
Real Time Personalized Search on Social Networks

Yuchen Li #, Zhifeng Bao ∗, Guoliang Li +, Kian-Lee Tan #

#National University of Singapore ⇤University of Tasmania +Tsinghua University
{liyuchen, tankl}@comp.nus.edu.sg baoz@utas.edu.au liguoliang@tsinghua.edu.cn

Abstract—Internet users are shifting from searching on tra-
ditional media to social network platforms (SNPs) to retrieve
up-to-date and valuable information. SNPs have two unique
characteristics: frequent content update and small world phe-
nomenon. However, existing works are not able to support these
two features simultaneously. To address this problem, we develop
a general framework to enable real time personalized top-k
query. Our framework is based on a general ranking function
that incorporates time freshness, social relevance and textual
similarity. To ensure efficient update and query processing, there
are two key challenges. The first is to design an index structure
that is update-friendly while supporting instant query processing.
The second is to efficiently compute the social relevance in a
complex graph. To address these challenges, we first design a
novel 3D cube inverted index to support efficient pruning on the
three dimensions simultaneously. Then we devise a cube based
threshold algorithm to retrieve the top-k results, and propose
several pruning techniques to optimize the social distance compu-
tation, whose cost dominates the query processing. Furthermore,
we optimize the 3D index via a hierarchical partition method
to enhance our pruning on the social dimension. Extensive
experimental results on two real world large datasets demonstrate
the efficiency and the robustness of our proposed solution.

I. INTRODUCTION

With the rise of online social networks, Internet users are

shifting from searching on traditional media to social network

platforms (SNPs) to retrieve up-to-date and valuable informa-

tion [1]. For example, one may search on Twitter to see the

latest news and comments on Malaysia Airlines flight MH17.

However, searching SNP data is rather challenging due to its

unique properties: not only containing user-generated contents

from time to time, but also having a complex graph structure.

In particular, there are two distinguishing characteristics:

• High Update Rate: Twitter has over 288M active users

with 400 million posts per day in 20131.

• Small World Phenomenon: People in the social network

are not very far away from each other. For Facebook, the

average degrees of separation between users are 4.742.

Moreover, unlike traditional road networks where each

vertex has a small degree, the vertex degree of a social

network follows the power law distribution [2].

Top-k keyword search is an important tool for users to

consume Web data. However, existing works on keyword

search over social networks [3], [4], [5], [6], [7] usually ignore

one or many of the above characteristics of SNPs and lead

to several drawbacks, e.g. returning user with meaningless

or outdated search results, low query performance, providing

1http://www.statisticbrain.com/twitter-statistics/
2http://www.facebook.com/DegreesApp/

global major trends but not personalized search results which

may easily result in biased views [8]. Thus, it calls for a

new and general framework to provide real time personalized

search over the social network data that leverages all unique

characteristics of SNPs.

As a preliminary effort to support the above two charac-

teristics, we focus on three most important dimensions on

SNPs: Time Freshness, Social Relevance and Text Similarity.

Time Freshness is essential as outdated information means

nothing to user in a highly dynamic SNP. Social Relevance

must be adopted in the search framework as well. Leveraging

the personal network to rank results will greatly improve

the search experience as people tend to trust those who are

“closer” and will also enable more user-interactions. E.g., a

basketball fan is more likely to respond to a post on “NBA

Finals” posted by a friend than unfamiliar strangers. Lastly,

Text Similarity is the fundamental dimension where keywords

are used to distinguish the results from available records.

There are many challenges to support the search over these

three dimensions. First, it is challenging to design an index

structure that is update-friendly while supporting powerful

pruning for instant query processing. Specifically, when a new

record is posted, it must be made available immediately in

the search index rather than being periodically loaded. The

second challenge lies in the query evaluation based on the

index. In particular, how to enable an efficient computation

along the social dimension, whose performance dominates its

counterparts on the other two dimensions. The social distance

is usually modeled as the shortest distance on the social graph

[9], [10], [6], [5], [7]. These solutions either compute the

distance on-the-fly [7] or pre-compute all-pairs distances [5].

The first is extremely inefficient for large networks, which

renders it unacceptable for real time response, while the

latter requires prohibitively large storage. A natural way is

to develop query processing techniques based on index with

reasonable size. However, existing distance indices are unable

to handle massive social network because they neglect at least

one of the unique characteristics of SNPs.

To address these challenges, we present a novel solution

to support real time personalized top-k query on SNPs. The

contributions of this paper are summarized as follows:

• We present a 3D cube inverted index to support efficient

pruning on the three dimensions (time, social, textual)

simultaneously. Such index is update-efficient, while flex-

ible in size w.r.t. different system preferences.

• We design a general ranking function that caters to

various user preferences on the three dimensions, and

devise a cube threshold algorithm (CubeTA) to retrieve

the top-k results in the 3D index by this ranking function.

• We propose several pruning techniques to accelerate the

social distance computation, and a single distance query

can be answered with an average of less than 1µs for a

graph with 10M vertices and over 230M edges.

• We optimize the 3D index via a hierarchical partition

method to enhance the pruning on the social dimension. A

deeper partition tree will lead to better query performance

and the flexibility of the index allows the space occupied

to be the same as the basic 3D index.

• We conduct extensive experimental studies on two real-

world large datasets: Twitter and Memetracker. Our pro-

posed solution outperforms the two baselines with aver-

age 4-8x speedups for most of the experiments.

Our framework has a general design of ranking function,

index and search algorithm. It enables opportunities to support

personalized-only (regardless results’ freshness) and real-time-

only (regardless of social locality) search. It is also a good

complement to the global search provided by existing SNPs.

Our vision is: search results are not the end of story, instead

they will be fed into data analytic modules, e.g. sentiment anal-

ysis, to support real-time social network analysis ultimately.

We present related work in Sec. II and problem definition

in Sec. III. We propose the 3D inverted index in Sec. IV and

the CubeTA in Sec. V. In Sec. VI we present several pruning

methods to speed up the distance query evaluation. We propose

a hierarchical partition scheme for our 3D inverted index to

optimize CubeTA in Sec. VII, and report experiment results

in Sec. VIII. Finally we conclude in Sec. IX.

II. RELATED WORK

Search on Social Media Platform. Facebook developed

Unicorn [11] to handle large-scale query processing. While

it supports socially related search, the feature is only available

for predefined entities rather than for arbitrary documents.

Moreover, Unicorn is built on list operators like LISTAND

and LISTOR to merge search results. This can be very costly

especially for real time search because the search space is

huge. Twitter’s real time query engine, Earlybird [3], has

also been reported to offer high throughput query evaluation

for fast rate of incoming tweets. Unfortunately, it fails to

consider social relationship. Therefore, our proposed method

can complement existing engines by efficiently handling real

time search with social relevance.

Search on Social Network. Several research works have been

proposed for real time search indices over SNPs. Chen et al.

introduced a partial index named TI to enable instant keyword

search for Twitter [4]. Yao et al. devised an index to search for

the microblog messages which are ranked by their provenance

in the network [12]. However, none of them offers customized

search for the query user. Although indices on social tagging

network offer the social relevance feature [5], [6], [7], they

rely on static inverted lists that sort documents by keyword

frequencies to perform efficient pruning. These indices cannot

handle high rate of documents ingestion because maintaining

sorted lists w.r.t keyword frequencies requires huge number of

random I/Os. Besides, [6] only considers the documents posted

from a user’s direct friends while we consider all documents

in SNPs. Thus, there is a need to design novel indices that

are update-efficient and support efficient search with social

relevance feature.

Distance Indices on Social Networks. Road network distance

query has been well studied in [13], [14]. However, they

cannot work on large social networks because the vertex

degree in road networks is generally constant but dynamic

in social networks due to the power law property. Existing

distance indices for social networks [15], [16], [17], [18]

cannot be applied to our scenario for several reasons. First, the

schemes in [15], [16], [17] assume un-weighted graphs and are

not able to handle weighted graphs. Second, the mechanisms

in [15], [16] are only efficient for social graphs with low tree-

width property. Unfortunately, as reported in [19], the low

tree width property does not hold in real world social graphs.

