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Abstract: The application of smart city technologies requires new data analysis methods to interpret

the voluminous data collected. In this study, we first analyzed the transfer behavior of subway

pedestrians using the fingerprinting technique using data collected by more than 100 MAC (Media

Access Control) ID sensors installed in a congested subway station serving two subway lines. We then

developed a model that employs an AI (Artificial Intelligence)-based methodology, the cumulative

visibility of moving objects (CVMO), to present the data in such a manner that it could be used

to address pedestrian flow issues in this real-world implementation of smart city technology. The

MAC ID location data collected during a three-month monitoring period were mapped using the

fingerprinting wireless location sensing method to display the congestion situation in real time.

Furthermore we developed a model that can inform immediate response to identified conditions.

In addition, we formulated several schemes for disbursing congestion and improving pedestrian flow

using behavioral economics, and then confirmed their effectiveness in a follow-up monitoring period.

The proposed pedestrian flow analysis method cannot only solve pedestrian congestion, but can also

help to prevent accidents and maintain public order.

Keywords: pedestrian flow; smart city; indoor positioning system (IPS); cumulative visibility of

moving objects (CVMO); heatmap; nudge effect

1. Introduction

A smart city is a comprehensive combination of smart services that exploits information and

communications technology (ICT), the internet of things (IoT), and artificial intelligence (AI) to secure

and enrich the urban living environment in sectors such as traffic and energy usage [1]. The smart city

concept has been studied from the perspective of various fields, including optimization of transportation

and logistics, energy and waste management, personal security, social disaster management, and,

recently, air quality improvement [2]. In order to build a successful smart city, it is important to solve

the urban problems specific to each city. Although this means that each solution may be unique to

each implementation, most smart city projects can be generally divided into the five stages depicted in

Figure 1. First, during the scheme design stage, the current problems of the city need to be identified

and a consensus regarding prioritization reached. Second, literature review and case studies must be

conducted to find the optimal smart city solutions for the identified urban problems. Third, a concrete

smart city system should be designed and modeled by introducing variables. Fourth, to actually apply

the planned system, instrumentation must be installed to test the algorithm in a field environment.

Finally, to amplify the effectiveness of the project and optimally exploit it, a governance plan should be

established and public relations activities conducted [3].
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Figure 1. General process for building a smart city project.

The existing approach to urban improvement policy has solved many problems of the city

by investing considerable financial resources over the long term to expand manpower input or

infrastructure. The smart city, however, strives to strategically assign the necessary resources to the

right place and utilize them efficiently by collecting and analyzing information from all over the city

based on IoT, creating models, and encouraging citizen participation in an otherwise autonomous

environment. Many researchers have used sensors to collect urban information and have analyzed

the collected data to find ways to address current urban issues. In recent years, as mobile devices

equipped with small sensors have become widespread, various location-based services (LBS) have

emerged that are of considerable value to smart city efforts.

LBS is a software application that uses a specific device to determine its exact location, giving

users some sort of access to online services and streaming data. Whereas LBS is a software-level

service, there are two practical and representative techniques for locating users specifically, the GNSS

(global navigation satellite system) and the IPS (indoor positioning system). Of the two, GNSS is the

standard generic term for satellite navigation systems that provide autonomous geo-spatial positioning

with global coverage. The advantage to having access to multiple satellites is accuracy, integrity,

continuity, and availability at all times. The performance of GNSS is assessed using four criteria:

accuracy, integrity, continuity, and availability. Accuracy refers to the difference between a receiver’s

measured and real position, speed, or time; integrity is a system capacity that can provide confidence

thresholds and provide an alarm if there is an abnormality in the location data; continuity is a system’s

ability to function without interruption; and availability is the percentage of time a signal fulfils the

accuracy, integrity, and continuity criteria [4]. GNSS includes the GPS (global positioning system),

GLONASS (global navigation satellite system), Galileo, Beidou, and other regional systems [5]. GPS

provides relatively accurate geodesic information within several tens of centimeters of error less

than positioning in navigation. GPS is typically applied in vehicle navigation, and is mainly used

in outdoor environments. However, various smart projects have recently been conducted in large

buildings with complex structures such as subway stations, shopping malls, and hospitals, and the

need for an IPS that can be used indoors has been increasingly emphasized [6]. In particular, the

pedestrian-oriented location-based service market is rapidly growing. Many studies utilize Wi-Fi,

Bluetooth, infrared sensors, beacons, radio-frequency identification (RFID), and visible light to navigate

indoor locations. Each provides varying degrees of accuracy and cost due to their technical nature. In

particular, radio-frequency (RF) signal-based technologies have shown high accuracy at relatively low

cost compared to other technologies. Therefore, in many indoor measurement studies, RF signal-based

wireless technologies such as Wi-Fi positioning system (WPS) have been recently used [7]. A WPS

utilizes the 2.4 GHz band signal of the IEEE 802.xx standard, and is the most widely used IPS technology

at present. It collects and processes indoor wireless access point (AP) data to construct a radio map and

determine a user’s location. At present, to achieve this, a wireless measurement algorithm is required,

and the fingerprint technique, which compares the constructed radio map data with the radio signal
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information collected during the measurement process to determine the user’s current location [8], is

the most widely used of such algorithms.

