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Abstract 
Motivated by fluid analogies, artificial harmonic po- 
tentials can eliminate local m in ima  problems in robot 
path planning. I n  this paper, simple analytical solu- 
t ions t o  planar harmonic potentials are derived us- 
ing tools f r o m  fluid mechanics, and are applied t o  
two-dimensional planning among multiple moving ob- 
stacles. These closed-form solutions enable real-time 
computation to  be readily achieved. 

1 Introduction 
This paper develops fast algorithms for two- 
dimensional path planning, where the task is to find 
a trajectory which will bring a mobile robot from an 
initial position xi, to a final position xf while avoiding 
moving obstacles. 

Robot path planning has been studied extensively, 
and can use local or global computations. Combina- 
tion of local and global algorithms have also been sug- 
gested, where a local method is assisted by a global 
planner when needed (that is, when the robot gets 
stuck) as in [l], or paths from all points in space to 
the goal are defined by some potential field method 
[2, 31. In the potential field methods, the position and 
shape of all obstacles in a given region is assumed to 
be known and the potential function is constructed us- 
ing this information. Thus, only local calculations at 
each point in space are required for the robot to find 
the direction it should move in. However, potential 
field methods often have the drawback that a robot 
could get stuck in local minima [2, 4, 51. This prob- 
lem may be solved by forcing local potential extrema 
to lie on the boundaries of obstacles through the use 
of harmonic potentials, that is, of functions 4 satisfy- 
ing Laplace’s equation, V24 = 0, often motivated by a 
fluid or electrostatic analogy [6,  7, 8,9]. The disadvan- 

tage of these methods is that Laplace’s equation has 
to be solved numerically over the whole state space, 
a slow process making it extremely hard to find solu- 
tions in real-time for dynamic environments - on an 
L x L grid the computation time scales as L4. 

Two notable exceptions to the use of numeri- 
cal solutions of harmonic potentials are described in 
[lo, 111. In [lo], analytical solutions are developed 
for simple shaped objects. However, they only con- 
sider static environments and the object closest to the 
robot, with the drawback that the robot is not influ- 
enced by any other objects in space. Similarly, [ll] use 
the panel method from computational hydrodynamics 
to obtain approximate closed-form solutions over the 
entire space given arbitrarily shaped polygonal obsta- 
cles. It is also restricted to static environments. 

In this paper, we extend the harmonic potential 
field method to dynamic environments for real-time 
path planning in two dimensions. We also introduce 
analytical solutions for multiple moving obstacles. In 
section 2 we detail the analogy between fluid flow and 
path planning in two dimensions. We also introduce 
several methods for defining objects in an analytical 
form, and a new method for defining the goal position 
of the robot. In section 3, the approach is extended 
to dynamic environments. Section 4 offers concluding 
remarks. 

2 The Fluid Analogy 

Harmonic potentials have the great advantage that 
they achieve their extremum only on the boundary 
of objects. Thus no local minima will occur in the 
admissible configuration space, and a path generated 
by following a steepest gradient descent is guaranteed 
to reach the goal without hitting any objects in the 
domain, if the goal is reachable. This property of har- 
monic potentials is the extremum property [12]. Such 
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a path is in fluid mechanics termed a streamline, and 
defines the path of a fluid particle.’ In using harmonic 
potentials in two-dimensional path planning it is use- 
ful to draw the analog to invicid incompressible irro- 
tational fluid flow, termed potential flow, and thereby 
use different powerful tools and properties from hydro- 
dynamics [6, 11, 12, 131 and intuition. Let the fluid 
velocity at x be U(x). The assumption that the flow 
is irrotational states that the vorticity vanishes, that 
is: 

V x U = O  H U = V $ ( x ) ,  (1) 

where $(x) is a velocity potential. Since the fluid is 
assumed to be incompressible, the continuity equation 
can be written: 

v . u=o .  (2) 
Combining equation (1) and (2) we arrive at the 
Laplace equation for the velocity potential: 

V2$ = 0 .  (3) 

On obstacle boundaries, the boundary condition of 
Laplace’s equation is given by the impenetrability of 
obstacle boundaries, called von Neumann boundary 
conditions, which can be expressed as 

n .  U = n V$ = 0 , (4) 

where n is the unit normal vector on the boundary. 
In addition, there are different flows describing poten- 
tial flows, such as, sources, sinks, and uniform flows. 
Potential flow represents an ideal fluid flow, where vis- 
cosity is ignored. 