We also made this observation in our real datasets. Lastly,

personalized top-k query requires one-to-many distance query

whereas the methods in [17], [16] are applicable only for one-

to-one query and the solution in [18] only supports one-to-all

query. It is hard to extend these schemes to fit our case. It

therefore motivates us to design pruning methods to overcome

the distance query problem on large social networks.

III. PROBLEM DEFINITION

Data Model. Let G = (V,E) be an undirected social graph,

where V is the set of vertices representing users in the network

and E is the set of edges in G denoting social links. For each

vertex v, Rv is a set of records attached to v (e.g., microblogs

published by the user). A record r 2 Rv is formulated as

r = hr.v, r.W, r.ti where:

• r.v shows which vertex this record belongs to.

• r.W is a set of keywords contained in r.

• r.t denotes the time when the record is published by r.v.

Each edge is associated with a weight, which quantifies the

social distance between the two vertices. In this paper, we

adopt the Jaccard Distance which has been widely used [20],

[21], [2]; however, our method can be easily extended to other

functions. The weight between user v and its neighbor v0,
denoted as D(v, v0), is the Jaccard Distance between their

neighbor sets N(v) and N(v0) where N(x) = {n|(x, n) 2 E}.

D(v, v0) = 1�
|N(v) \N(v0)|

|N(v) [N(v0)|
s.t.(v, v0) 2 E (1)

Query Model. A top-k query q on the social graph G is

represented as a vector q = hq.v, q.W, q.t, q.ki where:

• q.v is the query user.

• q.W is the set of query keywords.

• q.t is the time when the query is submitted.

• q.k is the number of desired output records.

Ranking Model. Given a query q, our objective is to find

a set of q.k records with the highest relevance. To quantify

the relevance between each record and the query, we should

consider the following aspects.

U1 U2

U3

U10

U4

U5

U6 U7

U11

U8

U9

0.5

0.4

0
.2

Partition 1 Partition 2 Partition 3

rid:user TS Keywords

r0:u10 0.1 (“icde”,0.8),(“nus”,0.1)

r1:u1 0.1 (“icde”,0.9)

r2:u7 0.1 (“icde”,0.1),(“nus”,0.5)

r3:u2 0.2 (“icde”,0.6),(“nus”,0.2)

r4:u3 0.3 (“icde”,0.7),(“nus”,0.2)

r5:u5 0.4 (“icde”,0.4)

r6:u4 0.6 (“icde”,0.8)

r7:u7 0.7 (“icde”,0.8),(“nus”,0.1)

r8:u2 0.7 (“icde”,0.7)

r9:u5 0.8 (“icde”,0.2),(“nus”,0.2)

r10:u9 0.9 (“icde”,0.1),(“nus”,0.4)

r11:u11 1.0 (“icde”,0.7)

Fig. 1: A social network example including records posted. Records
are ordered by time from old to recent (used throughout this paper).

(1) Social Relevance: The social distance for two vertices v $
v0 is adopted as the shortest distance [9], [10], [6], [5].

SD(v, v0) = min
pathv=v0...vk=v0

X

i=0..k�1

D(vi, vi+1)/maxDist (2)

The social relevance is computed as SR=max(0, 1�SD) and

maxDist is the user-tolerable maximal distance.

(2) Textual Relevance: We adopt the well-known tf-idf based

approach [22]. Let tfw,r denote the frequency of keyword

w in r whereas idfw is the inverse frequency of w in the

entire document collection. We represent textual relevance as

a cosine similarity between q.W and r.W :

TS(q.W, r.W) =
X

w2q.W

tfw,r · idfw (3)

Specifically, tfw,r = zw,r/(
P

w2r.W z2w,r)
1

2 where zw,r is

the number of occurrences of w in r.W ; and idfw =

zw/(
P

w2q.W z2w)
1

2 , zw = ln(1 + |R|/dfw) where |R| is the

total number of records posted and dfw gives the number of

records that contain w.

(3) Time Relevance: The time freshness score TF is the

normalized time difference between q.t and r.t. In particular,

let tmin be the pre-defined oldest system time, then

TF(q.t, r.t) =
r.t� tmin

q.t� tmin

(4)

Overall Ranking Function. Now, with the social, textual

and time relevances normalized to [0,1], our overall ranking

function is a linear combination of these three components.

<(q, r)=αTS(q.W, r.W)+βSR(q.v, r.v)+γTF(q.t, r.t) (5)

where α,β, γ are user preference parameters for general

weighting functions, and α,β, γ 2 [0, 1]. Tuning the param-

eters is a well-studied problem in information retrieval and

a widely-adopted solution is by user click-throughs [23]. In

this paper we focus on devising efficient algorithms for query

processing and leave the parameter tuning as a future work.

Example 1. Fig. 1 is an example social network where all

records posted are listed. For each record r, its user id (UID),

time score (TS), keywords and their frequencies are included.

Suppose α=β=γ=1 and u1 expects to get the top-1 record that

contains “icde”. By Equation 5, r11 is the desired result as

<(qu1
, r11) = 1.0+(1.0�0.4)+0.7 = 2.3 has the maximum

value among all records.

0 2 3 4 5 7

41 6

3 5

0 3 7 8

2 8

5

Partition 1 Partition 3 Partition 2 Partition 1 Partition 3 Partition 2

Time Slice 1: [1,0.4) Time Slice 0: [0.4,0]

Term

Frequency
[1,0.7) [0.7,0.4) [0.4,0]

Partition 2 (1,2,2) (1,2,1)

r8

(1,2,0)

Partition 3 (1,1,2)

r7

(1,1,1)

r11

(1,1,0)

r10

Partition 1 (1,0,2)

r6

(1,0,1) (1,0,0)

r9

Term

Frequency
[1,0.7) [0.7,0.4) [0.4,0]

Partition 2 (0,2,2)

r0,r1

(0,2,1)

r3,r4

(0,2,0)

Partition 3 (0,1,2) (0,1,1) (0,1,0)

r2

Partition 1 (0,0,2) (0,0,1) (0,0,0)

r5

Text

Dimension

Time

Dimension

S
o

ci
a

l

D
im

e
n

si
o

n

Fig. 2: 3D inverted list for “icde”

IV. 3D INDEX

To support the high update rate for SNPs, we propose a

memory based 3D inverted list. Time is the primary dimension.

Textual and social dimensions are also included to support

efficient pruning. Before introducing the 3D list design, we

would like to present how to handle the social dimension first

as it is not straightforward to order the records according to

the social relevance without knowing who the query user is.

Graph Partition. Given a social graph G like Fig. 1, we

first divide the vertices into c partitions using k-way partition

[24] with minimum cut utility. For each Pi, a pivot vertex

pni is selected among the vertices in Pi and the shortest

distance from pni to each vertex in G is pre-computed.

In addition, for any two partitions Pi, Pj , we pre-compute

SD(Pi, Pj) = minx2Pi,y2Pj
SD(x, y). This index is used for

estimating the social distance between the query user q.v and

a partition. As the partitions along the social dimension do not

have an ordering which depends on the query, we rank Pi by

SD(Pq.v, Pi) in query time where Pq.v contains q.v. The space

complexity of the index for social distance is O(|V |+ c2).

3D Inverted List. Each keyword w is associated with a 3D

list of records which contain w. From Example 1, Fig. 2 shows

the 3D list for keyword “icde”. The primary axis of the 3D

list is time, from latest to oldest, which is divided into slices.

Each time slice contains a 2D grid consisting of the social

and textual dimensions. The social dimension corresponds to

the c partitions constructed on G. The textual dimension is

discretized to m intervals w.r.t. the keyword frequencies tf by

using equi-depth partition on historical data [25]. This results

in a cube structure of the 3D list where each cube may contain

0 or many records. Note that in Fig. 2, the time and textual

dimensions are sorted offline whereas the social partitions will

only be sorted against user u1 when u1 issues a query at

runtime in Example 1.

To support efficient retrieval of records from the 3D list (as

discussed later in Sec. V), we define the neighbours of a cube:

Definition 1. We assign each cube with a triplet: (x, y, z),
where x,y,z refer to time, social and textual dimensions.

The three neighbours of cube cb(x, y, z) are cb(x � 1, y, z),
cb(x, y � 1, z), cb(x, y, z � 1) respectively.