In this study, we used the fingerprint technique to determine pedestrian information in a congested

subway station and to construct an algorithm that displays this information in such a manner as to

inform changes to the station to allow pedestrians to move about in a more secure and functional

environment. In conducting this research, we studied the urban problems of transit congestion and

established a research basis for the construction of future smart city technologies. The reminder of

this paper is organized as follows. Section 2 presents the theoretical background and methodology

for conducting the case study project. Section 3 introduces the specific procedures used to design

and construct models in this research. Section 4 presents the expected effects of using the new model

proposed as a result of our research. Finally, Section 5 discusses the implications and limitations of the

current study, and proposes future work that builds upon our findings.

2. Background

2.1. Types of Indoor Positioning Systems (IPS)

The most widely used positioning technologies rely upon GPS or GNSS. However, GPS cannot

be used for indoor positioning owing to the radio disturbances caused by the structure. To solve

such interference problems, research into IPS methods using wireless local-area network (WLAN),

ultra-wide band (UWB), and RFID technologies have been conducted. The main methods of IPS are the

triangulation, radio fingerprinting, proximity, dead reckoning, and fusion methods, detailed in Table 1.

Table 1. Types of IPS (Indoor Positioning Systems).

Type Description Literatures

Triangulation
The location of the mobile device is located at a point

where three circles intersect each other with a distance
between the mobile device and the three AP devices.

De Angelis et al. [9]; Wang et al.
[10]; Xu et al. [11]; Kantarci and

Mouftah [12]

Fingerprinting

Divide the indoor space into a certain range and store the
position value of the Reference Point (RP) in the database.

Then, measure the distance by measuring the position
value and the signal strength from the AP device to the

mobile device.

Blasio et al. [13]; He and Chan [14];
Yang et al. [15]

Proximity
Measures the proximity of the sensor and AP device that

already knows the position and find out its position.
Xie et al. [16]; Alarifi et al. [17]

Dead Reckoning
The current position is estimated by measuring the moving
distance according to the direction in which the pedestrian

moves from the initial position.

Ban et al. [18]; Zou et al. [19];
Pratama et al. [20]

Fusion
Improves accuracy through a combination of technologies,

such as the integration of GPS and INS.
Kumar et al. [21]; Chen et al. [22]

The triangulation method calculates the distance between three or more AP devices and mobile

devices. The position of the AP observation instrument is fixed and thus known in advance. Each AP

device then calculates the distance between it and the mobile device using radio wave characteristics

such as received signal strength (RSSI), to estimates the position of the mobile device [9]. At least

three AP devices are required to locate a mobile device node, which is accomplished by finding the

point where the three AP signal circles intersect the mobile device node, and the distance is defined

as the radii of these circles. To function in this manner, the AP device must be placed on the ceiling

without obstruction such that the time delay due to refraction of radio waves is minimized. Therefore,

in most cases, the mobile device node is located below the AP device, so the error between the AP

device and the mobile device node is notable because the height difference is not considered in the

triangulation [10]. To solve the problem of the different heights of AP devices and mobile device

nodes, many studies have used a common chord from three circles whose radii indicate the distance
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between AP devices and mobile device nodes. The most common method of doing so is the time of

arrival (TOA) method in which the distance between the AP device and the mobile device node is

calculated using the time it requires for a signal to travel back and forth between the two [11]. The

triangular positioning method has limited accuracy because of RSSI errors caused by radio wave

blocking, refraction, and absorption by obstacles. Notably, fingerprinting techniques can be used to

solve the problem of reduced signal strength due to the presence of such obstacles [12].

Fingerprinting methods use stochastic modeling techniques to build a radio signal map in advance

and then estimate the RSSI value using data from the AP devices placed in each zone. Noise and

environmental information are then used to assist location tracking. Currently, fingerprinting is the

most widely used method of WPS-based IPS [13]. The fingerprinting algorithm first divides the indoor

space in which positioning must be conducted into a fixed range and then stores the reference point

(RP) position values in the database. Next, the distance is measured according to the position value

and the signal strength between the AP device and the mobile device [14]. This signal strength is

then compared with the radio map to determine the position of the mobile device by weighting the

sum of positions on the similarity radio map. To improve the accuracy of the fingerprinting method,

the K-nearest neighbors (KNN) algorithm classifies a large quantity of data without classification

criteria. Then a feature vector algorithm is used to find and classify data with high similarity using

the cosine angle between two vectors [15]. This represents a simple and effective method that does

not require assumptions about what type of distribution the data follow, but requires substantial

computer memory.