In section 2.1 we describe several basic methods 
for defining objects in an analytical form. In sec- 
tion 2.2 we describe our methods and approximations 

I made for using closed form solutions of Laplace’s equa- 
tion to handle multiple objects. Section 2.3 introduces 
a new method for defining the initial and goal position 
of of the robot. 

2.1 Modeling of Objects 
In this section we outline the different methods used 
for modeling of objects in potential flows. 

F’rom standard fluid texts on potential flows, such 
as the book by Milne-Thomson [12], solutions for vari- 
ous shaped objects can be found in closed form. In 

‘There is one streamline for every object in a flow where the 
velocity vanishes, termed the stagnation line and the velocity 
vanishes at the stagnation point on the boundary of the object. 
However, this line has zero measure, and the stagnation point is 
a saddle point, so these points, in the absence of large friction, 
do not cause a problem when using streamlines as robot paths. 

fluid dynamics, it is convenient to work with com- 
plex potentials, rather than just the velocity potential 
in order to utilize the properties of conformal map- 
ping of complex variables for two-dimensional prob- 
lems. The complex potential consist of the velocity 
potential $(x), as defined above, and a function called 
the stream function $(x), which is constant on a path 
of a fluid particle, that is, on a streamline.2 The com- 
plex potential is defined as 

w = $ + Z $  = f(z) , z = s + i y  ; (5) 

where i 2  = -1. 

either $, I I ,  or w by 
The velocity field, U = [U U] can be found from 

We here outline the four major methods to define 
various potential flows: simple flows, use of specific 
theorems, conformal mapping and a panel method. 
We here use U to represent a velocity and r to rep- 
resent a length. 

SIMPLE FLOWS: The potential for some simple 
flows can be found by trial and error, such as that 
of a uniform flow 

Using equation (6)  we find U = Ucosa, v = 
U sin a, which we see is the uniform flow of mag- 
nitude U making an angle a with the positive x- 
axis. 

SPECIFIC THEOREMS: Laplace’s equation has 
been studied extensively, as it appears in many 
physical problems. Thus, many special theorems 
for modeling of objects apply. For example, the 
complex potential 

represent the flow past a circular cylinder centered 
at zo = 20 +iyo, with radius T in a uniform stream 
with velocity U inclined at an angle a with the 
positive x-direction. This result follows directly 
from the circle theorem described in [12]. 

2Streamlines (+ =constant), are orthogonal to the equivpo- 
tential lines of qj (qj =constant). 

875 



CONFORMAL MAPPING: A powerful technique for 
obtaining flows around objects of more complex 
shape in two dimension, is by the use of conformal 
mappings [12, 14, 151. One of the most useful 
mappings is the Joukowski transformation: 

-2 
z = < + ! - ,  

4< (9) 

by which we can map the <-plane to the s-plane 
and vice versa. If we take a circle of radius r = 
$(a + b )  in the <-plane, this transformation will 
map the circle into an ellipse with major axis a 
and minor axis b in the s-plane. That is, the circle 
in the <-plane is given by equation (8) as: 

and solving equation (9) for 5 we get 

1 < = +s f d Z 7 )  , r2 = a2 - b2 . (11) 

From these two equations we can compute dwldz 
and thus the velocity field around an ellipse. 

PANEL METHOD: In panel methods [11, 16, 171 
a body of unspecified shape may be generated 
by adding to a uniform flow a linear combination 
of singularities including sources, sinks, doublets, 
and vortices. This is done by approximating the 
shape of the object by a finite number of line seg- 
ments (in two- dimension^)^ called panels, each of 
which consists of a uniform distribution of singu- 
larities of a certain kind. The distribution of sin- 
gularities and their magnitude can be determined 
through a set of linear equation, so that an oncom- 
ing uniform flow is deflected around the object. In 
this paper we have used a panel method based on 
a uniform distribution of sources, first introduced 
by Hess and Smith [lS], in some of the simula- 
tions shown.4 However, due to limited space we 
will not derive the theory, but refer the reader 
to the cited books and articles. This method re- 
quires an inversion of an N x N matrix where N 
is the number of panels. For not very complex 
shapes, less than N = 20 panels gives a very good 
approximation and keeps the computational cost 
low. Unlike the previous methods described, this 
is an approximate method. 

