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Abstract: Invention of polymerase chain reaction (PCR) technology by Kary Mullis in 1984 gave birth to real-time PCR. 

Real-time PCR — detection and expression analysis of gene(s) in real-time — has revolutionized the 21
st
 century bio-

logical science due to its tremendous application in quantitative genotyping, genetic variation of inter and intra organisms, 

early diagnosis of disease, forensic, to name a few. We comprehensively review various aspects of real-time PCR, includ-

ing technological refinement and application in all scientific fields ranging from medical to environmental issues, and to 

plant. 
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BACKGROUND 

 The invention of polymerase chain reaction (PCR) by 
Kary Mullis in 1984 was considered as a revolution in sci-
ence. Real-time PCR, hereafter abbreviated RT PCR, is be-
coming a common tool for detecting and quantifying expres-
sion profiles of selected genes. The technology to detect 
PCR products in real-time, i.e., during the reaction, has been 
available for the past 10 years, but has seen a dramatic in-
crease in use over the past 2 years. A search using the key 
word real-time and PCR yielded 7 publications in 1995, 357 
in 2000, and 2291 and 4398 publications in 2003 and 2005, 
respectively. At the time of this writing, there were 3316 
publications in 2006. The overwhelming majority of the cur-
rent publications in the field of the genomics have been deal-
ing with the various aspects of the application of methods in 
medicine, with the search for new techniques providing 
higher preciosity rates and with the elucidation of the princi-
pal biochemical and biophysical processes underlying the 
phenotypic expression of cell regulation. Series of RT PCR 
machines have also been developed for routine analysis  
(Table 1) [1]. 

 The advancements in bioscience during the last century 
help in comprehensive understanding of information about  
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interacting network of various gene modules that coordi-
nately carry out integrated cellular function in somewhat 
isolated fashion, i.e., the molecular mechanism of pheno-
typic expression of genotype. The function of a major part of 
the genome is still unknown and the relationship between 
enzymes, signaling substances and various small molecules 
is still rather limited. In order to fully understand the regula-
tion of metabolism and to alter it successfully more informa-
tion of gene expression, recognition of DNA by proteins, 
transcription factors, drugs and other small molecules is re-
quired. 

 Gene expression profile has been widely used to address 
the relationship between ecologically influenced or disease 
phenotypes and the cellular expression patterns. PCR–based 
detection technologies utilizing species specific primers are 
proving indispensable as research tools providing enhanced 
information on biology of plant/microbe interactions with 
special regard to the ecology, aetiology and epidemiology of 
plant pathogenic microorganisms. 

 In general, laboratory experience with nested PCR for 
diagnostics on presence of microbial DNA in extracts from a 
diverse range of plant matrices (including soils) offers im-
proved sensitivity and robustness, particularly in the pres-
ence of enzyme inhibitors. In order to meet consumer and 
regulatory demands, several PCR-based methods have been 
developed and commercialized to detect and quantify mRNA 
in various organisms. Most of them are based on the use of 
internal transcribed spacer regions within the nuclear ribo-
somal gene clusters as these are particularly attractive loci 
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for the design of PCR–based detection assays. These clusters 
are readily accessible using universal primers and typically 
present in high copy number in the cell, whilst often exhibit-
ing sufficient inter-specific sequence divergence for the de-
sign of species specific primers. The limit of detection is 
usually a few alien molecules even in the presence of very 
high levels of background DNA. 

 The high sensitivity and specificity of RT PCR allow it to 
be the first choice of scientists interested in detecting dynam-
ics of gene expression in plant/microbe associations (Table 

2). 
 

Table 2. Obligate Pathogen Detection Using Real-Time PCR 

Pathogen Reference 

Fungi 

Melampsora medusae Boyle et al., 2005 [152] 

Synchytrium endobioticum van den Boogert et al., 2005 [153] 

Bacteria 

Chlamydia pneumoniae Kuoppa et al., 2002 [154] 

Ehrlichia species Doyle et al., 2005 [155] 

Burkholderia species Ulrich et al., 2006 [156] 

Coxiella burnetii Klee et al., 2006 [157] 

Neisseria gonorrhoeae Tobiason and Seifert , 2006 [158] 

Mycobacterium  

Mycobacterium leprae Groathouse et al., 2006 [159] 

 

 The RT PCR allows quantitative genotyping and detec-
tion of single nucleotide polymorphisms and allelic dis-
crimination as well as genetic variations when only a small 
proportion of the sample carrying the mutation. The use of 
multiplex PCR systems using combined probes and primes 
targeted to sequences specific to counterpartners of plant/ 

microbe associations is becoming more important than stan-
dard PCR, which is proving to be insufficient for such living 
systems.  

 The multiplex RT PCR is suitable for multiple gene iden-
tification based on the use of fluorochomes and the analysis 
of melting curves of the amplified products. This multiplex 
approach showed a high sensitivity in duplex reactions and is 
useful alternative to RT PCR based on sequence-specific 
probes, e.g., TaqMan chemistry (Table 3). 

 Although RT PCR is a powerful technique for absolute 
comparison of all transcripts within the investigated tissue, it 
has a few problems as it depends critically on the correct use 
of calibration and reference materials. Successful and routine 
application of PCR diagnostics to tissues of plant/microbe 
consortium is often limited by the lack of quality template 
due to inefficient RNA extraction methodologies, but also 
the presence of high levels of unidentified, co-precipitated 
PCR inhibitory compounds, presumably plant polyphenolics 
and polysaccharides (Table 4).  

 The sampling procedures are of great importance towards 
the validation of analytical methods for analysis. The largest 
single source of error in the analysis of plant/microbe asso-
ciations is the sampling procedure (Fig. 1). Sampling risks 
can be managed by choosing an appropriate sample size for 
analysis. The extraction and purification of nucleic acids is a 
crucial step for the preparation of samples for PCR. Current 
methods for gene expression studies typically begin with a 
template preparation step in which nucleic acids are freed of 
bound proteins and are then purified. Many protocols for 
nucleic acid purification, reverse transcription of RNA 
and/or amplification of DNA require repeated transfers from 
tube to tube and other manipulations during which materials 
may be lost. 