The proximity method determines the proximity of a target using the known position of

surrounding sensors, and is mainly used with RFID technology. Thus, in order to use the proximity

method, a considerable number of AP devices must be installed in fixed positions. There are several

ways to detect proximity [16], all of which generally require a three-step process: first, it is determined

whether the AP device is contacted by a pressure/touch sensing tag; second, the AP device recognizes

the tag attached to the target; third, the target position is estimated using the position of the AP device

that recognized the target device. Such direct sensing tags rely upon RFID, Bluetooth (beacon), infrared,

or ultrasonic technology [17].

Dead reckoning is a method of estimating current position according to the measurement of

the moving distance and direction that the tracked target follows from its initial position [18]. Dead

reckoning consists of step detection, step length estimation, and azimuth estimation processes. Notably,

this method can be used for position estimation even if the target device is equipped only with an

inertial sensor and no other sensors, so it can be used in various fields such as pedestrian navigation,

emergency response, and public safety [19]. For example, the movement path of the target can be

recorded by the position recognition system using the acceleration sensor of a smartphone, then the

GPS signal can be used to correct the error. However, battery consumption can be considerable when

using GPS because it must use a constant incoming signal to calculate location. For this reason, dead

reckoning predominantly uses the accelerometer to estimate position and only occasionally relies

upon GPS signals for correction. Unfortunately, the accelerometers used in smart phones produce

considerable errors. Therefore, when a smartphone accelerometer is continuously used for dead

reckoning, the error of the user position can become significant. The landmark method is commonly

used to correct such errors by designating a landmark as the point against which the sensor value is

constantly measured (such as an elevator), the area where the RSSI of the Wi-Fi is measured to be very

high, or the radio shadow area [20].

To solve the problem of position recognition precision, methods combining two or more of the

above techniques have been widely applied. For example, the GPS signal attenuation due to ground

obstructions and RF interference causes instantaneous signal loss and thus reduces the accuracy of

the position determined using GPS. Under these conditions, a combination of GPS with an inertial

navigation system (INS) is an effective solution for determining the exact location of a target [21].

In this scenario, the GPS provides location, velocity, and time data based on satellite signals, and the



Sustainability 2019, 11, 6560 5 of 16

INS compensates for GPS signal problems using device gyros to measure the angular rate of change in

inertial space and accelerometers to achieve high reliability and a constant power ratio by measuring

the linear acceleration of the inertial system [22]. In this way, the vulnerability of GPS to physical and

RF interference can be overcome.

2.2. Visibility-Based Techniques for Analyzing Pedestrian Flows

Walking movements have complex meanings as they define human space as an intermediate space

and the movement itself as the object of the human environment. Additionally, pedestrian activity

can be broadly defined to express changes in the physical structure for human walking, utilization of

the surrounding environment, and qualitative improvement in the walking experience [23]. Space

syntax, which quantitatively analyzes the attributes of spatial structure, was introduced as a method

to understand the social phenomena that occur in an urban space in terms of architecture or urban

typology. In other words, space syntax emerged from the belief that if the city can be analyzed

according to the topological relationships between individuals and their surrounding spatial structure,

one could interpret the social properties embedded in each space through the relationship between

spaces. Thus, it is a representative theory that considers the social characteristics inherent in spatial

structures based on the relationship between unit spaces [24]. This can be interpreted to mean that the

spatial structure is the most important factor in determining human walking patterns. However, this

is difficult to analyze in detail and shows the limitation of recognizing pedestrians only as objects of

spatial analysis. For this reason, many previous studies investigated methodologies that reflect human

visual attributes.

The visibility graph analysis (VGA) model has been applied to the space syntax by adding the

concept of the human visual field. It uniformly divides the space into a lattice consisting of identical

unit spaces. This solves the problem of randomness of the space segment, enabling the undefined

space to be analyzed in detail, and the method to be applicable to most open spaces. In other words,

the VGA model can reflect human visual attributes because it utilizes a visibility graph organized by

visual connection, unlike space syntax, which is constructed topologically. Additionally, because the

size of the unit space can be adjusted, more detailed spatial analysis is possible [25]. The analysis

index calculated using the VGA model is typically the visual integration, calculated as the average

value of the number of changes in the moving direction of the visual connections between each point

in the entire space. The higher the visual integration, the higher the frequency of pedestrian activity.