For example in Fig. 2, there are 18 cubes and the dimension

indices (x, y, z) are listed in the first row of a cube. The

cube cb(1, 1, 1) which contains r11 has neighbours: cb(0, 1, 1),
cb(1, 0, 1), cb(1, 1, 0) along the time, social and textual dimen-

sions respectively. To avoid storing empty cubes in the 3D list,

we deploy a B+-tree for each time slice as shown in Fig. 2.

In each B+-tree, the value of a leaf node represents a cube’s

linearized dimension index in the 2D grid. Suppose a cube has

a grid index entry (y, z) where y and z represent the entries

of the social and textual dimensions respectively, then a leaf

node with value ym+ z is added to the B+-tree. To facilitate

random access, each B+-tree keeps a reference to the leaf node

with index (y,max (z)) for each partition y.

Index Update. When a new record r arrives, it is inserted

into w’s 3D list 8w 2 r.W . r is always allocated to the latest

time slice and mapped to the corresponding cube. When the

number of records in the latest time slice exceeds a system

determined threshold, a new time slice will be created. Let us

take r6 for an example and assume the time slice threshold is

6. When r6 arrives, there are already 6 records in time slice

0 (see Fig. 2), so slice 1 is created, which r6 is inserted into.

In social dimension, since r6 belongs to user u4 (see Fig. 1),

r6 should go to partition 1. In textual dimension, “icde” has a

keyword frequency of 0.8 in r6, which falls in the frequency

interval [1, 0.7). Finally, r6 should be inserted into the cube

cb(1, 0, 2) that maps to leaf node 2 after linearization. The

B+-tree is updated accordingly.

Complexity. Since the record is inserted into B+tree and each

B+tree has at most c·m leaf nodes, the complexity of inserting

a new record is just O(|r.W | · log(c ·m)).
Forward Index. To enable efficient random access, a forward

list is built for each record r. Each list stores the keywords in

r and their keyword frequencies. The user who posts it and

the time posted are stored as well. The table in Fig. 1 is an

example of the forward lists for the social network.

V. CUBETA ALGORITHM

Given the 3D list design, we are now ready to present

our basic query evaluation scheme, CubeTA (Algorithm 1).

CubeTA extends the famous TA algorithm [26] by introducing

a two-level pruning upon the 3D list to further speed up the

query processing, i.e. at record level and at cube-level. We

maintain two data structures in CubeTA: (1) The cube queue

CQ which ranks the cubes by their estimated relevance scores

(computed by EstimateBestScore function in line 15); (2) the

min heap H which maintains the current top-k candidates. The

main workflow is as follows: In each iteration, we first access

the 3D list for each keyword and get the cube cb with the best

estimated scores among all unseen cubes in CQ (line 4). Next

we evaluate all the records stored in cb (lines 8-12), then we

keep expanding the search to the three neighbors of cb (lines

13-16), until the current top-k records are more relevant than

the next best unseen cube in CQ. Following Equation 5 in

computing the score of a record, Equation 6 illustrates how

EstimateBestScore estimates the score of a cube cb:

<(q, cb) = |q.W |(αTScb +
βSRcb + γTFcb

|q.W |
) (6)

Algorithm 1: CubeTA Algorithm

Input: Query q = hq.v, q.W, q.t, q.ki, CubeQueue CQ
which is initialized by inserting the first cube for

each of the q.W ’s inverted list.

Output: Top q.k records that match the query q.

1 MinHeap H φ /* q.k best records */

2 ε 0 /* q.kth record’s score */

3 while !CQ.empty() do

4 Cube cb = CQ.pop()
5 if EstimateBestScore(q, cb) < ε then

6 return H
7 else

8 foreach record r in cb do

9 if r has not been seen before then

10 if GetActualScore(q, r, ε) > ε then

11 H.pop() and Push r to H
12 ε H.top()’s score w.r.t q
13 foreach of the three neighbour cubes nc of cb do

14 if nc has not been seen before then

15 if EstimateBestScore(q, cb) > ε then

16 Push nc to CQ

The social score of cb is SRcb = 1 � SD(Pq.v, Pcb), where

Pq.v is the partition containing the query user and Pcb is

the partition containing the cube cb. The time freshness TFcb

and text similarity TScb are the maximum values of cb’s time

interval and frequency interval. It is easy to see that the total

estimated score SRcb is actually an upper bound of all the

unseen records in the cube, so if it is still smaller than the

current kth best record’s score ε, we can simply terminate the

search and conclude the top-k results are found (lines 5-6).

This stopping condition is presented in Theorem 1.

Theorem 1. Let cb be the next cube popped from CQ. The

score estimated by Equation 6 is the upper bound of any

unseen record in the 3D lists of all query keywords q.W .

Proof : Let r be any record that exists in any of the 3D lists

and whose score has not been computed. Given a query q, let

∆ = βSR(q.v, r.v) + γTF(q.t, r.t) and δw = α · tfw,r · idfw
where w 2 q.W . The overall score <(q, rx) of r w.r.t. q is:

<(q, rx) = ∆+
X

w2q.W

δw =
X

w2q.W

(δw +
∆

|q.W |
)

=
X

w2q.W\r.W

(δw +
∆

|q.W |
) +

∆|q.W \ rx.W |

|q.W |
(7)

But note that rx must exist in one of the 3D lists, say w⇤.

Then it follows Equation 7:

<(q, rx)
X

w2q.W\r.W

(δw +
∆

|q.W |
) + |q.W \ rx.W |(δw⇤ +

∆

|q.W |
)

 |q.W | · max
cb2q.W

(αTScb +
βSRcb + γTFcb

|q.W |
) ⌅

GetActualScore (Algorithm 2) computes the exact rele-

vance of a certain record. With the forward list mentioned

Algorithm 2: GetActualScore Algorithm

Input: Query q, record r and threshold ε

Output: <(q, r) > ε ? <(q, r) : �1
1 Compute TF and TS using the forward list of r
2 Compute the Social Relevance Lower Bound

minSRr = (ε� αTS� γTF)/β
3 SRr = 1� ShortestDistance(q.v, r.v,minSRr)
4 return αTF + βTS + γSR

in Sec. IV, we can compute the exact text similarity and

time freshness. Since we have the kth best score ε among

the evaluated records, a lower bound for social relevance (i.e.

the distance upper bound) can be computed for the current

record r before evaluating the distance query (in line 3). This

bound enables efficient pruning which we will later discuss on

how to compute the exact social relevance score in Section VI.

Example 2 shows a running example of how CubeTA works.

Iteration Processing Cube Candidates minSR maxSD Best Cube:Score Top 1

1 (1,2,2) (1,1,2): 2.8

2 (1,1,2) r7:0.7+(1-0.6)+0.8=1.9 0 1 (1,0,2): 2.6 r7

3 (1,0,2)
r7:0.7+(1-0.6)+0.8=1.9

r6:0.6+(1-0.7)+0.8=1.7 0.5 0.5
(1,2,1): 2.6 r7

4 (1,2,1)

r8:0.7+(1-0.2)+0.7=2.2

r7:0.7+(1-0.6)+0.8=1.9

r6:0.6+(1-0.7)+0.8=1.7

0.4 0.6

(1,1,1): 2.5 r8

5 (1,1,1)

r11:1+(1-0.4)+0.7=2.3

r8:0.7+(1-0.2)+0.7=2.2

r7:0.7+(1-0.6)+0.8=1.9

r6:0.6+(1-0.7)+0.8=1.7

0.2 0.8

(0,2,2): 2.3 r11

Fig. 3: Example of CubeTA (The highlighted text indicates that the
records are being evaluated in their current iteration.)

Example 2. By Example 1, the social partitions are sorted

by their distances to u1 when u1 issues the query. Fig. 2

shows the reordered 3D list of keyword “icde”. Detailed steps

for CubeTA are illustrated in Fig. 3. In iteration 1, cube

cb(1, 2, 2) is first evaluated. Since no record is in cb(1, 2, 2),
three neighbors of cb(1, 2, 2) are inserted into the cube queue.

In iteration 2, cb(1, 1, 2) is popped from the cube queue

and before expanding its neighbor cubes into the queue, we

evaluate r7 and insert it into the candidate max heap. This

procedure terminates at iteration 5 because r11 is found to

have an equal score to the best cube score in the cube queue.