Of the range of protocols reported for the extraction of 
DNA/RNA from plant material, most are complicated and 
time consuming in application. The protocols should be  
perused case by case and to be adopted judiciously for a par-
ticular plant species. In this respect major variations exist in 
this step as compared to samples of mammalian origin. Isola-
tion of RNA is particularly challenging because this mole-

Table 1. Real-Time Cyclers Available in the Market and their Characteristics 

Cycler Source Detector Applications No. of Samples Footprint 

ABI Prism 7000 Tungsten-halogen CCD camera SYBR, FAM, HEX, TET, TAMRA, VIC 96 39 51 cm 

Bio-Rad iCycler iQ Tungsten-halogen CCD camera SYBR, FAM, HEX, TE, TA, VIC 96 33 62 cm 

Cepheid Smartcycler LED Silicon detectors SYBR, FAM, TET, ROX, Cy3, Cy5 16 30 25 cm 

Corbett Research  

Rotor-Gene 3000 
LED PMT SYBR, FAM, HEX, TET, TAMRA, VIC 72 38 48 

MJ Research DNA  

Engine Opticon 2 
LED 2 PMTs SYBR, FAM, HEX, TET, TAMRA, VIC 96 34 47 cm 

Roche LightCycler 2 LED Fluorimeters SYBR, FAM, HEX, VIC, LightCycler Red Stains 32 30 45 cm 

Stratagene Mx3000P Tungsten-halogen 1 PMT scanner SYBR, FAM, HEX, TET, TAMTA, VIC 96 33 46 cm 

Techne Quantica Halogen PMT SYBR, FAM, HEX, TET, TAMRA, VIC 96 45 50 cm 



236    Current Genomics, 2007, Vol. 8, No. 4 Deepak et al. 

cule is sensitive to elevated temperatures and is degraded by 
RNAses, which therefore have to be immediately inactivated 
upon cell lysis. Design of species or race specific primers 
from inter-specific universal internal transcribed spacer 
primers is also needed. 

 

Table 4. PCR Inhibitory Compounds 

Factors Influencing Polymerase Chain Reaction 

 

Inhibitor Enhancer 

Hemoglobin, Urea, Heparin 
DMSO, Glycerol, BSA, Formamide,  

PEG, TMANO, TMAC 

Organic or phenolic compounds 

Special commercial enhancers, 

Gene 32protein, TaqExtender,  

Perfect Matchr 

Glycogen, Fats, Ca2+ E. coli ss DNA binding 

Tissue matrix effects  

Laboratory items, powder, etc  

 

 There are numerous commercially available kits for PCR. 
The data output from certain RT PCR machines gives an 
immediate appreciation of the kinetics of the PCR occurring 
within the tube and, in addition, gives an instantaneous vis-
ual representation of the amount of PCR product present 
following each cycle. Following a single RT PCR, the data 
extracted give the type of information that was only previ-
ously inferable from multiple conventional PCRs. Detailed 
information is available from the respective companies' web-
sites about the protocols and output information generated. 

 In this review, we highlight some of the general criteria 
and essential methodological components of PCR technolo-
gies, for rapid functional genomics. Examples are provided 
to illustrate the utility of results of plant pathology studies 
and validation of targets for mammalian studies. 

 

 

 

 

 
Fig. (1). Sampling procedures are of great importance towards the 

validation of analytical methods for analysis. 

APPLICATIONS 

Medical Science 

 Nucleic acid amplification techniques have revolution-
ized diagnostics. Current technologies that allow the detec-
tion of amplification in real-time are fast becoming clinical 
standards, particularly in a personalized diagnostic context 
[2]. On the way to personalized medicine, we may stepwise 
improve the chances of choosing the right drug for a patient 
by categorizing patients into genetically definable classes 
that have similar drug effects (as, for example, human races, 
or any population group carrying a particular set of genes) 
[3]. Adverse drug reactions (ADRs) are a significant cause of 
morbidity and mortality. The majority of these cases can be 
related to the alterations in expression of clinical phenotype 
that is strongly influenced by environmental variables [4]. 
Application of RT PCR combined with other molecular 
techniques made possible the monitoring of both therapeutic 
intervention, and individual responses to drugs. However, it 
is wise to expect that, even after we have reached the goal to 
establish personalized medicine, we will not have eliminated 
all uncertainties [5]. The needs in clinical application of mo-
lecular methods initiated important developments in diagnos-
tics stimulating progress in other branches of science. The 
introduction of these new methods in fields of human prac-
tices induced rapid expansion of molecular approaches. 

Cancer 

 Cancer arises from the accumulation of inherited poly-
morphism (SNPs) and mutation and/or sporadic somatic 
polymorphism (i.e. non-germline polymorphism) in cell cy-
cle, DNA repair, and growth signaling genes [6]. Despite 

Table 3. Multiplexing Using Real-Time PCR 

Purpose Reference 

Simultaneous detection of mycorrhizal and pathogen DNA Bohm et al., 1999 [160] 

Detection and Quantification of Transgenes in Grains Permingeat et al., 2002 [161] 

Monitoring of host-pathogen dynamics Hietala et al., 2003 [162] 

Mycotoxin producing fungi Bluhm et al., 2004 [163] 

Simultaneous detection of Anaplasma phagocytophilum and Borrelia burgdorferi Courtney et al., 2004 [164] 

Discrimination of viral infections Templeton et al., 2004 [30] 

Heat-labile and heat-stable toxin genes in enterotoxigenic Escherichia coli Grant et al., 2006 [165] 

Pathogen colonization in the bark and wood of Picea sitchensis Bodles et al., 2006 [166] 

Detection of norovirus genogroups Hoehne and Schreier, 2006 [167] 
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advances in diagnostic imaging technology, surgical man-
agement, and therapeutic modalities, cancer remains a major 
cause of mortality worldwide. Early detection of cancer and 
its progression is difficult due to complex multifactorial na-
ture and heterogeneity [7]. A reliable method to monitor 
progress of cancer therapeutic agents can be of immense use. 
RT PCR, currently the most sensitive method to quantify the 
specific DNA makes it possible to detect even a single mole-
cule and diagnostics become feasible with lower amounts of 
complex biological materials compared to traditional meth-
ods [8, 9]. Research has been well documented in cancer 
research [10, 11, 12]. Most of the commonly occurring can-
cers have been detected by measuring marker gene expres-
sions or by using probes. The sensitivity of single-marker 

assays is not high enough for clinical applications [13]. 
Adopting a multigene panel for most common malignant 
diseases (carcinoma of bladder, breast cancer, colorectal 
cancer, endometrial carcinoma) significantly increased the 
accuracy of diagnosis that is extremely important as each of 
them had excellent prognosis if diagnosed at early stage [14]. 
The use of new technology and methodic developments has 
been intensively started with diseases of complicated diag-
nosis (Table 5). During the first five years after introduction 
of RT PCR six of ten applications were made for detecting 
leukemias. Recently numerous kits are marketed for clinical 
tests, and these developments promoted the use of RT PCR 
in other fields of human practices.  