In particular, visual integration in the VGA model refers to the visual structure phase of the space

according to the shortest visual path instead of the shortest physical distance. Visual integration is

composed of a total integration that calculates accessibility within a certain space and a local integration

that calculates accessibility from a certain space to a certain point. Advantageously, in the VGA model,

the integration of local concepts can be adopted and analyzed. The VGA model has been applied in

many practical studies. When space syntax is applied with the VGA model to an urban space, the

predictive power of the VGA model was found to be significantly higher, and revealed that walking

pattern data together with visual analysis can function as a spatial strategy to encourage pedestrians to

make purchases in a commercial space where consumption is occurring. A higher visual integration in

the VGA model means that the walking frequency of the pedestrian is higher, and this model actively

reflects the visual centrality of pedestrian activity [26].

The VGA model, however, has the disadvantage of it being difficult to directly observe the

relationship between each unit space when there are a large number of unit spaces, especially when

compared with other analysis techniques. That is, in the visibility graph, the number of unit spaces

varies with the lattice spacing, and the number of unit spaces increases exponentially with increasingly

finer analyses. For this reason, it can be difficult to directly observe the relationship between many

different unit spaces. Prior research has accordingly graphed indices on a color plane to indirectly

examine the phase of each unit space through its distribution. This is an appropriate method for

the comparative analysis of pedestrian behavior using quantitative statistics such as occupancy and
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walking, but only a section of the spatial structure can be observed at any time [27]. To overcome these

drawbacks in the past, previous studies reduced the number of unit spaces by enlarging the lattice

spacing, but once the lattice spacing is sufficiently large, the accuracy of the analysis suffers. Prior

studies have also proposed a method for analyzing the spatial structure by using a cluster analysis

technique on the visibility graph to group only the representative units. However, based on recent

advances in computational capabilities, a method of dividing a widely spaced grid into a plurality of

units and estimating a new value in each unit space to improve spatial accuracy has been introduced.

Space-time kernel density estimation (STKDE) is a technique used to address the disadvantages of

the grid structure used in VGA. In this method, it is assumed that the form of human walking inherently

involves human temporal and spatial movements to help identify continuous and dynamic patterns of

walking data, allowing researchers to grasp the spatiotemporal concentration or spreading phenomena

at a specific point in a walking space that shows a repetitive form of flow, such as the movements

of public transportation users. Because such movements are more likely to appear in a certain

simple pattern rather than an unpredictable complex pattern, it is important to focus on capturing

the pedestrian movement behavior over a certain period, rather than tracking various movement

paths. As STKDE accordingly collects only time and space information such as latitude, longitude, and

time from mobile devices, it is an economical and simple method for creating a movement analysis

model in space. Additionally, it can provide realistic data with important implications for pedestrian

management, public safety, and the associated consumer marketing. If the pedestrian circulation

within a public transportation system such as the subway or bus network is smooth, issues of public

interest such as safety and the promotion of public transportation can benefit. Therefore, STKDE offers

a potentially advantageous methodology for evaluating strategies for solving delays in a section of

a public transportation system where people tend to concentrate [28]. The results of STKDE can be

expressed as a heatmap using QGIS, a free GIS program, providing a visual and intuitive reference

for interpreting spatiotemporal characteristics by identifying hotspots where the spatiotemporal

movement density is high and cold spots where spatiotemporal movement density is low. Using such

an analysis, the locations and extents of walking and stopping areas can be easily determined, or the

walking speed of a specific user at a specific place expressed on the map can be lowered [29].

2.3. IoT in Smart Cites

The smart city is a future-oriented city concept that provides citizens with desired services through

various devices anytime and anywhere using ICT. The concept of the smart city was envisioned in

1988 by Mark Weiser to bring the concept of ubiquitous computing to the physical environment.

This concept creates a third space by fusing the electronic space and physical space using ICT such

as sensors and networks. In doing so, the smart city creates new services by combining ICT with

traditional services such as those provided by the medical, logistics, construction, and manufacturing

industries [30]. The objective of the smart city has been defined in various ways by scholars. However,

these multiple objectives can be divided into three general categories: improvement of quality of life,

economic growth and job creation, and implementation of a new industrial ecosystem. In particular,

most researchers agree that the smart city should be governed in a manner that emphasizes the role of

social capital and relationships in urban development. Caragliu [31], who established the European

Smart City Strategy, has argued that the smart city is fueling sustainable economic growth and a

higher quality of life through investment in human and social capital and traditional and modern

infrastructure, and emphasized the role of government in the wise management of natural resources

and citizen participation. The British Standards Institution (BSI) explained that the smart city provides

citizens with an effective built environment to enable a sustainable, developmental, and inclusive

future. Indeed, the smart city has recently evolved beyond simply utilizing ICT to spread the residences

and activities of citizens in a more comprehensive and complex form that does not merely pursue

functional achievement, into a system for facilitating cooperation and system integration between the

silos that simultaneously constitute the city. Other smart city projects are pursuing more efficient city



Sustainability 2019, 11, 6560 7 of 16

management, improved citizen quality of life, and sustainable growth [32]. To pursue such objectives,

it is first necessary to generate meaningful data by upgrading various systems such as the energy,

transportation, and communication infrastructure within the city. Next, a data-hub system must

be created to collect and transmit data from various inputs such as sensors, CCTV, IoT, and other

devices. Finally, it is necessary to store, analyze, predict, and diagnose issues based on the collected city

data and provide new business opportunities to the private sector in the form of open data sets [33].