Efficient Cube Traversal

As discussed in Sec. IV, traversing the 3D list may encounter

many empty cubes. To speed up the traversal in CubeTA (line

13), we define the boosting neighbors for a cube cb(x, y, z):

Definition 2. Suppose there are c social partitions and m
frequency intervals, the boosting neighbors of cb(x, y, z) are:

• cb(x� 1, y, z) if y = c ^ z = m.

• cb(x, y � 1, z) if z = m.

• cb(x, y,max{z0|z0 < z ^ cb(x, y, z0) is non-empty})

Boosting neighbors essentially can identify all the non-

empty cubes, as illustrated below.

Theorem 2. All cubes are covered by traversing via boosting

neighbors only.

Proof : Let l = max(x). As the traversal always starts from

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

social distance

n
o
d
e
 d

is
tr

ib
u
ti
o
n

node histogram

fitted gaussian

Fig. 4: The averaged distance distribution of Twitter Dataset.

cb(l, c,m), we need to prove that any cb(x, y, z) is reachable

from cb(l, c,m). Along the textual dimension, cb(x, y, z) is

reachable from cb(x, y,m). cb(x, y,m) is reachable from

cb(x, c,m) along the social dimension. Lastly cb(x, c,m) is

reachable by cb(l, c,m) along the time dimension. ⌅

VI. SOCIAL-AWARE PRUNING

In CubeTA, to process a query issued by a user v, a large

number of distance queries need to be evaluated between v
and the users who post records containing the query keywords

in GetActualScore. In order to accelerate such one-to-many

distance query evaluation, we develop a series of optimizations

that operate in three categories: (1) Quick computation of the

social relevance scores for records that cannot be pruned; (2)

Immediate pruning for records that are not among the final

top-k records; (3) Fast construction of the pruning bound at

the initial rounds of the graph traversal to facilitate pruning as

early as possible.

A. Observation

First, we highlight an observation on the real SNP datasets

that motivates our pruning idea. Fig. 4 is the distance dis-

tribution which shows the percentage of vertices that have

the corresponding social distances to a randomly sampled

vertex in the social network. The distribution is constructed

by uniformly sampling 1000 vertices from the Twitter dataset

which is extensively studied in our experiments. We observe

that there exist layers of vertices with different distances from

a random vertex. Due to the small world property, the number

of layers is usually small. This finding has also been verified

in the news dataset that we have studied. Moreover, this is

consistent in real life context where close friends are rare and

the rest just scatter around, which means our defined social

distance measure may enable more pruning power on real

world SNPs. If we avoid computing the distances between the

source vertex and those vertices that are positioned at these

layers, the performance will be greatly improved.

B. Baseline Solution: Direct Pruning

For a given source vertex v, Dijkstra Algorithm (DA) [27] is

the most widely-adopted approach to find the distance between

v and every other vertex in the graph. The key idea of DA

is to maintain a set S and a priority queue PQ. S contains

all the vertices whose distances to v have been determined

while PQ orders the remaining vertices by their estimated

distances to v, i.e. SD⇤(v, u), u 2 PQ. In each iteration, the

TABLE I: Notations used across Sec. VI
Notation Meaning

v, u
v is the query user, u is any other user in
the social network

ru the record posted by user u

r∗ the kth best record among evaluated records

S
the set contains users with determined
social distances to v

PQ
the priority queue contains users with
undetermined social distances to v

SD(v, u) the actual distance between v and u

SD∗(v, u) the estimated SD(v, u) in PQ

min SRru
the minimum SR(v, u) allowed for ru
s.t. <(v, ru) � <(v, r∗)

max SDru 1�min SRru

n argminx∈PQSD(v, x)
mdist SD(v,n)

DA Dijkstra’s Algorithm

vertex n with the smallest SD⇤(v, n) is popped from PQ.

At this moment, we are sure that SD(v, n) = SD⇤(v, n) and

we denote SD(v, n) by mdist. Then n is inserted into S and

for each n0 2 PQ where (n, n0) 2 E, SD⇤(v, n0) is updated

to min(SD⇤(v, n0),mdist + SD(n, n0)). Therefore, in order

to answer such one-to-many distance query, we choose to use

DA as the backbone for our traversal while presenting a series

of pruning methods to access as few nodes as possible.

In particular, whenever a record ru posted by u contains

any query keyword(s), we may need to evaluate SD(v, u). If

u 2 S, no further computation is needed because SD(v, u) has

already been determined. Otherwise, by Algorithm 2 (line 2),

we can get a lower bound for u’s social relevance: minSRru ,

i.e. the minimum possible SR(v, u) for ru to be no less

relevant than the current kth best record r⇤. Equivalently,

max SDru denotes the maximum allowed SD(v, u) in order

for ru to be a potential top-k candidate. Therefore, once we

find mdist � max SDru , it means ru is definitely not a top-k

candidate and we can simply terminate our search and return.

This forms our baseline method called Direct Pruning.

Example 3. In Example 2, CubeTA needs to evaluate r7, r6,

r8, r11 before confirming the top-1 result. For each record

evaluated, its minSR and max SD are listed in Fig. 3, and the

user who posted it is in Fig. 1. When direct pruning is enabled,

the search proceeds as below. We first evaluate r7 posted by

u7. Since no record has been computed, minSRr7 = 1 and

original DA visits the vertices in the order of u1, u3, u2, u10,

u8, u11, u5, u6 and lastly reach u7 to get SR(u1, u7) = 1 �
SD(u1, u7) = 0.4. When we proceed to Iteration 3 to evaluate

r6 posted by u4, the current top-1 result is r7, so we have

mdist = SD(u1, u7) = 0.6 and max SDr6 = 0.5. We find

mdist > max SDr6, which means r6 needs to be pruned from

the top-1 candidate.

C. In-circle Pruning

Since DA traverses the graph in a closest-vertex-first fash-

ion, we must avoid traversing to any vertex that has a large

social distance from the query user v so that the layers

in Fig. 4 are never reached. Otherwise evaluating just one

distance query may require traversing the entire social graph

and the performance can be as bad as original DA, i.e.

O(|E|+|V |log|V |). We will discuss three issues, namely Far

True Candidates, Far False Candidates and Cold Start,

where direct pruning fails to avoid the distance computation

from v to far vertices.

1) Far True Candidates: These refer to records that are

socially far from the query user v but cannot be pruned at

the current stage of query processing. Thereby we have to

compute the exact social distances for these far candidates.

Since direct pruning only prunes the candidates rather than

computing the exact social distance, i.e. SD(v, u), we pro-

pose the first pruning method called early-determination to

quickly compute the social distance as outlined in category

(1)’s optimization. According to DA, the estimated distance

SD⇤(v, u) is only updated to its actual distance SD(v, u)
when there exists a u0 that is popped from PQ in previous

iteration(s) and is also a neighbor of u. Therefore, given the

vertex n = argminx2PQSD(v, x) that is being popped from

PQ and the mdist = SD(v, n), we can get a lower bound of

SD(v, x)+SD(x, u), 8x 2 PQ. If this bound is no smaller than

the current SD⇤(v, u), then we can simply stop and determine

that SD(v, u) = SD⇤(v, u).

Theorem 3. Let SD⇤(v, u) be the estimated SD(v, u) for a

vertex u popped from PQ. If mdist + minu0 SD(u, u0) �
SD

⇤(v, u) where (u, u0) 2 E, then SD(v, u) = SD
⇤(v, u).

Proof : If mdist +minu0 SD(u, u0) � SD
⇤(v, u), then 8x 2

PQ, SD(v, x) + SD(x, u) � mdist + minu0 SD(u, u0) �
SD⇤(v, u). It means that the estimated distance cannot be

updated to a smaller value via any path that contains vertices

in PQ, so the social distance between v and u has been de-

termined, i.e. SD(v, u) = SD
⇤(v, u). ⌅

Example 4. Recall Example 3, the direct pruning needs to

traverse 9 vertices to get the social score for r6. With early-

determination applied, the traversal still starts from u1, and

when popping u8 from PQ, we update SD
⇤(u1, u7) = 0.6

as u7 is a neighbour of u8. We can stop the traversal at

u11 and determine SD(u1, u7) = 0.6 because SD(u1, u11) +
minu0 SD(u7, u

0) = 0.6 � SD
⇤(u1, u7) = 0.6. As a result,

early-determination terminates by traversing 6 vertices only.