Table 5. Time Course of Developments in Application of Real-Time PCR Used for Cancer Diagnosis 

Implications of RT PCR Reference 

Molecular diagnosis of chronic myeloid leukemia  Menskin et al., 1998 [168] 

Molecular diagnosis of hematological malignancies  Morgan and Pratt, 1998 [169] 

Molecular diagnosis of follicular lymphoma   Luthra et al., 1998 [170] 

Molecular diagnosis of non-Hodgkins lymphoma Rambaldi et al., 2005 [171] 

Diagnostics of acute lymphoblastic leukemia Eckert et al., 2000 [172] 

Real-time quantitation of E2A-Pbx1 fusion gene; leukemia  Pennings et al., 2001 [173] 

Prostate-specific antigen detection Straub et al., 2001 [174] 

Diagnosis of breast carcinoma cells in peripheral blood Aerts et al., 2001 [175] 

Quantification of human herpesvirus 8, Kaposi's sarcoma; multicentric Castleman's disease Boivin et al., 2002 [176] 

Analysis of low abundant point mutations in K-ras oncogenes Wabuyele et al., 2003 [177] 

Hematologic neoplasia,  human cytomegalovirus Ohyashiki et al., 2003 [178] 

Molecular diagnosis of neuroblastoma Cheung et al., 2003 [179] 

Quantitative analysis of methylated alleles, retinoblastoma Zeschnigk et al., 2004 [180] 

Prostate cancer identification  Jiang et al., 2004 [181] 

Diagnostics of minimal residual disease; chronic myeloid leukemia, acute lymphoblastic leukemia 
Pongers-Willemse et al., 1998 [182];  

Preudhomme et al., 1999 [183] 

Chronic myeloid leukemia Khalil, 2005 [184] 

Lung cancer, oncogene mutations  Schmiemann et al., 2005 [185] 

Acute respiratory syndrome, chronic myeloid leukemia colorectal cancer  Bustin and Mueller, 2005 [186] 

Cutaneous melanoma Lewis et al., 2005 [187] 

ATP-binding cassette transporters; cystic fibrosis; familial HDL deficiency; 

 recessive retinitis pigmentosa, acute myeloid leukemia  

Schuierer and Langmann, 2005  

[188] 

Thyroid cancer  Hesse et al., 2005 [189] 

Allelic discrimination in prenatal  diagnosis,  single nucleotide polymorphism, cytokine gene expression  Arya et al., 2005 [190] 

Cancer diagnostics, non-Hodgkin lymphomas, B-cell lymphoma, follicular lymphoma  Stahlberg et al., 2005 [9] 

Human papillomavirus Molijn et al., 2005 [191] 

Rapid detection of Hippel-Lindau disease  Hoebeeck et al., 2005 [13] 

Normalization of gene expression measurements in tumor tissues de Kok et al., 2005 [192] 

Application of RT-PCR to intraoperative cancer diagnostics Raja et al., 2005 [193] 
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Virology 

 Majority of research using RT PCR has been made for 
detecting or quantifying viruses from viral infected human 
specimens. Various studies have provided protocols for de-
tecting and quantifying viruses especially related to human 
diseases [15]. Detection of HSV1 and HSV2 was achieved 
by using TaqMan probes and it was in many ways alternative 
to conventional nested PCR assays [16]. Recently, a detec-
tion, quantification and differentiation between HSV1 and 
HSV2 genotypes were achieved using primers and probes 
(Light cycler) targeting HSV DNA polymerase gene [17]. 
Furthermore, genital herpes, which is the most common 
sexually transmitted disease (STD) around the world, ac-
counts for 20 % of the STDs in United States alone [18]. RT 
PCR detection of HSV of genital and dermal specimens has 
also been well documented [19-25]. RT PCR showed supe-
rior sensitivity in detecting varicella-zoster virus compared 
to cell culture assays in dermal specimens [21, 26, 27]. Fur-
ther RT PCR has been standardized for studying the interac-
tions between virus and the host, which in turn can provide a 
reliable means to study the efficacy of antiviral compounds 
or to determine the chronic conditions [28, 29]. Immuno-
deficient patients tend to harbor several co-infections; under 

this, detection of multiple pathogens is essential for therapy 
(Table 6). RT PCR multiplex assays have been developed for 
viral genotype differentiation [17, 30]. 

Bacteriology 

Traditionally, initial antibiotic therapy was based on identi-
fying the Gram stain classification. High variability that ex-
isted in identification of bacterial pathogens by mere obser-
vations was corrected by use of conventional PCR-based 
methods; later, this was further fastened by use of RT PCR. 
Fluorescence hybridization probes

 
allowed a fast detection of 

low amounts of bacterial DNA and a
 
correct Gram stain clas-

sification [31]. RT PCR has been shown as advantageous 
over other techniques (immunoassay or culture method) for 
detecting the bacteria irrespective of type of clinical speci-
men and especially those which are difficult to culture or 
slow growing. A quicker conformation of the pathogen will 
facilitate early prescription of appropriate antibiotics. Pub-
lished accounts indicate that RT PCR was faster and sensi-
tivity was greater or equal in some cases when compared to 
conventional methods. 