According to these developmental needs, in this study we classified the values of a smart city into the

five categories shown in Table 2: convenience, competitiveness, resilience, efficiency, and sustainability.

The service and business domains were divided among these categories and the development stages

of the relevant technologies in each category were then defined. These categorizations were used to

guide the development of our smart city research, of which this study is a part.

Table 2. The value category and their technologies in the smart city.

Five Value of
Smart City

Ref. Service Domain
Development Stage

Current
Commercial
Technology

Advanced
Leading

Technology

Future Innovation
Technology

Convenience [34,35]
Transportation, Home

IoT, Smart Health,
Connected Car

Smart Sensor,
Wi-Fi, Payment

System

Smart Measuring,
IP Camera

Power Regulator,
Automatic Driving

Competitiveness [36]

Finance,
Manufacturing,

Distribution,
Agriculture

Cloud, LCD
Projector, Card

Reader

Contact Breaker,
WCDA, Table

Monitor,

Spotter, Block
Chain, Smart Farm

Resilience [37,38]
Disaster Mgmt.,

Welfare, Enhancement
Recognition

Beacon, Web
touchscreen

Wearable Tag, AI
Speaker, U-health

LPWA,
Augmented Reality

Efficiency [39]
Smart Infra, Data-hub,

Governance
LTE, Digital Board,

LED lighting
Weather Research

Craft,
LSN, LORA

Sustainability [40,41]
Environment Mgmt.,

Building Mgmt., CEMS
Video Gallery,

Firewall System
Classifying System,
Crosswalk Safety

Sensor Wall,
SCHM, CM

3. Methods

3.1. Experimental Settings

As part of our smart city implementation research, we conducted a project led by Company A to

investigate the transfer behavior of subway passengers in Station B of a major metropolitan city, and to

create and apply a real-time pedestrian dispersion model to prevent possible accidents during times of

heavy passenger congestion. Station B, a very congested station with a large population of people

using two subway lines, consists of one ground floor and three basement floors. The first basement

level is mainly for shops, the second is for subway Line 7 running east–west, and the third is for

subway Line 5 running north–south. In this study, we installed 100 MAC ID (mobile-specific unique

identifier) sensors in Station B, as shown in Figure 2, to provide passenger location and movement

data using the fingerprinting method.
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Figure 2. Layout of sensor installation in the subway map.

As mentioned in Section 2.1, fingerprinting is a technique used to detect the position of pedestrians

via a matrix signal in the form of a grid or net covering a certain location. Sensors in such a system

collect the MAC IDs of people in the target location at 15-s intervals. We installed 70 of these MAC

ID sensors in the second basement level carrying Line 7 and the hallway, and 30 sensors in the third

basement level carrying Line 5. Of particular note, Station B has two escalators that run between

the second and third basement levels for subway transfer. Of these, the escalator located at Gate 1

provides the shortest transfer distance and has three shops around it, which was observed to cause

severe congestion during commuting hours.

3.2. Networked Sensor-Based Infrastructure

We built a sensor and server environment for indoor positioning estimation using the fingerprinting

method with BLE (Bluetooth Low Energy) Wi-Fi gateway sensors at a PHY (Physical Layer) data

processing rate of 2.4 GHz and a bandwidth of 150 Mbps to collect location information from passengers

in the subway station. This sensor was particularly suitable for our study because it has a recognition

range of 30m, far enough to minimize the sensors needed but short enough to accommodate the limited

size of the station efficiently. The log data collected by the sensors in the form of Wi-Fi signal and

the associated location information were stored on a 2 TB server with an Intel i7-8700 (3.2 GHz) CPU

(Central Processing Unit), an NVIDIA GeForce RTX 2060 GPU (Graphics Processing Unit), and 16 GB

of RAM (Random Access Memory) using the Hadoop (Hortonworks) system.

We constructed a three-stage server infrastructure, shown in Figure 3, to collect large-capacity

sensing data and analyze it in real time. The first stage is the multi-sensor system, which includes

data collection, wireless sensor network (WSN) maintenance, WSN registration, and in–out encryption

scheme processes. The second system consists of a data receiver, a data formatter, and an API
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(Application Programming Interface) gateway, built on a Hadoop system intended to accumulate large

quantities of unstructured data in real time. The third system is an on-demand server for data analysis,

including a dashboard and BI (Business Intelligence), that performs stream analysis.

 

 ↑

 ↓

 ↑

Figure 3. Hadoop-based infrastructure.

