realistic agent
behavior.

7.3 Limitations

There are some limitations of our work. We compute the MaNG in
the workspace, hence the approach does not scale well for agents
with many degrees of freedom (e.g. snakes). We use an A∗ graph
search algorithm, which may not be optimal. Finally, we compute
an optimal path for each frame, however there is no guarantee on
coherence of paths across frames, or on convergence over a period
of time. In fact, the optimal paths across two time steps may not be
coherent, potentially resulting in noisy motions.

8 CONCLUSIONS AND FUTURE WORK

We have presented a novel approach for real-time path planning of
multiple virtual agent, based on a new data structure - the Multi-
agent Navigation Graph (MaNG). The MaNG is used to simultane-
ously compute the paths of maximal clearance for a set of moving
agents with independent goals. The MaNG is constructed dynam-
ically using discrete Voronoi diagrams. We also presented culling
techniques for accelerating the discrete Voronoi diagram computa-
tion and addressed undersampling issues due to discretization. We
have demonstrated the application of our approach to real time sim-
ulation involving a large number of independent agents, each with
an individual goal.

There are several avenues for future work. One relevant avenue is
to constrain the graph search to compute temporally coherent paths
which are guaranteed to converge to the final goal. We would like to
exploit coherence in graph search when many agents have similar
goals and initial positions. Efficient parallel algorithms for simpli-
fying the discrete Voronoi graphs and computing the MaNG would
be useful for accelerating the computation. Finally, we would like
to extend our approach to handle agents with high degrees of free-
dom.

REFERENCES

[1] F. Aurenhammer. Voronoi diagrams: A survey of a fundamental geo-

metric data structure. ACM Comput. Surv., 23(3):345–405, Sept. 1991.

[2] O. B. Bayazit, J.-M. Lien, and N. M. Amato. Better group behaviors

in complex environments with global roadmaps. Int. Conf. on the Sim.

and Syn. of Living Sys. (Alife), 2002.

[3] M. Bennewitz and W. Burgard. Finding solvable priority schemes

for decoupled path planning techniquesfor teams of mobile robots.

Proceedings of the 9th Int. Symposium on Intelligent Robotic Systems

(SIRS), 2001.

[4] J. Champagne and W. Tang. Real-time simulation of crowds using

voronoi diagrams. EG UK Theory and Practice of Computer Graph-

ics, 2005.

[5] H. Choset and J. Burdick. Sensor based motion planning: The hier-

archical generalized Voronoi graph. In Algorithms for Robot Motion

and Manipulation, pages 47–61. A K Peters, 1996.

[6] H. Choset, K. Lynch, S. Hutchinson, G. Kantor, W. Burgard,

L. Kavraki, and S. Thrun. Principles of Robot Motion: Theory, Al-

gorithms, and Implementations. MIT Press, 2005.

[7] O. C. Cordeiro, A. Braun, C. B. Silveria, S. R. Musse, and G. G.

Cavalheiro. Concurrency on social forces simulation model. First

International Workshop on Crowd Simulation, 2005.

[8] M. Denny. Solving geometric optimization problems using graphics

hardware. In Proc. of Eurographics, 2003.

[9] I. Fischer and C. Gotsman. Fast approximation of high order Voronoi

diagrams and distance transforms on the GPU. Technical report CS

TR-07-05, Harvard University, 2005.

[10] M. Foskey, M. Garber, M. Lin, and D. Manocha. A voronoi-based

hybrid planner. Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots

and Systems, 2001.

[11] J. Funge, X. TU, and D. Terzopoulos. Cognitive modeling: Knowl-

edge, reasoning and planning for intelligent characters. Proc. of ACM

SIGGRAPH, 1999.

[12] P. Glardon, R. Boulic, and D. Thalmann. Dynamic obstacle clearing

for real-time character animation. Computer Graphics International,

2005.

[13] L. Guibas, C. Holleman, and L. Kavraki. A probabilistic roadmap

planner for flexible objects with a workspace medial-axis-based sam-

pling approach. In Proc. of IROS, 1999.

[14] D. Helbing, L. Buzna, and T. Werner. Self-organized pedestrian crowd

dynamics and design solutions. Traffic Forum 12, 2003.

[15] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Fast compu-

tation of generalized voronoi diagrams using graphics hardware. Pro-

ceedings of ACM SIGGRAPH 1999, pages 277–286, 1999.

[16] K. Hoff, T. Culver, J. Keyser, M. Lin, and D. Manocha. Interactive

motion planning using hardware accelerated computation of general-

ized voronoi diagrams. IEEE Conference on Robotics and Automa-

tion, pages pp. 2931–2937, 2000.

[17] K. Hoff, A. Zaferakis, M. Lin, and D. Manocha. Fast and simple 2d

geometric proximity queries using graphics hardware. Proc. of ACM

Symposium on Interactive 3D Graphics, pages 145–148, 2001.

[18] A. Kamphuis and M. Overmars. Finding paths for coherent groups us-

ing clearance. Proc. of ACM SIGGRAPH / Eurographics Symposium

on Computer Animation, 2004.

[19] F. Lamarche and S. Donikian. Crowd of virtual humans: a new ap-

proach for real-time navigation in complex and structured environ-

ments. Computer Graphics Forum, 23(3 (Sept)), 2004.

[20] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,

1991.

[21] T.-T. Li and H.-C. Chou. Motion planning for a crowd of robots. Proc.

of IEEE Int. Conf. on Robotics and Automation, 2003.

[22] C. Loscos, D. Marchal, and A. Meyer. Intuitive crowd behaviour in

dense urban environments using local laws. Theory and Practice of

Computer Graphics (TPCG’03), 2003.

[23] S. R. MUSSE and D. Thalmann. A model of human crowd behavior:

Group inter-relationship and collision detection analysis. Computer

Animation and Simulation, 1997.