 Identification of mycobacterial infections earlier on cer-
tain occasions lacked specificity and sensitivity while em-

Table 6. Application of Real-Time PCR for Virus Diagnosis 

Implications of RT PCR Reference 

Detection of Herpesvirus in central nervous system, genital and dermal regions Ryncarz et al., 1999 [19] 

Highly sensitive detection of Varicella-zoster virus from dermal specimens Epsy et al., 2000b [21] 

Detection and quantification of cytomegalovirus Aberle et al., 2002 [194] 

Epstein barr virus Niesters et al., 2000 [195] 

Enterovirus Verstrepen et al., 2001 [196] 

Polymavirus Whiley et al., 2001 [197] 

Parovirus Schmidt et al., 2001 [198] 

West nile virus Briese et al., 2000 [199] 

Respiratory viruses Ward et al., 2004 [200] 

Poxviruses Espy et al., 2002 [201] 

BK virus Leung et al., 2002 [202] 

Hepatitis virus Costa-Mattioli et al., 2002 [203] 

Parapoxviruses Nitsche et al., 2006 [204] 

Dengue virus Chien et al., 2006 [205] 

HIV Desire et al., 2001 [206] 

Rift Valley virus Garcia et al., 2001 [207] 

Parainfluenza virus Hu et al., 2005 [208] 

SAR associated coronavirus Keightley et al., 2005 [209] 

St Louis encephalitis virus Lanciotti and Kerst, 2001 [210] 

Denge virus serotype detection Shu et al., 2003 [211] 

Influenza virus serotype detection Templeton et al., 2004 [30] 
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ploying conventional methods [32]. Mycobacterium species 
of common interest and so far detected as well as quantified 
by RT PCR include Mycobacterium tuberculosis, M. avium, 
M. bovis, M. bovis BCG, M. abscessus, M. chelonae and M. 
ulcerans [33-40]. Further, detection of antitubercular resis-
tant isolates that were usually detected by broth dilution 
method have been replaced by RT PCR targeting mutant 
genes isoniazid (katG), rifampin (rpoB) and ethambutol 
(embB) from culture or clinical specimens [41-45]. 

 Bacteria represent the potential agents for biological war-
fare. Some RT PCR assays (Light Cycler) have allowed the 
use of autoclaved samples for immediate detection of Bacil-
lus species causing anthrax [46-47]. However, clinical stud-
ies are required

 
to determine the usefulness of these tests for 

the rapid identification
 
of this pathogen directly from human 

specimens. 

Fungi 

 Major fungi causing infections in humans are Aspergillus 
species (A. fumigatus, A. flavus, A. niger, A. nidulans, A. 
terreus, A. versicolor), Candida species (C. albicans, C. dub-
liniensis), and Pneumocystis jiroveci. The conventional 
methods developed for detection of these infectious fungi are 
culturing, histopathology/phenotypic assays/biochemicals/ 
microscopy, conventional PCR, nucleic acid probe, CFU 
quantification, broth dilution and staining followed by mi-
croscopic observations. The efficacy of these methods seems 
to be slower on many occasions. The RT PCR for detecting 
and measuring the same proved to be faster on many in-
stances irrespective of the clinical specimen [48-53]. Quanti-
tative or qualitative RT PCR assays have also been devel-
oped for other fungi such as Coccidioides sp., Conidiobolus 
sp., Cryptococcus sp., Histoplasma sp., Pneumocystis sp., 
Paracoccidioides sp., and Stachybotrys sp. [54-61]. 

Protozoa 

 Molecular biology (and particularly PCR) has been in-
creasingly used for the diagnosis of parasitic protozoa of 
medical interest [62]. RT PCR and other technical improve-
ments in the past decade permit precise quantification and 
routine use for the diagnosis facilitating the study of parasitic 
populations, although the use of this method for malaria re-
mains limited due to high cost [62]. RT PCR assays for 
clinical application have been described for detecting amoe-
bic dysentery [63], chagas' disease [64], cutaneous and vis-
ceral leishmaniasis [65], giardiasis [66], Cyclospora cayeta- 
nensis [66] causing prolonged gastroenteritis [67], toxoplas-
mosis in the amniotic fluid of pregnant women [68], and in 
immuno-compromised patients [69]. Protozoans cause sev-
eral diseases, which are endemic in large parts of the world. 
Further genome sequencing efforts are requested as many 
parasitologists work on organisms whose genomes have 
been only partially sequenced and where little, if any, anno-
tation is available [70]. 

Veterinary 

Viruses 

 Animal models have served investigators from decades to 
understand several biological functions of humans including 
disease diagnosis and to take appropriate measures for ther-

apy. The development of quantitative reverse transcription-
PCR, such as RT RT-PCR techniques, approach theoretical 
limits of per reaction sensitivity, further increments in the 
sensitivity of measurements of the pathogens [71-72]. Infec-
tion of domestic cats with the feline immunodeficiency virus 
(FIV) results in a fatal immunodeficiency disease, and is 
similar to the human immunodeficiency virus 1 (HIV-1) in 
humans. This has helped the progress of in-depth research on 
this morphologically and genetically resembling virus espe-
cially in development of candidate vaccines. Highly sensitive 
detection and quantification assays have been developed by 
RT PCR methods for this virus [71, 73]. Simian immunode-
ficiency virus (SIV) detection was earlier done by branched-
chain DNA assay that was quite expensive, but with low 
sensitivity (1500 viral RNA copies/ml). Leutenegger and co-
workers developed a TaqMan RT RT-PCR assay which 
could detect with higher sensitivity (50 viral RNA copies/ml)
[74]. Feline coronavirus (FcoV) is known to be more preva-
lent in cat population and is a fatal infectious disease. Con-
trol measures include detection as well as separation of in-
fected populations or vaccination. A reliable absolute quanti-
fication real-time TaqMan probes were designed to detect 
important laboratory and field strains of FcoV by Gut and 
co-workers [75]. Further, tick-borne zoonotic pathogens are 
well known in many areas all over the world [76]. Clinical 
diagnosis of tick-borne diseases is difficult due to unusual 
clinical signs. Early diagnosis and treatment is necessary to 
prevent fatal infections and chronic damage to various tis-
sues. A series of new projects in this area have yielded detec-
tion and quantification methods for important tick borne 
pathogens [77-79]. 