3Panel methods also exist for three dimensions. Here the 

*We also found the method introduced by [ll] of having n . 
surface of the body is covered by a set of small areas. 

U 2 0 on the boundaries to be appropriate. 

2.2 Multiple Objects 
All the methods for modeling of objects outlined in 
section 2.1, with some exceptions, only gives the ana- 
lytical solution for one  object in a uniform flow. Due 
to the linearity of Laplace’s equation, superposition of 
solutions will also be a solution. However, the superpo- 
sition of solutions to Laplace’s equation for objects in a 
flow will deform the contour where equation (4) is sat- 
isfied from the actual boundaries of the objects, which 
again may cause intersection of robot path and the 
objects. Thus, modifications have to be performed in 
order to use the methods of section 2.1 for robot path 
planning among multiple objects . We here present 
a new method for path planning in an environment 
with several objects where the path is influenced by 
all known objects in the environment, and allows for 
moving obstacles and obstacles that change size. 

This problem can be solved as follows: If the robot 
is very close to an object the robot must first of all 
avoid that object. This can be achieved by consider- 
ing the flow field near an object as the resulting flow 
around the object in a fictitious uniform flow, for which 
the solution is known exactly. When the robot is far 
away from any objects, the superposition of solutions 
is close to the exact solution, while superposition and 
the extremum property ensures that Laplace’s equa- 
tion is satisfied and that the robot will not get stuck in 
a local minimum. In between these two regions, a tran- 
sition from the field close to the object and far from 
the object is used. Thus, by this method, a harmonic 
potential is obtained that satisfies the boundary con- 
ditions. However, this potential is an approximate so- 
lution to the potential flow. This approximation does 
not cause a problem as the analog to potential flow 
is merely a tool for intuition, and gives us tools from 
fluid mechanics for solving Laplace’s equation. 

More explicitly, let 4i-1 = $e + Ciii 4ok define 
the velocity potential before the introduction of object 
i. This potential is composed of which is the “ex- 
ternal” field which will define the goal position, and 

$ok which defines the potential for all the i - 1 
objects that already exist. Let be the potential of 
a uniform flow, and let q50U; be the potential which de- 

flow ( P U , .  Then &,: 4,,, - is the potential associ- 
ated with the object in the absence of the uniform flow. 
We first place a region around the object where we im- 
pose that the potential is $ J ~ ~ ~  (region A).5 Thus, once 
inside this region, the solution is exact for the given 
object geometry, that is, equation (4) is satisfied on 

fines the flow exact ly  around the object in the uniform 

51n implementation, this region is typically chosen to be the 
region defined by the distance the robot can move in one time 
step around the objects boundary. 
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the object boundary, and there are no local extrema 
by the extremum property. Outside this region, we 
design an outer region6 where we make a continuous 
linear transition from the exact potential of the object 
in the uniform flow, q50ui ,  to the sum of the potential 
prior to the introduction of object i and the potential 
of the object without the uniform flow, q5i-1+ q50i (re- 
gion B).’ Outside this transition region, the potential 
is then q5i = q5i-1 + q50i (region C). By superposition, 
since q5-1, do, and q5ui are all solutions to Laplace’s 
equation, any linear combination of them is also solu- 
tion. Thus, the potential is a harmonic potential in 
all three regions, and by the extremum property there 
are no local extrema other than on the boundary of 
the object. 

Figure 1: An object and the different zones used for 
enabling the use of several objects in a field. 

The potential in region C is an approximation of 
the potential of a fluid. Since, by definition, a robot 
in region C is at a safe distance from any object, the 
approximated solution for the fluid flow is appropri- 
ate for a robot’s path. The sectioning of the regions 
around an object is depicted in figure 1. 

If two objects are so close that their region B over- 
lap, one can let the path be determined by the mean 
of the field from both objects. This will work since 
the objects are far enough away so that the robot can 
navigate robustly in the area, by definition of region B. 
If two objects are so close together that their regions 
A overlap, it is not safe for a robot to operate in this 
area, since it is less than the distance the robot can 
move in one time step from the objects, thus making 
it liable to collide with one of the objects. In such 
cases, to make the planner more robust, we view all 
objects that are so close that their A regions overlap 
as a single object. 

61n implementation, this region is typically chosen to be of 
width of the length a robot can move in a couple of time steps. 