3.3. Pre-Processing

We collected the position information from pedestrians through the matrix signal, which contained

the data shown in Table 3. As mentioned in Section 3.2, each detector collected the MAC ID of the

devices in its zone every 15 s. However, if a mobile device did not have its Wi-Fi enabled, we were

unable to collect its MAC ID. Thus, the utilized method could only detect the movements of pedestrians

with Wi-Fi enabled devices. It has been determined in past research that, in general, approximately

50% of people have the Wi-Fi on their devices activated [42]. Therefore, it is not excessive to assume

that approximately double the number of pedestrians measured in this study were present in the

target station.

Table 3. Sample of data array.

Detector Id Site Id Site Time MAC Id Coordinate

D86595040805 35 Hallway
(B2F) ↑

08:12:00 fnac5755d72a20db4ff6c8b2e14 (0.73, 0.14)
D86595040805 35 08:12:15 fnac5755d72a20db4ff6c8b2e14 (0.69, 0.82)

D8659504098G 24
Line 5
(B3F) ↓

21:37:45 c3c1f575cb03a6512754da6c8ka (0.89, 0.53)
D8659504098G 24 21:38:00 c3c1f575cb03a6512754da6c8ka (0.90, 0.49)
D8659504098G 24 21:38:15 c3c1f575cb03a6512754da6c8ka (0.87, 0.52)

D86595040844 86 Line 7
(B2F) ↑

16:32:30 Vf1r459bfb541f9e842caf355r2 (0.52, 0.14)
D86595040844 86 16:32:45 Vf1r459bfb541f9e842caf355r2 (0.48, 0.19)

The directions and velocities of each pedestrian were calculated using the position coordinates

collected by each detector. In particular, we attempted to determine where people were the most

congested and the main causes of this congestion using the route and speed of pedestrians during

commuting hours. There were, invariably, daily deviations, but on average, 26,000 data points were

collected by each detector per day. More than 20,000 of these data points were accumulated in only two

hours of the daily commute. In total, we collected and analyzed approximately 230 million data points

in approximately three months from 27 August 2018 to the end of November 2018. Additionally, we

developed a real-time congestion analysis model (first-round study) to analyze the causes of congestion

and inform potential solutions. We then collected 212 million new data points over approximately

three months from 11 February 2019 to 13 April 2019 to verify the effectiveness of the changes made to

the station based on the developed analytical model (second-round study).



Sustainability 2019, 11, 6560 10 of 16

3.4. Methodology

In this study, we applied some of the more representative visualization techniques for pedestrian

flows to create the cumulative visibility of moving objects (CVMO) technique, which is a type of

heatmap based on the moving trajectory of the target object. This model was constructed by changing

the cumulative pixel over a period based on the intersectional heatmap method applied using the

existing STKDE method.

As shown in Figure 4, a pedestrian passing through a certain area equipped with a grid sensor

system is detected and their location is collected as data in an ordered pair. In this case, we can

assume two possible issues with the collected data. One possible issue is that pedestrians who pass

through a section in under 15 s cannot actually be sampled. To solve this problem, we performed grid

scanning and accumulation of each region redundantly using several sensors. The other possible issue

is that because the coordinates appearing on the signal grid of each detector are different, they must

be corrected by synchronizing the grid positions for each detector into latitude and longitude, the

common position reference of the GPS. We then used this value to calculate the cumulative presence

and movement of pedestrians and finally visualize these data as a heatmap.

 

Figure 4. Cumulative visibility of moving objects.

Although the data are collected in real-time and the output is immediately available, the ability to

sense the movement of a pedestrian and send it immediately to the heatmap has many limitations.

To address these limitations, we applied a binarization technique that shows the cumulative value

of a certain period on the heatmap after separating the object from the background. This makes it

possible to accurately express the afterimage of a non-sensed object that has already been pushed

out of the detector signal or is no longer traceable in the signal. Indeed, the model possesses stored

information about the moving object trajectory in units of one minute, which we used to create the
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object motion binarization file. We also entered the data into a database (DB) after conducting all

processing required for graphing. The process for representing the binary cumulative values as a

heatmap is as follows. First, the initial pixel values are all initialized to zero, and the object to which

the unique ID is assigned moves to accumulate one pixel wherever it is located. Second, accumulating

once per second, each pixel value increases as each object passes through each pixel over time. If a

pixel continuously accumulates value once per second, the maximum value is 3600 for one hour.

Dividing this value by 360 expresses a visually distinguishable heatmap in 10 color units. Third, an

accumulation value database is created to capture the moving trajectory for one minute after the

location measurement, and 60 pixel accumulation values calculated after one hour are displayed as a

new accumulation value table.

4. Results

4.1. Results of First-Round Analysis

As discussed in Section 3, in this study we used heatmaps to represent the congestion level of the

target subway transfer section over time, based on three months of pedestrian sensing data. We then

searched for different ways to rearrange traffic flow or reduce congestion using this developed real

time cumulative sensing heatmap model.