 Other studies on various aspects of veterinary science 
have been performed using RT PCR for instance, effects of 
viral infections on neural stem cell viability [80], detection 
of several viruses [81-83], innate immune responses to virus 
infection [84], factors influencing viral replication [85], gene 
expression profiling during infection [86], characterization 
of viruses [87] are a few to mention.  

Bacteria 

 Insects tend to harbor Corynebacterium pseudotubercu-
losis and are responsible for the disease spread in dairy farms 
[88]. An investigation on identification of insect vectors 
spreading Corynebacterium pseudotuberculosis by TaqMan 
PCR assay (PLD gene) supported the hypothesis that this 
pathogen may be vectored to horses by Haematobia irritans, 
Stomoxys calcitrans, and Musca domestica. The organism 
can be identified in up to 20 % of houseflies in the vicinity 
of diseased horses [89]. 

Mycoplasma 

 The prevalence, clinical manifestations, and risk factors 
for infection for all three feline hemoplasma species were 
performed by Willi and co-workers [90]. Diagnosis, quanti-
fication, and follow-up of hemoplasma infection in cats were 
performed using three newly designed sensitive RT PCR 
assays. Efficacy Marbofloxacin drug was studied in cats 
against Candidatus Mycoplasma haemominutum, which re-
vealed decreased copy number of the pathogen and no corre-
lation was evident on Candidatus Mycoplasma haemominu-
tum in chronic FIV infection [91-92]. 
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Food Microbiology and Safety 

 Mycotoxins are the major food contaminants and they 
have become a great concern worldwide due to their several 
ill effects [93]. In order to overcome this problem, a rapid, 
cost-effective, and automated diagnosis of food-borne 
pathogens throughout the food chain continues to be a major 
concern for the industry and public health. An international 
expert group of the European Committee for Standardization 
has been established to describe protocols for the diagnostic 
detection of food-borne pathogens by PCR [94]. A standard-
ized PCR-based method for the detection of food-borne 
pathogens should optimally fulfill various criteria such as 
analytical and diagnostic accuracy, high detection probabil-
ity, high robustness (including an internal amplification con-
trol [IAC]), low carryover contamination, and acceptance by 
easily accessible and user-friendly protocols for its applica-
tion and interpretation [95]. RT PCR has the potential to 
meet all these criteria by combining amplification and detec-
tion in a one-step closed-tube reaction. A high throughput 
identification of Fusarium at genus level or distinguishing 
species [96-97] has been published. Salmonella, one of the 
most common causes of food-borne disease

 
outbreaks due to 

its widespread occurrence and several sources have been 
known to harbor this pathogen [98]. A duplex real-time 
SYBR Green LightCycler PCR (LC-PCR) assay was devel-
oped for 17 food/water borne bacterial pathogens from stools 
by Fukushima and co-workers [99-100]. The pathogens ex-
amined were enteroinvasive Escherichia

 
coli, enteropatho-

genic E. coli, enterohemorrhagic E. coli, enterotoxigenic
 
E. 

coli, enteroaggregative E. coli, Salmonella spp., Shigella
 

spp., Yersinia enterocolitica, Yersinia pseudotuberculosis,
 

Campylobacter jejuni, Vibrio cholerae, Vibrio parahaemo-
lyticus,

 
Vibrio vulnificus, Aeromonas spp., Staphylococcus 

aureus, Clostridium
 

perfringens, Bacillus cereus, Plesio-
monas shigelloides and Providencia alcalifaciens. Further, 
detection assays for Clostridium botulinum applicable to 
both purified DNA and crude DNA extracted from cultures 
and enrichment broths as well as DNA extracted directly 
from clinical and food specimens were developed [101]. 
Similarly, RT PCR has been used to quantify the food-borne 
pathogen Listeria monocytogenes by first incorporating an 
IAC [102]. 

 Food borne viral infections are one of the leading dis-
eases in humans worldwide. Currently over two billion peo-
ple have evidence of previous Hepatitis B virus infection and 
350 million have become chronic carriers of the virus [103]. 
Successful detection of this virus from serum and plasma, by 
RT PCR has been developed. This method is useful for 
monitoring the efficacy of Hepatitis B virus therapy and 
screening human population in endemic areas. Other impor-
tant food borne viruses quantified by this technique are Ro-
tavirus [104] and gastroenteritis virus [105]. However, detec-
tion or quantification of these viruses directly from various 
types of food samples seems to be a difficult task. 

Forensic Science 

 Advanced technologies for DNA analysis using short 
tandem repeats (STR) sequences has brought about a revolu-
tion in forensic investigations. One of the most common 
methods used is PCR, which allows accurate genotype in-

formation from samples. Forensic community relied on slot 
blot technique which is time consuming and labor intensive. 
RT PCR has become a well-recognized tool in forensic in-
vestigations. Improved amplification and quantification of 
human mtDNA was accomplished by monitoring the hyper-
variable region (HV1) using fluorogenic probes, and the 
same study was also extended to discriminate sex. A duplex 
RT qPCR assay was developed for quantifying human nu-
clear and mitochondrial DNA in forensic samples and this 
method also was efficient for highly degraded samples [106]. 
Repetitive Alu sequence based RT PCR detection has been 
developed and have proved to be advantageous compared 
with other methods with detection limits as low as 1 pg 
[107]. MGB Eclipse primers and probes as well as QSY 7-
labeled primer PCR method have been designed for Alu se-
quence [108-109]. Similarly, RT PCR assays to quantify 
total genomic DNA and identify males from forensic sam-
ples with high efficiency have been standardized [110]. Re-
cently, human DNA quantifier and qualifier kits have been 
developed and validated. The efficiency was either compara-
ble or superior to methods available [111]. Forensic samples 
are often contaminated with PCR inhibitors and DNA extrac- 
tion methods fail to exclude the contaminants. A computa- 
tional method that allows analysts to identify problematic 
samples with statistical reliability was standardized by using 
tannic acid and comparing the amplification efficiencies of 
unknown template DNA samples with clean standards [112]. 
Further, methods have also been standardized for assessing 
the DNA degradation in forensic samples [113].  