To make the pruning more effective, it is critical to obtain

a precise estimation of SD(v, u) before traversing. Thus we

use SD⇤(v, u) = min{SD(v, pnu)+SD(pnu, u), SD(u, pnv)+
SD(pnv, v)} as an upper bound of SD(v, u) and pnu, pnv are

pivot vertices from partitions Pv , Pu (v 2 Pv , u 2 Pu).

2) Far False Candidates: These refer to records that are

socially far away from v and should be pruned from the

current top-k result set. For a record ru, early-determination

only computes SD(v, u) without exploiting max SDru for

pruning ru. In Fig. 4, suppose we want to evaluate ru where

SD(v, u) = 0.8 and the nearest neighbor of u has a distance

of 0.1 from u, then the processing by early-determination is

slow because SD(v, u) cannot be determined until we pop

a vertex from PQ that has a distance of 0.7 from v. This

motivates us to propose the second pruning method, namely

early-pruning as outlined in category (2), to complement

the early-determination method. Like early-determination that

estimates a lower bound that SD⇤(v, u) could be updated to

by vertices in PQ, early-pruning essentially prunes the record

ru by exploiting max SDru , as described in Theorem 4.

Theorem 4. If mdist + minu0 SD(u, u0) � max SDru and

SD
⇤(v, u) � max SDru , then SD(v, u) � max SDru .

Proof : If mdist + minu0 SD(u, u0) � max SDru , similar

to Theorem 3, SD⇤(v, u) will not be updated to a distance

smaller than max SDru by any remaining vertices in PQ.

Thus it is possible for SD(v, u) < max SDru if SD⇤(v, u) <
max SDru . So by ensuring SD

⇤(v, u) � max SDru , we can

determine SD(v, u) � max SDru . ⌅

Example 5. From Example 4, the traversal stops at u11 after

evaluating r7. The next record to compute is r6 posted by u4.

SD
⇤(u1, u4) = 0.7 as u2 2 S and u2 is a neighbor of u4. We

also know max SDr6 = 0.5 in Fig. 3. However, we cannot

early determine SD(u1, u4) at u11 because SD(u1, u11) +
minu0 SD(u4, u

0) = 0.6 < SD
⇤(u1, u4) = 0.7. Instead we

can use early-pruning to eliminate r6 because SD(u1, u11) +
minu0 SD(u4, u

0) > max SDr6 and SD
⇤(u1, u4) > max SDr6.

3) Cold Start: This refers to scenarios where max SD is not

small enough for efficient pruning at the early stage of query

processing. Suppose the first record to evaluate is posted by

the furthest vertex in the social graph w.r.t v, early-pruning

cannot help as the pruning bound is trivial. Although early-

determination can reduce the query time to some degree, it is

still highly possible to visit almost every vertex.

Thus, we propose the third pruning method called warm-

up queue, which aligns with the optimization of category (3).

The warm-up queue WQ is meant to evaluate the records that

are nearer to v first and to obtain a decent bound for further

pruning. WQ is constructed as follows: we push a number

of records to WQ before computing any social distance.

WQ ranks the records with an estimated distance, which is

computed by exploiting the pivot vertices as the transit vertices

between v and the authors of the records. When the size of

WQ exceeds δ, all records in WQ will be popped out and their

exact scores are computed followed by the original CubeTA.

A key problem is to determine δ. We wish that, among

δ records in WQ, there are at least q.k records whose

social distances to v are smaller than the left most layer

in the vertex-distance distribution. Based on the observation

from Fig. 4, we model the vertex-distance distribution as a

mixture of gaussians, which is a weighted sum of M normal

distributions: p(x) =
PM

i=1 wig(x|µi,σi) where g(x|µi,σi) is

the probability density of a normal distribution with mean µi

and variance σ2
i . In the context of social network, the number

of layers in the vertex-distance distribution is small due to the

small world property and it makes the training complexity

low. The model is established by the standard expectation

maximization method. Given the mixture model and a random

record ru, the probability popt that SD(q, u) < µmin where

µmin is the mean of the left most normal component which

means µmin µi, 8i = 1..M .

popt =

Z µmin

�1

M
X

i=1

wig(x|µi,σi)dx (8)

Assuming the record authors are independent and identically

distributed random variables w.r.t their distance to v in the

social graph, the probability of having at least q.k records

whose social distances to v are smaller than µmin follows the

binomial distribution:

p(δ) = 1�

q.k
X

i=0

✓

δ

i

◆

(1� popt)
δ�ipopt

i (9)

In this work we aim to ensure p(δ) > 99.9% so that, in most

cases, the first q.k records in WQ have social distances that

are less than µmin.

Algorithm 3: Optimized Distance Query Computation

Input: Query user v, record ru, set S, priority queue

PQ, max SDru and mdist
Output: SD(v, u) < max SDru ? SD(v, u)ru : �1

1 if u 2 S then

2 return SD(v, u) < max SDru ? SD(v, u)ru : �1
3 u00 nearest 2-hop neighbour of u.

4 for (u, u0) 2 E do

5 if SD
⇤(v, u0) + SD(u0, u) < SD

⇤(v, u) then

6 SD⇤(v, u) SD⇤(v, u0) + SD(u0, u)
7 Update SD⇤(v, u) of u in PQ
8 while PQ is not empty do

9 if mdist+ SD(u, u00) � SD
⇤(v, u) then

10 return SD⇤(v, u) < max SDru ? SD(v, u) : �1
11 if mdist+ SD(u, u00) � max SDru ^ SD

⇤(v, u) �
max SDru then

12 return �1
13 Vertex n PQ.pop()
14 mdist SD⇤(v, n)
15 S S [n
16 for (n0, n) 2 E and n0 62 S do

17 if SD
⇤(v, n) + SD(n, n0) < SD

⇤(v, n0) then

18 SD⇤(v, n0) SD⇤(v, n) + SD(n, n0)
19 Update SD⇤(v, n0) of n0 in PQ
20 if (n0, u) 2 E then

21 if SD
⇤(v, n0) + SD(n0, u) < SD

⇤(v, u) then

22 SD⇤(v, u) SD⇤(v, n0) + SD(n0, u)
23 Update SD⇤(v, u) of u in PQ

D. Out-of-circle Pruning

In Theorems 3 and 4, the nearest neighbor u0 of the target

vertex u and its distance to u play a critical role to quickly

determine SD(v, u), However, when u0 has a very short dis-

tance to u, none of the aforementioned pruning techniques is

effective. So by exploiting the 2-hop nearest neighbour of u in

the above pruning methods, in particular early-determination

and early-pruning, the pruning power could be enhanced as

compared to its in-circle counterparts. This is because the 2-

hop nearest neighbour has a longer distance from u, which

results in an earlier determination of SD(u, v). We refer to

this approach as out-of-circle pruning, and will demonstrate

its merit over the in-circle pruning in Example 6.

Example 6. By Examples 4 & 5, in-circle early-determination

needs to traverse 6 vertices to evaluate SD(u1, u7), while

with the out-of-circle early-determination we only need to

traverse 3 nodes. The nearest 2-hop neighbour of u7 is u3

and SD(u7, u3) = 0.5. Before any traversal, we use u8, which

we assume it to be the pivot vertex of partition 3, to estimate

SD
⇤(u1, u7) = SD(u1, u8)+ SD(u8, u7) = 0.6. Then the out-

of-circle early-determination takes effect when we reach u2:

now SD(u1, u2)+SD(u7, u3) = 0.7 > SD
⇤(u1, u7) = 0.6; so

by Theorem 3 we guarantee SD(u1, u7) = 0.6. Furthermore,

we can use out-of-circle early-pruning to eliminate r6. Since

u4 posted r6, we first identify the 2-hop nearest distance

of u4 to be SD(u4, u9) = 0.4. In addition we know that

SD
⇤(u1, u4) = 0.7 since u2 was reached when evaluating

r7. Then by out-of-circle early-pruning we are sure r6 is not

the top-1 candidate at u2 because SD(u1, u2)+SD(u4, u9) >
max SDr6 and SD

⇤(u1, u4) > max SDr6.