As shown in Figure 5, the heatmap before rearrangement shows extreme congestion, especially at

Gate 1, which had the shortest transfer distance between subway lines. On the other hand, it is clear

that Gate 2, which requires a longer transfer distance, was considerably less crowded. Furthermore,

when we calculated the pedestrian movement speed during commuting hours and lower traffic times,

we found that the pedestrian movement speed was very fast, especially during the morning rush hour,

even despite the congestion. We also found from Figure 5 that most of the traffic is present on the

right-hand side of the transfer corridor where Gate 1 and 2 are located. In other words, it was found

that not only the pedestrian traffic connecting from Line 7 to Line 5 was considerable, but that because

pedestrians were more likely to use the gate side of the passageway without following the basic rules

of right-side passage, the congestion was made even worse. We found one additional problem in

the form of the stores in the corridor, which are small metal building spaces operated by the subway

company. We found such stores in three of the four corners of the subject transfer corridor. From the

map, it is clear that Store A, which sells mobile cases and accessories, actually protruded enough to

present an obstacle to pedestrians.

 

Figure 5. Heatmap on rush hour (before rearrangement).
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To solve these traffic problems, first, we proposed moving Store A to the opposite side of the

corridor. We expected that there would be no objection because the store was a simple structure that

would not require a significant construction cost to relocate such a short distance. Second, we proposed

that Gate 2 be forced into heavier use by blocking Gate 1 if the congestion level increased to a certain

level, as there were too many people going up and down through Gate 1, especially during crowded

hours. We suggested that this congestion situation could be directly linked to safety accidents, and

that increasing the pedestrian travel distance line would be an effective way to prevent such accidents.

In particular, we found that people who are motivated by transfer time often move quickly through

Gate 1, as it has a short transfer distance. By forcing pedestrians to walk an additional distance of

about 120 m, we increased the moving distance and widened the pedestrian activity space leading to

the gate, preventing dangerous situations. Our final suggestion was to install a structure to maintain

the rules of right-hand traffic flow. There was not even a simple center line in the transfer corridor

before rearrangement, so we accordingly proposed to install a simple steel handrail structure in the

center of the corridor to separate traffic. In this way, we hoped to reduce the bias toward the right side

of the corridor observed in Figure 5.

As shown in Figure 5, we implemented two types of heatmaps. Note that the heatmaps from

commonly used video images and those from mobile signal accumulation as a new methodology in

our study are completely different concepts. We also presented two distinct heatmaps for our new

form of mobile cumulative signaling. The first is the temporary mapping method (middle-side figure)

implemented with one-day static data, and the second is the periodic mapping method (right-side

figure) implemented with three-months accumulative data. It can be seen that the two figures show

very similar heat patterns. We found that these results mean that our model based on accumulative

training and validation data could be applicable to daily target data, and that we can monitor congested

pedestrian walkways in real-time.

4.2. Results of Second-Round Analysis

Using the results of the first-round analysis of real-time cumulative heatmaps, we proposed three

solutions for rearranging the station to improve pedestrian flow. To study the effectiveness of these

proposed solutions after they were implemented, we collected new sensing data for three months from

February 2019 in the same format, and compared the results after the rearrangement with the original

heatmap. As shown in Figure 6, we found that the presence of red in the heatmap had clearly been

reduced by the rearrangement. Additionally, we found that the handrail installed along the center of

the corridor, indicated by the yellow region, had a positive effect on traffic flow. We confirmed that the

left hand-heavy traffic phenomenon observed in the original heatmap was reduced by the blocking of

Gate 1 with a shutter and the relocating of Store A. We conducted a more detailed analysis of Figure 6

that found, encouragingly, that both directions of pedestrian traffic, which were previously observed

to be biased toward the gate side of the corridor, began to walk on the right side of their own will.

As shown in the figure, after rearrangement, more people were found on the left side of the corridor

opposite Gate 1. Indeed, it can be observed that the heatmap is overall a pale orange, indicating a

more uniform distribution of pedestrian traffic. We found that such a simple handrail structure acted

as a behavioral restriction on the pedestrians, encouraging people to make their own effective choices.

In effect, we were able to determine that the ascendant and descendant walkers chose to make the

right pass according to their respective criteria when confronted with the centerline handrail structure.

Overall, we found that congestion was dispersed by the suggested rearrangement, thereby increasing

overall traffic efficiency.
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Figure 6. Heatmap on rush hour (after rearrangement).

As shown in Figure 6, we also presented two types of heatmaps after the rearrangement. This is

the temporary mapping method (middle-side figure) implemented with one-day static data, and the

other is the periodic mapping method (right-side figure) implemented with three-months accumulative

data. Comparing the two types of heatmaps, it can be seen that the periodic mapping method looks

more fluid because it uses three months of cumulative data. As explained earlier, we are convinced

that these results provide sufficient basis for our model to monitor real-time pedestrian congestion.