Environmental Issues 

 RT PCR is a convenient method for detection of the mo-
bility of genetic elements. The worldwide increasing envi-
ronmental pollution is pressing us to find new methods for 
elimination of undesirable chemicals. The application of 
microorganisms for the biodegradation of synthetic com-
pounds (xenobiotics) is an attractive and simple method. 
Unfortunately, the majority of these pollutants are chemi-
cally stable and resistant to microbial attack. The isolation of 
new strains or the adaptation of existing ones to the decom-
position of xenobiotics will probably increase the efficacy of 
microbiological degradation of pollutants in the near future. 
The widespread application of combined techniques using 
microbiological decomposition and chemical or physical 
treatments to enhance the efficacy of the microbiological 
decomposition can also be expected. The cloning and ex-
pression in Escherichia coli of an 'azoreductase' from vari-
ous species have been reported (Table 7). The exoenzymes 
of white-rot fungi have also been objects of genetic engi-
neering. The laccase of various filamentous fungi was suc-
cessfully transmitted into yeast. These manipulations en-
hanced the capacity of microorganisms to decompose pol-
yaromatic compounds (PAC). 

 The expression of oxidases from higher plants augmented 
the catabolic potential of microbes [114] and in turn micro-
bial genes straightened the tolerance of higher plant to Poly 
R-487 [115-116]. Plants tolerant to PACs may be useful in 
phytoremediation because they could provide a rhizosphere 
that was suitable for colonization by microbes that are effi-
cient degraders of aromatic structures. Moreover, the plant 
derived compounds can induce production of fungal redox 
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enzymes. The C-hydroxylation of aromatic rings by mam-
malian monoxygenases facilitates subsequent microbial deg-
radation. Human cytochrome P450 enzymes are now rou-
tinely expressed as recombinant proteins in many different 
systems [117-118]. The capacity of such recombinants to 
catabolize PACs has been tested. It is clear that complexity 
of association involved in the complete degradation should 
be increased with increasing complexity of the chemical 
structure of xenobiotics. The genetically engineered micro-
organisms can accomplish degradation of xenobiotics, which 
persist under normal natural conditions. In natural habitats, 
complex microbial/macrobial communities carry out biodeg-
radation. Within them, a single organism may interact 
through inter-specific transfer of metabolites. This co-
metabolic potential may be complementary so that extensive 
biodegradation or even mineralization of xenobiotics can 
occur [119]. In this respect, deterioration of industrial and 
municipal effluents in constructed wetlands with multi-site 
catabolic potential is a promising possibility. Mobilizing 
specific genes, encoding nonspecific multifunctional degra-
dative sequences, may decisively increase the degradative 

potential of natural synthropic community against synthetic 
pollutants and persisting natural toxins. The use of recombi-
nants that harbor deteriorating determinants from other spe-
cies can essentially enhance the capacity of remediation 
technologies. However, the widespread use of genetically 
modified organism needs continuous survey of gene trans-
mission, and for that RT PCR is a plausible and rapid 
method.  

Plant 

Validation of Microarray Results 

 RT PCR has been employed to study the gene expression 
patterns during several stresses leading to activation of genes 
relating to signal transduction, biosynthesis, and metabolism. 
Nitrogen deprivation response in Arabidopsis was analyzed 
by profiling transcription factors using Affymetrix ATH1 
arrays and a RT RT-PCR platform [1, 120]. The results re-
vealed large number of differentially expressed putative 
regulator genes. In this study, MapMan visualization soft-

Table 7.  Improvement of Deteriorative Activity of Organisms by Interspecific Transfer of Genetic Elements 

Organisms 

Donor Acceptor 

Function References 

Prokaryotes  

Clostridium perfringens  Escherichia coli  Azoreductase  Rafii and Coleman (1999) [212] 

Bacillus sp.  E. coli  Azoreductase  Suzuki et al. (2001) [213] 

Rhodococcus sp.  E. coli  Azoreductase  Chang and Lin (2001) [214] 

Xenophilus azovorans  E. coli  Azoreductase  Blumel et al. (2002) [215] 

E. coli  Sphingomonas xenophaga Flavin reductase  Russ et al. (2000) [216] 

Agrobacterium rhizogenes  Mentha puligeum  Tolerance to R–478  Strycharz and Shetty (2002) [115] 

Eukaryotes  

Geotrichum candidum  Aspergillus oryzae  Peroxidase  Sugano et al. (2000) [217] 

Ceriporiopsis subvermispora  A. nidulans  Peroxidase  Larrondo et al. (2003) [218] 

C. subvermisopra  A. oryzae  Peroxidase  Larrondo et al. (2001a) [219]  

Coprinus cinereus  Saccharomyces cerevisiae  Laccase  Cherry et al. (1999) [220] 

C. cinereus  A. oryzae  Laccase  Schneider et al. (1999) [221] 

Coriolus versicolor  Nicotiana tabacum  Peroxidase  Iimura et al. (2002) [116] 

Phanerochaete chrysosporium  A. nidulans  Peroxidase  Larrondo et al. (2001b) [222] 

Pycnoporus cinnabarinus  Pychia pastoris  Laccase  Otterbein et al. (2000) [223] 

P. cinnabarinus  A. niger  Laccase  Record et al. (2002) [224] 

Pleurotus sajor-caju  P. pastoris  Laccase  Soden et al. (2001) [225] 

Trametes versicolor  S. cerevisiae  Laccase  Larsson et al. (2001) [226] 

T. versicolor  P. pastoris  Laccase  O'Callaghan et al. (2002) [227] 

T. versicolor  P. pastoris  Laccase  Hong et al. (2002) [228] 

Armoracia rusticana  S. cerevisiae  Peroxidase  Morawski et al. (2001) [114] 
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ware was used to identify coordinated, system-wide changes 
in metabolism and other cellular processes. Similarly, 
Czechowski and co-workers have profiled of over 1,400 
Arabidopsis transcription factors, and revealed 36 root and 
52 shoot specific genes [121]. Further, gene expression 
studies have been made in the direction of stress signaling 
during biotic and abiotic stress conditions in plants [122-
127]. Standardization of house-keeping genes for such stud-
ies has been made in potato. Among the seven common 
genes tested, ef1alpha was the most stable gene during biotic 
and abiotic stress [128]. Furthermore, the data obtained by 
microarray analysis are questioned on few instances and con-
firmation is achieved by RT PCR (or conventional PCR in 
some instances). The expression levels observed in microar-
ray is generally higher compared to measurement by RT 
PCR [129]. In general, studies made so far reveal a good 
relationship between these two techniques, and for this rea-
son RT PCR is considered as confirmatory tool for microar-
ray results [130].  