As a result, by enabling more powerful out-of-circle pruning

upon the DA traversal, we present a complete solution of

the social distance computation in Algorithm 3. In particular,

lines 9-12 extend the idea of Theorems 3 and 4 by replacing

the nearest neighbour distance by the nearest 2-hop distance;

lines 4-7 and 20-23 are meant to guarantee the correctness

of pruning: if n0 is a neighbor of u, SD⇤(v, u) gets updated

via a path that contains n0. The rest part is in line with the

original DA: specifically, Lines 1-2 return the social distance

if SD(v, u) has been determined in S; Lines 13-19 follow the

graph traversal and distance estimate in DA.

Example 7. In Example 6, we visit u1, u3, u2 in order after

evaluating r7, r6 while r8 and r11 remain to be evaluated.

The total score of r8 is 2.2 and we continue to evaluate

r11 posted by u11. By adopting the same assumption from

Example 6, we use u8 to be the pivot vertex of partition 3. Then

we obtain SD
⇤(u1, u11) = SD(u1, u8) + SD(u8, u11) = 0.8.

According to lines 4-7, we need to update SD
⇤(u1, u11) =

SD
⇤(u1, u10) + SD(u10, u11) = 0.4 when we traverse to u3

as u10 is a neighbour of both u11 and u3.

If we do not perform lines 4-7, this means SD
⇤(u1, u11) =

0.8 instead of 0.4. Since r8 is the current top-1 candidate,

max SDr11 = 0.5. As the traversal stops at u2 and nearest

2-hop neighbour of u11 is u3, the out-of-circle early-pruning

will eliminate r11 because SD(u1, u2)+SD(u3, u11) = 0.5 �
max SDr11 and SD

⇤(u1, u11) > max SDr11. But r11 is the

ultimate top-1 result which should not be pruned. lines 20-

23 in Algorithm 3 have a similar reason to guarantee the

correctness of the out-of-circle pruning.

Out-of-circle pruning requires the pre-computation of the

nearest 2-hop distance from each vertex which is retrieved

by using DA. The worst time complexity is O(|V |+|E|) and

the process can easily be parallelized. The space complexity

is O(|V |) which brings almost no overhead for using out-of-

circle pruning compared to in-circle pruning. One may wonder

whether the pruning can be further extended by using 3-hop

nearest distance and beyond. The answer is that it brings more

G

G[1,0] G[1,0]

G[2,0] G[2,2]

{u1,u2,u3,u8,u10,u11} {u4,u5,u6,u7,u9}

{u1,u2,u3}

{u8,u10,u11}

{u4,u5,u6}

{u7,u9}

SD(u1,G[1,0])=0.1 SD(u1,G[1,1])=0.4

SD(u1,G[2,0])=0.1

SD(u1,G[2,1])=0.1

SD(u1,G[2,2])=0.4

SD(u1,G[2,3])=0.5

G[2,1] G[2,3]

Fig. 5: Tree partition of the social
graph in Fig. 1.

Insert

r6-r10

[1,0.7) [0.7,0.4) [0.4,0]

r8

r6 r9

r7 r10

Insert

r11

[1,0.7) [0.7,0.4) [0.4,0]

r8,r11

r6 r9

r7 r10

Fig. 6: Example of building time
slice 1 of the 3D list for “icde” on
the partition tree in Fig. 5.

complexity in both time and space. If we use 3-hop nearest

distance, one has to ensure SD⇤(v, u) is updated via a path

that contains n0 if n0 is 2-hop away from u. However, to check

if n0 is a 2-hop neighbour of u, we must either store all 2-

hop neighbours for each vertex or validate 2-hop relationship

on the fly. Storing all 2-hop neighbours are not realistic for

large graphs whereas computing on the fly will trivially slow

down the query processing. Therefore, it can be concluded that

out-of-circle pruning achieves the maximum pruning along the

social dimension.

VII. 3D INDEX OPTIMIZATION

In the 3D index, the social dimension is statically parti-

tioned. Intuitively, the larger the number of partitions is, the

more accurate the estimate of the social score will be; and

this will translate to more effective pruning. However, a large

number of partitions on the social dimension will severely

tax the system resources and this is not scalable for large

social networks. Moreover the static partition strategy does not

capture the nature of online social activities. Given a period

of time, people who are socially related are likely to publish

similar information on the online network. A fine-grained

yet time-aware social partition is required for more efficient

pruning. Therefore we develop a dynamic division strategy on

social dimension using the hierarchical graph partition.

A. Hierarchical Graph Partition Index

We improve static social division scheme by a hierarchical

graph partition using a binary tree denoted as pTree. Fig. 5

serves an example of a partition tree of the social graph

mentioned in Fig. 1. The root of pTree contains all vertices

in G. Each child node in the tree represents a sub partition of

G. A sub partition is represented as G[h,idx] where h denotes

the level in pTree and idx is the position of G[h,idx] at level

h. For the 3D list, we still keep c partitions as described in

Sec. IV. The improvement is that the c partitions are formed

by nodes in pTree instead of uniform graph partitions.

The 3D list dynamically updates the social dimension when

new records are inserted. The update procedure maintains c
partitions within a time slice. When ur posted a new record

r, within each time slice where r is inserted into, we try

to find the sub partition G[h,idx] to store r. Traversing from

the root of pTree, if G[h0,idx0] has already contained some

records or G[h0,idx0] is a leaf node of pTree, we insert r
into G[h0,idx0]. Otherwise we traverse to the child partition

Time Slice 0: [1,0.4) Time Slice 1: [0.4,0]

Term

Frequency
[1,0.7) [0.7,0.4) [0.4,0]

SD=0.1

(1,2,2) (1,2,1)

r8,r11

(1,2,0)

SD=0.4

(1,1,2)

r6

(1,1,1) (1,1,0)

r9

SD=0.5

(1,0,2)

r7

(1,0,1) (1,0,0)

r10

Term

Frequency
[1,0.7) [0.7,0.4) [0.4,0]

SD=0.1

(0,2,2)

r1

(0,2,1)

r3,r4

(0,2,0)

SD=0.1

(0,1,2)

r0

(0,1,1) (0,1,0)

SD=0.4

(0,0,2) (0,0,1) (0,0,0)

r2,r5

S
o

ci
a

l

D
im

e
n

si
o

n

Text

Dimension

Time

Dimension

Fig. 7: Reordered inverted list for keyword “icde” by using the
hierarchical partition w.r.t. user u1.

of G[h0,idx0] that contains ur. For any two nodes G[x,idxx] and

G[y,idxy] on pTree, we denote their Lowest Common Ancestor

by LCA(G[x,idxx], G[y,idxy]). After insertion, if we find c+1
non-empty sub partitions, we merge two sub partitions Gleft

and Gright to form G[h⇤,idx⇤] = LCA(Gleft, Gright), and

G[h⇤,idx⇤] has the lowest height h⇤ among all possible merges.

If there is a tie in h⇤, the merge that involves the least number

of records will be executed.

Recall Example 2, Fig. 6 demonstrates how to divide the

social partition dynamically using a hierarchical partition for

the 3D list of the keyword “icde” in Fig. 2. Since we are

still building three partitions within a time slice, r6 � r10
are inserted into the leaves of the partition tree when they

arrive chronologically. When r11 arrives, we first identify that

it should be inserted into G[2,1]. However we can only keep

three partitions, so G[2,0] and G[2,1] are merged to form G[1,0]

shown in Fig. 6 when inserting r11. Note that in a time slice

we only store sub partitions that contain at least one record,

and the tree structure is just a virtual view.

The advantage of our hierarchical partition is that, we have

a fine-grained social partitions which improve the estimation

of the cube’s relevance score. This enables more opportunities

for powerful pruning along the social dimension. At the same

time, we still have c partitions and the resource requirement

does not increase. Again in Fig. 5, the score under each tree

node represents the social distance estimated from u1. The

static partition scheme estimates the distance from u1 to u7

as 0.2 where the hierarchical partition scheme gives 0.5 which

is closer to the true value (0.6).