?We have chosen to make the transition as a sinusoid on 
the velocities in order to have continuous first order deriva- 
tives of the velocities. That is, in this region, U = i ( 1  + 
sin *(r(+,y)-R-AR/Z) & 

AR ) . Here t(z, y) is the distance from the 
surface of the object, R 7s the distance from where to start the 
transition to the external field, and AR is the distance over 
which the transition takes place. The transition is similarly de- 
fined for v .  

Figure 2: Robot paths, from left to right, past objects 
for different initial positions. 

In figure 2 we show several paths for a robot 
whose goal is just to move from the left to the right 
given different initial vertical position. These paths 
are analog to the stream lines for an ideal fluid. The 
dotted lines shows the outer border of region B, while 
the dashed-dotted region shows the outer border of 
region A.* Figure 2(a) shows the paths when the two 
objects are so far away from each other that they do 
not have overlapping B regions. (b) shows the robot 
paths if the B regions (but not A regions) overlap. (c) 
shows the paths when the objects are so close that they 
can be considered as a single object (that is, their A 
regions overlap or the objects touch). 

2.3 Defining The External Field 
Traditionally, a point source has been placed at the 
robot’s initial position while a point sink has been 
place at the robot’s goal position in order to make the 
goal the global minimum and the initial position the 
global maximum of the operating space [6,  7, 81. How- 
ever, this method has the disadvantage that the field 
can become arbitrary small when the robot is far away 
from its goal and initial position, while the field tends 
to infinity at the goal and initial position, thus, mak- 
ing the method vulnerable to numerical noise. Kim 

6Note, that in figure 2 (a) and (b) are not identical to the 
streamlines for a fluid, as we are solving only for one cylinder 
in a uniform field and superimposing solutions. Part (c) is, in 
this special case, the same as the streamlines in a fluid, since it 
is viewed as just one object (obtained by a conformal mapping 
[121). 
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and Khosla [ll] used a uniform field directed from the 
initial point to the goal sink, avoiding a point source 
at the initial position. This eliminates the near zero 
field in between goal and robot, but not the singularity 
of the goal position. 

We approach this problem by the use of a uniform 
field always directed from the robot’s current position 
to the goal position with magnitude U .  More precisely, 
we use the complex potential 

as the underlying external potential (that is, 4e = 
?J2(w)). Here (z,y) is the robot’s current position and 
( z f , y j )  its goal position. Thus = q5e for all i by 
definition. Notice that w has no extrema. The ad- 
vantage of this method is that the external field will 
always have magnitude U and that = for all 
times. The uniform field used, is rotated with time, 
however, it is always directed parallel to a straight 
line from the robot to its goal. This type of motion 
is analog to the Pursuit problem [19], thus the time 
variation of the field and robot paths will be continu- 
ous, and allows for implementation of moving goals in 
a natural manner. 

3 Dynamic Systems 
In this section, path planning in static environments is 
generalized to path planning in dynamic environments. 
The same general methods for defining objects in space 
as outlined previously will be used, but with some sim- 
ple changes in order to incorporate translation (sec- 
tion 3.1), expansion and contraction (section 3.2), and 
rotation of objects (section 3.3). Section 3.4 describes 
a method for dealing with objects that come in contact 
and thereby closes existing paths. 

3.1 Translation of Objects 
In this section we show how to find the velocity field 
of an object moving with a velocity V in a uniform 
flow U. We first define an inertial reference frame X- 
Y. Second, we define a coordinate system x-y which is 
fixed on the moving object, and moves with a velocity 
V = [Vx Vy] with respect to  the reference frame X-Y. 
Since the object is moving we need to ensure that the 
von Neumann boundary condition is satisfied on the 
surface of the object in the x-y coordinate system in 
order to ensure that a path does not pass through the 
object. When this is achieved, we can transform the 
field back to the X-Y system. The uniform flow past 

the object, as seen in the x-y coordinate system is: 

u , = u - v .  (13) 

Notice that U, is also a uniform field, but has 
different magnitude and direction than U. Thus we 
can find the velocity field around this object using any 
of the methods outlined in section 2.1. In particular, 
assume that the velocity at time t at a point ( z ( t ) ,  y ( t ) )  
is v = [v2 q,] in the x-y coordinate system. In the X- 
Y coordinate system, this point’s coordinates are given 
by: 

(14) X ( t )  = X ( 0 )  + z( t )  + Vxt , 
Y( t )  = Y(0) + y(t) + vyt  , 

where X(O),  Y(0)  is the coordinates in the X-Y coordi- 
nate system of the origin of the x-y coordinate system. 
The velocity U at this point in the X-Y system is then 
simply 

u = v + v .  (15) 

As a simple example, we can find the velocity field 
when a circular cylinder with velocity V moves in a 
fluid with velocity U. Using equation (8) we find 

where r is the radius of the cylinder, a is the angle 
that U - V makes with respect to the X-axis and zo = 
X O  + iY0 is the center of the cylinder. The velocity 
field is then simply found by combining equations (15) 
and (16). 