Plant-Microbe Interaction 

 Host plant and associated microbes form a special con-
sortium where the parasite is an alien element. Early diagno-
sis of the pathogens can provide rapid and suitable meas-
urements for limiting the epidemics and selection of appro-
priate control measures. Molecular diagnostics is a rapidly 
growing area in plant pathology especially for detection and 
quantification of commercially important crop pathogens. As 
a novel methodology, adoption of RT PCR technique is of 
growing interest due to its rapidity and sensitivity as well as 
its ability to detect minute amounts of the pathogen's DNA 
from infected plant tissues and insect vectors [131]. Simulta-
neous detection of several pathogens can be achieved by 
multiplex PCR. The technique has aided detection of patho-
gens associated with serious diseases like Fusarium head 
blight, which is a prerequisite for reduction in the incidence 
by understanding of its epidemiology [97]. Several reports 
are available on detection and/or quantification of plant 
pathogens (Table 8). Published literature reveals quantifica-
tion of pathogens [132-133], determination of symbiotic mi-
crobes and pathogens [134], detection/quantification of seed 
borne pathogens [135], host resistance screening [136] and 
distinguishing between pathogen pathovars [137-138] using 
RT PCR. 

Species Identification 

 In plants, the presence of such a large number of multiple
 

copies within each gene family complicates the clear under-
standing of function of each member. Plant molecular biolo-
gists prefer RT PCR methods to other methods and the num-
ber of findings is increasing at high rate. The northern blot-
ting determination of genes expressed at lower levels is dif-
ficult and closely related genes may cross-hybridize [139]. 
Both unique and redundant functions within a multigene 
family have been identified [140-142]. Expression analysis 
of all members (33 genes) encoding cell-wall enzymes in 
Arabidopsis thaliana using RT PCR revealed that most 
members

 
exhibited distinct expression profiles along with 

redundant expression patterns of some genes [143]. Simi-
larly, an expression profile for shaggy-like kinase multigene 
family during plant development has also been made using 
this technique [144]. Further, transformants with high num-

ber of copies lead to lower or unstable gene expression of 
inserted gene. Primary transformants are analyzed for ran-
domly inserted gene copy number. A study using duplex RT 
PCR has also been described for determining the transgene 
copy number in transformed plants with high degree of cor-
relation with southern blot analysis [145]. Likewise, many 
studies are available on detection of copy number using RT 
PCR in various crops [146-147]. 

CONCLUSIONS 

 RT PCR is becoming a common tool for detecting and 
quantifying expression profiles of desired genes. The review 
itself indicates that the technology to detect PCR products in 
real-time, i.e., during the reaction, has seen a dramatic leap 
in use and application over the past couple of years. The 
PCR based detection technologies utilizing species- specific 
primers are proving indispensable as research tools provid-
ing enhanced information on biology of plant-microbe inter-
actions with special regard to the ecology, aetiology and epi-
demiology of plant pathogenic micro-organisms. The RT 
PCR allows quantitative genotyping and detection of single 
nucleotide polymorphisms and allelic discrimination as well 
as genetic variation. The use of multiplex PCR systems using 
combined probes and primes targeted to sequences specific 
to counterpartners of plant/microbe associations is becoming 
more important than standard PCR, which is proving to be 
insufficient for such living systems. Application of RT PCR 
combined with other molecular techniques made possible the 
monitoring of both therapeutic intervention and individual 
responses to drugs. Developments in bioinformatics helped 
to understand how the genome gives rise to different cell 
types, how it contributes to basic and specialized functions in 
those cells and how it contributes to the ways cells interact 
with the environment. RT PCR is a valuable methodic tool in 
clarifying such problems. The needs in clinical application of 
molecular methods initiated important developments in di-
agnostics stimulating progress in other branches of science. 
The introduction of these new methods in other fields of hu-
man practices induced rapid expansion of molecular ap-
proaches. 

CHALLENGES 

 Plants and animals use small RNAs (microRNAs [miR-
NAs] and siRNAs) as guides for post-transcriptional and 
epigenetic regulation. The microRNAs (miRNAs) were ini-
tially considered a biological sideshow, the oddly interesting 
regulators of developmental timing genes in Caenorhabditis 
elegans. But in the past few years, studies have shown that 
miRNAs are a considerable part of the transcriptional output 
of the genomes of plants and animals. Therefore these miR-
NAs play important regulatory functions in widespread bio-
logical activities. Accordingly, miRNAs are now recognized 
as an additional layer of post-transcriptional control that 
must be accounted for if we are to understand the complexity 
of gene expression and the regulatory potential of the ge-
nome. Owing to this impressive progress in understanding 
the genomics and functions of miRNAs, we think this is an 
ideal time to examine the available evidence to see where 
this rapidly growing field is going. The small RNA reper-
toire in plants is complex, and few known about their func-
tion that constitute new challenges [148].  
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 Research has focused on approaches to detect the pres-
ence of miRNAs and their impact on genomes, and the roles 
they play in regulating biological functions had been ex-
plored. Studies generally followed a progressive logic from 
discovery to target prediction to function to systems perspec-
tive and finally to organism perspective. 