B. CubeTA on Hierarchical Graph Partition Index

CubeTA has to be extended to incorporate the hierarchical

partition to improve the pruning efficiency. Since the partition

scheme is improved from a single layer to multi layers, we

need to change the method to estimate social distances. In the

pre-processing step, all leaf nodes of partition tree pTree are

computed for distance to each other. When a user u submits

a query, we first identify the leaf node Gu that this user

matches. Then the distance SD(u,G[h,idx]) from u to any

partitions G[h,idx] is estimated using minSD(u,G[h0,idx0]) and

G[h,idx] is an ancestor of G[h0,idx0] in pTree. Suppose user u1

submits a query, then the social distances from u1 to other sub

partitions are estimated in Fig. 5. The distances from Gu1
to

all leaf nodes are first retrieved from the pre-computed index

and the value is shown below the nodes. Then distance from

u1 to G[1,0] and G[1,1] are estimated as 0.1 and 0.4 respectively

TABLE II: All parameter settings used in the experiments.
Parameters Pool of Values

Datasets Twitter News

of users 1M 5M 10M 0.1M 0.5M 1M
max vertex degree 0.7M 0.7M 0.7M 16K 29K 30K

average vertex degree 81.6 82.5 46.1 9.2 6.8 7.0

of records 10M,15M,20M 0.5M,1M,5M

keyword frequency low,medium,high

degree of query user low,medium,high

top-k 1,5,10,15,. . .,50

dimension (0.1,0.1,0.1)(0.1,0.3,0.5)(0.1,0.5,0.3)(0.3,0.1,0.5)

weight (α,β, γ) (0.3,0.5,0.1)(0.5,0.1,0.3)(0.5,0.3,0.1)

by taking the minimum value of their leaf nodes.

After reordering the social dimension w.r.t. user u1, we

can visualize the 3D list of “icde” as Fig. 7. For each social

partition, the estimated social distances are listed in the cell.

The partitions may vary across different time slice but the

number of partitions remains the same. CubeTA can be applied

directly to the hierarchical index.

We also see the feasibility of the 3D list and CubeTA which

two of them easily incorporate the hierarchical index into

efficient query processing.

VIII. EXPERIMENT RESULTS

We implemented the proposed solution on a CentOS server

(Intel i7-3820 3.6GHz CPU with 60GB RAM) and compared

with the baseline solutions on two large yet representative

real world datasets: Twitter and Memetracker from SNAP3.

The original Twitter dataset contains 17M users, 476M tweets.

Memetracker is an online news dataset which contains 9M me-

dia and 96M records. Twitter encapsulates a large underlying

social graph but short text information (average number of

distinct non-stopped keywords in a tweet is 7); Memetracker

has a smaller social graph but rich in text information (average

number of distinct non-stopped keywords in a news is 30).

The datasets with different features are used to test our

proposed solution. Since both raw social graphs have a lot

of isolated components, we sampled the users that formed a

connected component to demonstrate the effectiveness of our

solution. Accordingly we filtered the documents/tweets based

on the sampled users, resulting in the datasets used in our

experiments. Table II contains all the parameters used in our

experiments, and those highlighted in bold denote the default

settings unless specified otherwise. For scalability tests, we

make three samples of the social graph and three samples of

the text records for each dataset. For query keywords, we ran-

domly sampled keywords with length 1, 2, 3. We are aware of

four factors that may have impact on the overall performance:

keyword frequency, query user, top-k and weights for different

dimensions for the ranking function (Equation 5).

As no existing work supports searching along all three

dimensions, we would like to compare the proposed solution

with several baseline methods to demonstrate the effectiveness.

• Time Pruning (TP): The state of the art on real time

social keyword search [3], [12], [4] sorts the inverted list

by reverse chronological order, in order to return the latest

3http://snap.stanford.edu/

0

200

400

600

800

1000

low mid high

E
xe

cu
ti

o
n

 T
Im

e
 (

m
s)

keywords frequencies

3D FP TP

(a) vary frequencies:twitter

0

100

200

300

400

500

600

700

3D TP FP 3D TP FP 3D TP FP

low mid high

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Text Social

(b) vary user degree:twitter

0

200

400

600

800

1000

0 10 20 30 40 50

E
x
e

cu
ti

o
n

 T
im

e
 (

m
s)

top-k

3D FP TP

(c) vary top-k:twitter

0
100
200
300
400
500
600
700

E
xe

cu
ti

ti
o

n
 T

im
e

(m
s)

parameters

3D FP TP

(d) vary parameters:twitter

0

20

40

60

80

100

120

140

low mid high

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

keywords frequencies

3D FP TP

(e) vary frequencies:news

0

20

40

60

80

100

120

3D TP FP 3D TP FP 3D TP FP

low mid high

E
xe

cu
ti

o
n

 T
Im

e
 (

m
s)

Text Social

(f) vary user degree:news

0

20

40

60

80

100

120

0 10 20 30 40 50

E
xe

cu
ti

o
n

 T
Im

e
 (

m
s)

top-k

3D FP TP

(g) vary top-k:news

0

20

40

60

80

100

120

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

parameters

3D FP TP

(h) vary parameters:news

Fig. 8: Performance for various settings

result. Thereby, we implement a TA approach that can

take advantage of such order to retrieve the top-k results.

• Frequency Pruning (FP): Without considering efficient

updates in the real time social network, traditional ap-

proach for personalized keyword search sorts the inverted

list by keyword frequencies [5], [6]. FP is the implemen-

tation of TA on this type of inverted list.

• 3D Index (3D): It is the complete solution that we

proposed in this paper, i.e. CubeTA (Algorithm 1) with

our optimized distance query computation (Algorithm 3).

All methods consist of two parts of computation for retrieving

the top-k results. We refer the time to evaluate all candidates’

social relevance scores as social and the rest is denoted as text.

Two notions are adopted throughout all figures in this section.

9

10

11

12

13

14

15

16

17

18

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500

E
x
e

cu
ti

o
n

 t
im

e
-N

e
w

s
(m

s)

E
x
e

cu
ti

o
n

 t
im

e
-T

w
it

te
r

(m
s)

Number of Social Partitions

Twitter data News data

Fig. 9: Effect of increasing so-
cial partitions for both datasets

85

90

95

100

105

110

115

120

125

130

0 10000 20000 30000 40000 50000

E
x
e

cu
ti

o
n

 T
im

e
 (

m
s)

of documents in a time slice

3D tree_height:6 tree_height:7

tree_height:8 tree_height:9 tree_height:10

Fig. 10: Hierarchial tree partition
vs. static partition

A. Discussion on Social Partitions

Before presenting the results to compare all the methods,

we investigate the query performance with different social

partitions in the 3D list. Although more social partitions in

the 3D list bring better accuracy in distance estimates, such

improved accuracy has slowed down due to the small world

phenomenon and the high clustering property of the social

network. Moreover, the query processor needs to visit more

cubes due to the additional social partitions. Thus, as shown

in Fig. 9 there is an optimal setup for the number of social

partitions for both datasets. For twitter dataset, the optimal

number of social partitions is 32 while that for news dataset

is 64. Even though twitter dataset has a larger social graph than

news dataset, twitter has a higher average degree resulting in

a higher degree of clustering. This brings more difficulties in

distinguishing the vertices in terms of their social distances.

We also study the impact of hierarchical partition (proposed

in Sec. VII) on query processing. Three factors will impact on

the performance: (1) Number of documents within a time slice,

(2) Height of the partition tree pTree, (3) Number of partitions

to keep in the 3D list. Since the memory is usually constrained

by a maximum limit, we cannot keep too many partitions.

Therefore, we fix the number of partitions as the optimal

setting just mentioned. Fig. 10 shows the performance results

on twitter dataset when we vary the number of documents

within a time slice and also the height of the partition tree.

We find: (1) more fine-grained social partition leads to better

query performance but it will slow down the index update as

allocating records to the 3D list requires tree traversal; (2) an

optimal setup exists for number of documents to be allocated

in a time slice (10000 in this case).

The hierarchical partition achieves better performance than

the static partition, but it will involve many discussions on

parameter settings. Due to the space constraint, the static

partition is used in 3D to compare with the two baselines: TP

and FP. We have seen that the time slice size and the number

of social partitions have corresponding optimal setups and we

will adopt this setting throughout the experiment. Besides, we

use 10 intervals for the text dimension.