We are convinced that this phenomenon of traffic redistribution is another validation of the

so-called “nudge effect”, which has been studied in the field of behavioral economics and was posited

by Richard Thaler to describe the application of simple tools or signals to cause certain people to

constrain or trigger their own actions [43].

5. Conclusions

In this study, we built a grid signal sensor system in a subway station to collect pedestrian location

data for traffic analysis. These pedestrian location data, obtained via the MAC ID of pedestrian mobile

Wi-Fi devices, was collected in 15 second intervals for three months to build an analytical model. In

particular, we found that the escalator and stairway leading to Gate 1, which allows for a shorter

transfer distance between subway lines than Gate 2, exhibit a considerable degree of congestion. We

noticed not only that the transfer corridor was crowded with people during commute time, but also

that there were many factors that interfered with pedestrian traffic flow, indicating an ineffective

arrangement in the corridor. The real-time density model we created and visualized was then used

to determine where pedestrian accumulation density over time was excessive, and to inform three

proposed improvements to the station to allow users to move more efficiently during crowded times:

we closed Gate 1 during congested times, moved a shop that disturbed the movement of pedestrians to

the other side of the corridor, and installed a centerline handrail structure to encourage traffic division

and path dispersion. After the proposed physical rearrangements were implemented in the subway

station, we collected and analyzed three months of follow-up data using the model and confirmed that

the congestion in the identified area of the subway station was reduced. Thus, we were able to confirm

the academic contributions and practical implications of the data collection and modeling method

proposed in this study.

This study makes the following three main academic contributions:

1. We applied the fingerprinting technique for indoor positioning to an actual subway station rather

than an experimental space, proving that fingerprinting can be used to analyze the movement

data of pedestrians in an uncontrolled space and develop a real-time model.
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2. We proposed a more sophisticated modeling method based on a newly devised technique for

accumulating and cumulatively analyzing moving information data of pedestrians for a specific

period rather than analyzing it by the conventional intersection method. We introduced advanced

analytical techniques to visualize the degree of congestion by calculating the traffic density using

sensor technology with CVMO to create heatmaps. This is more capable than past technologies

that have simply presented data using existing image capturing techniques.

3. We were able to confirm the behavioral insights on pedestrian traffic flow we identified in the first

round analysis using a second-round study. The closing of Gate 1 during congested times to force

transfers to walk farther and the relocation of Store, A, which was an obstacle, showed positive

effects on pedestrian flow. We also confirmed the action of the “nudge effect” by installing a

centerline handrail to separate traffic and induce path dispersion. We used this rail as a kind of

hedge to guide people to their destination on their way along a certain section of the route, leading

them to make effective walking choices on their own. Indeed, ascending and descending walkers

used the centerline structure to incorporate their movement into righthand traffic according to

their own standards. As a result, we found that traffic efficiency increased.

We expect that our findings will contribute to further elucidating behavioral economics, and

accordingly, this study has many practical implications. We proposed a method to more effectively

monitor pedestrian traffic in metro stations that will be prepared for future smart city applications.

Upgrading metro systems is an indispensable part of building a smart city in more advanced and

populous metropolitan areas. This research has not only helped to solve pedestrian congestion more

directly by using sensors, but also helped to prevent accidents and improve public order. Additionally,

the model we developed in this study can detect congestion in real time, allowing operators to respond

instantly, so it should be readily commercializable and exportable.

Our study analyzed and developed a pedestrian congestion prevention model using pedestrian

location information. In the current study, pedestrian speed was measured by calculating the moving

distance of the pedestrian for a certain time based on the pedestrian’s mobile device MAC ID. However,

we have not yet been able to develop a new model that considers this speed due to various constraints

such as limited time and project cost. We hope to propose more sophisticated methods and new

insights by creating a model that considers both pedestrian density as well as speed in subsequent

research. Additionally, in this project, we developed a model for only a single subway station. In future

studies, we hope to perform similar analyses on more stations using other sensing methods, such as

dead reckoning or a fusion method, in addition to fingerprinting. We will further develop models

that utilize heatmaps in complex subway stations with many transit sections, as well as modeling

individual walking speeds over IPS to find more accurate bottlenecks and resolve them. Our method

can be used in everyday life to help detect inefficient paths and cope with building more advanced

smart cities. For example, we can create a model that sets anomalous phenomena at the point where the

speed slows by more than two-standard deviations than the average speed in all areas of the subway

station. We expect this basic model to be the foundation for building sophisticated and efficient smart

city systems. We also expect that our research will provide additional ideas for other researchers and

serve as a motivation for their research, making their follow-up studies more diverse candidates for

constructing systematic smart cities.
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