 Plant and animal genomes have been shaped by miRNAs, 
as seen by the substantial number of conserved miRNAs that 
have accumulated through selection and the presence of 
miRNA target sites in genes of diverse functions. However, 

the true number of miRNAs and targets remains difficult to 
estimate. In plants, miRNAs and trans-acting (ta) siRNAs 
form through distinct biogenesis pathways, although they 
both interact with target transcripts and guide cleavage [149]. 
Developments in bioinformatics requested for correct defini-
tion a 'true' miRNA and the implications this definition will 
have for future studies. Approaches to the prediction of tar-
gets of miRNAs consider the case for combinatorial control 
of target expression by multiple miRNAs acting synergisti-
cally. Some of the fundamental goals of investigations into 

Table 8. Plant Pathogens/Pests Determined by Quantitative Real-Time PCR 

Pathogen Host Reference 

Clavibacter sepedonicus Potato tubers Schaad et al., 1999 [229] 

Ralstonia solanacearum  Potato tubers Weller et al., 2000 [230] 

Acidovorax avenae subsp. citrulli Watermelon Randhawa et al., 2001 [231] 

Agrobacterium strains Several plants Weller and Stead, 2002 [232] 

Xylella fastidiosa Grape vine Schaad and Fredrick; 2002 [1] 

Erwinia amylovora Apple  Salm and Geider, 2004  [233] 

Spongospora subterranea Potato van de Graaf et al., 2003 [234] 

Synchytrium endobioticum Potato van den Boogert et al., 2005 [153] 

Fusarium solani f. sp. phaseoli Soil-french beans Filion et al., 2003 [235] 

Ophiosphaerella narmari Bermuda grass McMaugh and Lyon, 2003 [122] 

Phytophthora infestans Potato Avrova et al., 2003 [236] 

Verticillium dahliae oliva tree Mercado-Blanco et al., 2003 [237] 

Alternaria brassicicola Arabidopsis Gachon and Saindrenan, 2004 [238] 

Botrytis cinerea Arabidopsis Gachon and Saindrenan, 2004 [238] 

Fusarium solani f. sp. glycines Soybean Gao et al., 2004 [239] 

Phytophthora ramorum Sudden oak Hayden et al., 2004 [240]; Tomlinson et al., 2005 [241] 

Tilletia  spp. Wheat Eibel et al., 2005 [242] 

 Biscogniauxia mediterranea Oak Luchi  et al., 2005 [243] 

Fusarium oxysporum f. sp niveum Melon and soil Zhang et al., 2005 [244] 

Mycosphaerella melonis Melon and soil Zhang et al., 2005 [244] 

Oculimacula sps. Wheat Walsh et al., 2005 [245] 

Thrips palmi melon Walsh et al., 2005 [246] 

Candidatus Liberobacter species citrus Li et al., 2006 [247] 

Heterobasidion annosum Spruce Bodles et al., 2006 [136] 

Xanthomonas campestris Brassicas Berg et al., 2006 [137] 

Phytophthora ramorum Parrotia persica Tomlinson et al., 2005 [241] 

Biscogniauxia nummularia Fagus sylvatica L. Luchi et al., 2006 [248] 

Puccinia coronata Barley Jackson et al., 2006 [249] 

 Candidatus Phytoplasma americanum Potato Crosslin et al., 2006 [131] 

Potato yellow vein virus Potato Lopez et al., 2006 [250] 
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genome function are to understand how the genome gives 
rise to different cell types, how it contributes to basic and 
specialized functions in those cells and how it contributes to 
the ways cells interact with the environment. RT PCR is a 
valuable methodic tool in clarifying such problems. One has 
to take a systems approach to conceptualize a network of 
interacting miRNAs and targets and might be supposed that 
miRNAs act to canalize developmental gene expression pro-
grams through ontogeny on both unicellular and multicellu-
lar organisms. The topology of this network resembles that 
mapped previously in yeast, reinforcing the idea that similar 
networks may underlie the genetic basis of complex human 
disease. Recent breakthrough discovery by Rigoutsos and 
co-workers of self-similar, repetitive elements (what they 
call "Pyknons") throughout the coding- as well as non-
coding "Junk" DNA elevates the question how the novel 
findings relate to fractality of the DNA as well as opens 
question on fractal hierarchies of complex organization of 
genes and non-genes [150]. These unexpected findings sug-
gest functional connections between the coding and noncod-
ing parts of the human genome. Some recent data provide 
evidence for roles of miRNAs encoded in pathogen and host 
cell in influencing the cell-type specificity of their interac-
tion. The miRNAs from an organismal perspective and other 
endogenous regulatory RNAs in plants might have diverse 
biological roles in realization of both developmental pro-
grams and stress responses. There are several instances of 
polymorphism influence on human disease progression but 
no definitive answer has yet to be obtained. However, no 
data was found in plant-microbe interactions. Most heritable 
traits, including disease susceptibility, are affected by inter-
actions between multiple genes. However, we understand 
little about how genes interact because very few possible 
genetic interactions have been explored experimentally.  

 A genome-wide association approaches to map the ge-
netic determinants of the transcriptome in established 
host/parasite complexes and microbial populations associ-
ated to plants. The concept, that genes and non-genes com-
prise fractal sets, determining the ensuing fractal hierarchies 
of complexity of biological processes undoubtedly helps to 
analyze enormous sets of data obtained by RT PCR on func-
tional expression of genes. Although algorithms for discov-
ery of generic motif in sequential data represent an extremely 
valuable tool for data analysis, the emergence of informatic 
market makes difficulties as patent applications back out of 
scientific disputation on these new methods in large scale 
[151]. Nevertheless, one can assume that application of this 
approach to plant-microbe interactions will accelerate evolu-
tion of our imaginations about this matter and initiates elabo-
ration of new theory of plant pathology. Also, the organiza-
tion of microbial consortia and their functional interaction 
with macrobial partners can be evaluated in whole complex-
ity basing on this new concept.  

 The genes might also serve as therapeutic agents. The use 
of alien toxin as well as detoxifying enzyme-coding genes 
led to promising economic results in plant cultivation. Se-
quencing of the genomes of a number of model organisms 
provides a strong framework to achieve this goal. Several 
methods, among which gene expression profiling and protein 
interaction mapping, are being used on a large-scale basis, 
and constitute useful entry points to identify pathways in-

volved in disease mechanisms. The requested time for clari-
fication of these processes can be shortened by applying RT 
PCR. 

 The methods relying on the genetic manipulation of well-
characterized and simple models of host/parasite systems 
(HPS) to reconstruct disease-associated pathways can pin-
point biologically-valid therapeutic targets on the basis of 
function-based datasets generated in vivo. The HPSs are 
strongly complementary to well-established complex mod-
els, and multiple ways exist to integrate these results into the 
early stage of the drug discovery process.  
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