Figure 3: Robot avoiding moving circular cylinders 
and static walls. 

Figure 3 shows a circular robot starting at the 
left whose goal is marked by a ‘*’. A moving circu- 
lar cylinder starts at the bottom left, and moves to 
the left and up, and an other moving cylinder starts 
at the upper middle and moves straight down. The 
two L-shaped objects are static and was defined using 
the panel method with 18 panels each. The line in 
the drawing represents the robot’s path. As can be 
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Figure 4: Robot avoiding circular cylinder crossing the 
robot's goal '*'. 

seen from these figures, the robot manages to maneu- 
ver in the dynamic environment without hitting the 
moving objects or the static walls, while still reaching 
its goal. For this particular plot, each computation 
took about 0.05 seconds using non-optimized matlab 
code on a Sparc 5. It is expected that the algorithm 
can be speeded up considerable, as only about lo2 op- 
erations are required for each of the circles, and only 
about lo4 operation for each of the L-shaped objects, 
due to the simple analytical forms. 

Figure 4 shows how a robot that initially is at rest 
at its goal, marked by a '*' (figure 4(a)), while a larger 
circular moving objects moves from left to right. As 
the circular object is approaching, the robot starts to 
move away from its goal in order to avoid the moving 
object, part (b) and (c). When the object has moved 
away from the robot's goal, the robot can again reach 
its goal position, as shown in part (d). 

3.2 Expanding Objects 

Objects that expand or contract are simple to model. 
The only requirement is that the von Neumann bound- 
ary condition is satisfied on the dynamically chang- 
ing boundary. Thus, if a boundary expands/contracts 
with a velocity V the normal velocity of the bound- 
ary must be V .  The magnitude of the normal vector 
is then V on the boundary and is made to drop off 
with the inverse of the distance to the boundary, as 
potentials obeying Laplace's equation drops off with 
the inverse of the distance. Such objects might be 
useful in situations where, e.g., one needs to avoid liq- 
uids that are dripping on a surface, or to incorporate 
time-varying safety zones. 

Figure 5 shows how the robot navigates around 
an expanding object using this method. 

. 
Figure 5: Robot moving over an expanding object. 

3.3 Rotating Objects 
Determining the velocity potential for a rotating ob- 
ject is more complicated. It can, however, be shown 
that the stream function on the boundary of an object 
rotating with an angular velocity w around the origin, 
and a translational velocity U = [Uz iU,] = Ue-jo in 
a static fluid, is given by (see I121 for a proof): 

2i$ = -Uzei" + Uiei" + iwz~ , (17) 

where B is the complex conjugate of z. 
Now, if we suppose that the domain outside a con- 

tour C in the z-plane to be mapped conformally on to 
the outside of the unit circle I</ = 1 in a complex <- 
plane, by the relation 

= f (8  > (18) 

the points at infinity in the z-plane and <-plane corre- 
spond. Therefore, for the liquid to be at rest at infin- 
ity, the complex potential w cannot contain positive 
powers of z (or e) when expanded in a power series in 
z (or 0. Now, we define a general point on the unit 
circle boundary by U = eie, where the stream function 
in equation (17) must apply. Thus, by equations (17) 
and (18), the stream function $ on the boundary C 
becomes 

2i$~ = B(u) 
= -Uf(a)_e-Z" + Uf(l/a)eia+ (19) 

The function B(u) is called the boundary fi-nc- 
t i on  and can be expanded in negative powers of U ,  

grouped in B1 ( U ) ,  and in positive powers of LT, grouped 
in &(U). That is, B(a)  = &(U) + &(U). It can fur- 
ther be shown, that if the fluid is moving with velocity 
-U and the object is rotating with angular velocity 
w about the point zo, the complex potential that sat- 
isfies the boundary condition (equation (17)) is then 
(see [12] for proof): 

iWf(U)f(l/U) * 

w = ~1(() + U f ( ( ) e b i o  - iwi,-,z . (20) 
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To get the velocity field for the contour C rotating 
about the point zo in a fluid flowing uniformly with 
velocity Ue--ia we use equation (6) .  