[24] A. Okabe, B. Boots, and K. Sugihara. Spatial tessellations: concepts

and applications of Voronoi diagrams. Wiley & Sons, 1992. ISBN 0

471 93430 5.

[25] L. E. PARKER. Designing control laws for cooperative agent teams.

Proc. of IEEE Int. Conf. on Robotics and Automation, 1993.

[26] N. Pelechano, K. O’Brien, B. Silverman, and N. Badler. Crowd simu-

lation incorporating agent psychological models, roles and communi-

cation. First International Workshop on Crowd Simulation, 2005.

[27] J. Pettre, J.-P. Laumond, and D. Thalmann. A navigation graph for

real-time crowd animation on multilayered and uneven terrain. First

International Workshop on Crowd Simulation, 2005.

[28] C. W. Reynolds. Flocks, herds, and schools: A distributed behavioral

model. In M. C. Stone, editor, Computer Graphics (SIGGRAPH ’87

Proceedings), volume 21, pages 25–34, July 1987.

[29] M. SOFTWARE. http://www.massivesoftware.com, 2006.

[30] G. Still. Crowd Dynamics. PhD thesis, University of Warwik, UK,

2000. Ph.D. Thesis.

[31] A. Sud, N. Govindaraju, R. Gayle, I. Kabul, and D. Manocha.

Fast proximity computation among deformable models using discrete

voronoi diagrams. ACM Trans. Graph. (Proc ACM SIGGRAPH),

25(3):1144–1153, 2006.

[32] A. Sud, N. Govindaraju, R. Gayle, and D. Manocha. Interactive 3d

distance field computation using linear factorization. In Proc. ACM

Symposium on Interactive 3D Graphics and Games, pages 117–124,

2006.

[33] A. Sud, M. A. Otaduy, and D. Manocha. DiFi: Fast 3D distance

field computation using graphics hardware. Computer Graphics Fo-

rum (Proc. Eurographics), 23(3):557–566, 2004.

[34] M. Sung, M. Gleicher, and S. Chenney. Scalable behaviors for crowd

simulation. Computer Graphics Forum, 23(3 (Sept)), 2004.

[35] M. Sung, L. KOVAR, and M. Gleicher. Fast and accurate goal-directed

motion synthesis for crowds. Proc. of SCA 2005, pages 291–300,

2005.

[36] A. Treuille, S. Cooper, and Z. Popovic. Continuum crowds. Proc. of

ACM SIGGRAPH, 2006.

[37] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion,

perception, behavior. In A. Glassner, editor, Proceedings of SIG-

GRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer Graph-

ics Proceedings, Annual Conference Series, pages 43–50. ACM SIG-

GRAPH, ACM Press, July 1994. ISBN 0-89791-667-0.

[38] J. Vleugels and M. H. Overmars. Approximating Voronoi diagrams

of convex sites in any dimension. International Journal of Computa-

tional Geometry and Applications, 8:201–222, 1998.

[39] S. A. Wilmarth, N. M. Amato, and P. F. Stiller. Maprm: A proba-

bilistic roadmap planner with sampling on the medial axis of the free

space. IEEE Conference on Robotics and Automation, pages 1024–

1031, 1999.

Figure C.1: Fruit stealing simulation: A simulation of 96 fruit pickers (with yellow hair) in an orchard with 64K fruit (dark blue and purple)
on 64 trees (brown trunks) and 4 farmers (in white shirts). Each agent maintains an independent goal. Left: Initial top view of the orchard.
Middle: Top view during the middle of simulation with many fruit collected. Right: Perspective view of path traces of the agents in fruit
stealing simulation. The yellow curves trace the position of each agent over a range of time steps. The trace demonstrates lane formation as
the agents move around obstacles.

(a) (b) (c) (d) (e)

Figure C.2: Voronoi Diagrams and Voronoi Graphs: 8 point sites consisting of 3 obstacles (shown in white) and 5 agents (shown in black).
(a) 1st order Voronoi diagram (b) 2nd order Voronoi diagram of the 8 sites. Each region is closer to one of a pair of sites than to any other site
(c) 2nd nearest neighbor diagram. Each region has the same site as the second closest site. (d) 2nd nearest neighbor graph. Red edges denote
edges from 1st order Voronoi graph, black edges are edges from 2nd order Voronoi graph (e) the Multi-agent Navigation Graph (MaNG) for
the 5 agents, which is a subset of the 2nd nearest neighbor graph.

Figure C.3: Crowd Simulation: Two scenes of a crowd simulation with agents moving
between buildings and the sidewalks. The cars represent dynamic obstacles. Our
MaNG based algorithm can perform path planning on 200 agents, each with distinct
goals, at 5 frames per second.

Figure C.4: Multi-Agent Path Planning using
the MaNG. The MaNG is augmented with green
edges connecting the start position (blue dot) to
the goal position (orange dot). The computed
shortest path for one agent is shown with blue
edges.

(a) (b) (c)

Figure C.5: Discrete Voronoi region shrinking for under-sampling
errors: A 3×3 pixel neighborhood of a discrete Voronoi diagram.
The discrete MaNG is shown in thick orange lines. (a) The green
discrete Voronoi region is disconnected. (b) The center pixel may
be assigned to an adjacent Voronoi region reducing complexity of
the MaNG, without changing its connectivity (c) Reassigning the
center pixel will change connectivity of the MaNG.

1

2

3

4

2

1

3

4

Figure C.6: Comparison of 1st order Voronoi graph and MaNG:
4 agents, with goals in opposite corners. Left: Intermediate goals
computed from 1st order Voronoi graph. Pairs of agents move to-
wards same goal. Right: Intermediate goals from MaNG. Each
agent has a unique intermediate goal.