Figure 6: The robot navigates to  its goal at ‘*’, avoid- 
ing the rotating ellipse. The robot’s goal is so high 
that the robot decides to go above the rotating ellipse. 

I 

Figure 7: The robot navigates to  its goal at ‘*’, avoid- 
ing the rotating ellipse. The robot at first tries to go 
above the ellipse, but is forced to go below the ellipse. 

The effect of a rotating object can be illustrated 
by two simple examples where we let a robot navigate 
to its goal in the presence of a rotating ellipse. Fig- 
ures 6 and 7 illustrate how a circular robot navigates 
around a rotating ellipse, depending on its goal posi- 
tion. The initial position of the robot is to the left, 
and is the same for both cases. The initial position 
and the angular velocity of the ellipse is also the same 
in both figures. In figure 6 the robot moves in the 
correct general direction initially and passes above the 
rotating ellipse. In figure 7, however, the robot ini- 
tially believes it can pass above the ellipse (part (b)), 
but it is unable to, and is forced to move below the 
ellipse (part (c) ) and to its goal in part (d). 

3.4 Interaction Among Obstacles 
The main problem left to solve is how to deal with 
situations where objects move in such a manner as to 
close an existing path. A solution to this problem is to 
add circulation around the objects. By changing the 
tangential velocity on the boundary, we are able to 
move the streamlines around the object. In particular 
we are able to move the stagnation lines. As men- 
tioned, all objects have one and only one stagnation 
line. The problem is, therefore, to  make a smooth tran- 
sition from two stagnation lines to  one when two ob- 
jects come in contact and cuts a path. This is achieved 
by making the surface of the objects “rotate” in oppo- 
site directions as the two objects approach each other. 

Figure 8: A point robot moves from the left to  its goal 
at ‘*’. 

An example of using this method is given in figure 
8, where a point robot starts at the left, and the goal 
position is at the right marked by a ‘*’. The two circles 
move against each other. Initially the robot believes 
it can take the shortest path between the two objects 
(figure 8 (a)-(b)). However, as the robot moves closer 
to the two objects and the two objects are approach- 
ing each other, the circulation around each object is 
increased and the stagnation lines of both are moved to 
the center line between the two objects. Finally merg- 
ing the two stagnation lines into one. At (b) the robot 
feels this effect and realizes it can not pass between 
the two objects, and takes the shorter path around 
the smaller circle to its goal in part (c). 

4 Concluding Remarks 
In this paper we introduce the use of harmonic func- 
tions for real-time path planning in dynamic environ- 
ments. 

This method inherits the attractive features of 
harmonic functions for path planning. The use of ana- 
lytical solutions to Laplace’s equation in dynamic envi- 
ronments makes real-time path planning possible, and 
modifications allow for several moving objects as well. 
The method requires a global model of the environ- 
ment. 

In static cases, a harmonic potential will have no 
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local minima, a path will not intersect with any object 
and a convergence to the goal position is guaranteed 
if the goal position is reachable. The same features of 
harmonic potentials carries over to the dynamic case 
at every instant. That is, if there exist a path at the 
current time leading to the goal that does not inter- 
sect with any obstacle, the robot will move along this 
path. In dynamic environments it is not possible to 
guarantee convergence to the goal position or collision 
avoidance for all dynamic environments over some fi- 
nite time. This path planner only considers the pos- 
sible paths at each instant, thus making it possible 
to trap it by alternating opening and closing existing 
paths. 

Several extensions to this work are possible, in 
addition to experimental evaluation. Utilization of 
harmonic potentials for control of robots with mul- 
tiple d.0.f. should be developed. Taking the cur- 
vature of the streamlines into account, and moving 
away from areas of high curvature is an attractive ap- 
proach. This can be seen as locally applying elastic 
bands on the path, similarly to [l]. Extensions to n- 
dimensions should also be studied. Further, moving 
along a fluid path is not a necessary constraint for 
a robot. Thus, the fluid paths may be varied so as 
to optimize some criteria while still guaranteeing the 
absence of local minima, through the introduction qf 
intermediate goals or possibly by regularization meth- 
ods. 
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