0

500

1000

1500

2000

3D TP FP 3D TP FP 3D TP FP

direct pruning In-circle out-of-circle

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Text Social

(a) twitter data

0

20

40

60

80

100

120

3D TP FP 3D TP FP 3D TP FP

direct pruning in-circle out-of-circle

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Text Social

(b) news data
Fig. 11: Effect of distance pruning

B. Efficiency Study

1) Evaluating Our Pruning Techniques: Fig. 11 shows the

experimental results for both datasets with default settings.

In general, 3D outperforms the other by a wide margin. In

addition, prunings based on the time dimension (TP, 3D)

have better performance than the pruning based on the textual

dimension (FP) because searching along the text dimension is

yet another multi-dimensional search for multiple keywords,

and the well-known curse of dimensionality problem reduces

0

500

1000

1500

2000

2500

3D TP FP 3D TP FP 3D TP FP

graph:1M graph:5M graph:10M

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Text Social

(a) twitter data

0

50

100

150

200

3D TP FP 3D TP FP 3D TP FP

graph:0.1M graph:0.5M graph:1M

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Text Social

(b) news data
Fig. 12: Scalability: Effect of increasing social graph size

the pruning effect along the text dimension. In contrast, the

time dimension is just a scalar so it is more efficient to prune.

To see the effect of the distance optimizations proposed:

direct, in-circle and out-of-circle pruning, we apply them to

TP, FP and 3D. We find that, with better distance pruning

methods, the time for distance queries is greatly reduced for all

methods. Moreover, we have confirmed that 3D works better

with the optimized distance query computation and enables

more efficient pruning compared to the other two. When all

methods employ the optimized distance query computation

(equipped with all pruning techniques in Sec. VI), 3D achieves

4x speedups against TP and 8x speedups against FP.

In the rest of this section, we investigate the query process-

ing time (of CubeTA + complete optimized distance compu-

tation) by varying the keywords frequencies, the query user,

the choice of top-k and the dimension weights respectively.

2) Varying Keyword Frequency: Fig. 8a and 8e show the

query processing time over different ranges of keyword fre-

quency. Keywords with high and medium frequencies are the

top 100 and top 1000 popular keywords respectively, whereas

the low frequency keywords are the rest which appear at

least 1000 times. In both datasets, we have the following

observations: (1) Among all approaches, 3D dominates the

rest for all frequency ranges. (2) As query keywords become

more popular (i.e. with higher frequencies), the performance

speedup by 3D against other methods becomes larger. Intu-

itively, there are more candidate documents for more popular

query keywords. 3D effectively trims down candidates and

retrieves the results as early as possible.

3) Varying Query User: We further study the performance

w.r.t. users with degrees from high to low. The high, medium

and low degree users denote the upper, mid and lower third

in the social graph respectively. We randomly sample users

from each category to form queries. The results are reported

in Fig. 8b and 8f. We find: (1) 3D achieves a constant speedup

compared to the rest of the methods regardless of the query

user’s degree. (2) The social relevance computation for TP

and FP takes longer than 3D, even though TP and FP have

the same distance pruning technique as 3D. This is because

3D prunes more aggressively on social dimension using time

and text dimension whereas the other two methods only have

one dimension to prune. As illustrated later in Sec. VIII-C,

such advantage is magnified when the graph goes larger.

4) Varying Top-k: We vary the top-k value from 1 to 50. As

shown in Fig. 8c and 8g, the performance slowly drops with

more required results. Since we are doing high dimensional

search, result candidate scores tend to be close to each other.

Therefore it is more meaningful to identify results quickly

0

200

400

600

800

1000

1200

3D TP FP 3D TP FP 3D TP FP

tweets:10M tweets:15M tweets:20M

E
x
e

cu
ti

o
n

 T
im

e
 (

m
s)

Text Social

(a) twitter data

0

200

400

600

800

1000

3D TP FP 3D TP FP 3D TP FP

news:0.5M news:1M news:5M

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Text Social

(b) news data
Fig. 13: Scalability: Effect of increasing text information

for smaller top-k values, which also explains why we set

the default top-k as 5. 3D retrieves the results extremely fast

compared to other methods and scales against even larger top-

k value. For TP, the performance is very poor for news dataset

against larger top-k values as news dataset contains more text

information, so time pruning becomes less effective. Lastly for

FP, it almost exhausts all possible documents in the inverted

lists to get the top-k results which is almost a linear scan.

5) Varying Dimension Weights: Lastly, for each dimension

we consider, i.e. time, social and text, we assign different

weights to them to test the flexibility of our scheme. As shown

in Fig. 8d and 8h, 3D remains superior over the other methods.

Even when the weight of time dimension is small, i.e. 0.1,

3D is still better than TP where both methods use the time

dimension as the primary axis. 3D does not perform well when

the weight of the social dimension is the largest among all

dimension weights because the small world property makes it

hard to differentiate users effectively in term of social distance.

C. Scalability

In order to test the scalability of our proposed solution, we

decide to scale along the social graph size and the number of

user-posted documents respectively.

First, we test the scalability when the social graph grows

while the number of records remains the same. It naturally

follows the empirical scenario that users issue real time queries

for the most recent posts in a very big social network. In

Fig. 12, we find both TP and FP spend much longer time

in the social distance computation. In contrast, 3D limits the

time for distance query to minimal due to the simultaneous 3-

dimension pruning upon the 3D list. Therefore, 3D is capable

of handling increased volume of the social graph. We also

tested what happens if one of the three pruning techniques,

i.e. early-determination, early-pruning and warm-up queue,

is missing. The results are shown in Table III where we

observe that early-determination is the most powerful pruning.

Nevertheless, all prunings must work together to ensure an

efficient distance computation with the increasing graph size.

Second, we test each approach w.r.t. varying number of

records posted while fixing the social graph sizes to the default

values. As we can see from Fig. 13, 3D remains to be the best

against the rest and is able to maintain the performance to near

constant. Therefore, it verifies that our proposed method is also

scalable against high text volume.

D. Handling Fast Update

Lastly we study how our framework deals with fast and

continuously coming new data. The experiment is conducted

in this way: we measure the query time, online index update

TABLE III: Performance for evaluating social
distances with different pruning disabled. The
units are in milliseconds.

Twitter Graph 1M 5M 10M

No Warm-up Queue 266.1 257.4 1987

No Early-Determination 1341 2377 6018

No Early-Pruning 271.9 531.3 2407

all 31.75 124.8 69.34

News Graph 0.1M 0.5M 1M

No Warm-up Queue 2.56 38.3 38.7

No Early-Determination 17.5 67.6 129

No Early-Pruning 1.34 55.9 52.0

all 0.80 11.2 12.8

0

200

400

600

800

1000

1200

1400

1600

10 12 14 16 18 20

E
xe

cu
ti

o
n

 T
im

e
 (

m
s)

Incoming Records (million)

3D FP TP

Fig. 14: The query time when
records are being ingested.

0

2

4

6

8

10

12

14

16

18

10 12 14 16 18 20

O
n

li
n

e
 U

p
d

a
te

 R
a

te
 (

s/
m

il
li

o
n

 r
e

co
rd

s)

Incoming Records (million)

3D FP TP

Fig. 15: The index update rate
with incoming records.

0

1

2

3

4

5

6

7

8

9

10 12 14 16 18 20

In
d

e
x

 S
iz

e
 (

G
B

)

Incoming Records (million)

3D FP TP

Fig. 16: The index size with
incoming records.

rate and index size while new tweets are being ingested

continuously from 10M to 20M tweets, and the results are

presented in Fig. 14, 15, 16 respectively. Result for the news

dataset is similar to Twitter, while not presented due to space

limit. We find: (1) For query time, time based pruning methods

achieve fairly stable performance while text pruning is getting

worse when tweets are being ingested; 3D outperforms TP by

5-7x speedup and 3D is even more stable against index update.

(2) For online index update time, TP is the most efficient

method due to its simple index stricture. Nevertheless, 3D also

demonstrates its fast-update feature as it clearly outperforms

FP and the margin against TP is quite small. (3) For index

size, the space occupied by 3D is close to TP as we stored

the 3D list as time slices of trees (Sec. IV) to avoid empty

cubes. For FP, more space is required as a large tree structure

is used to maintain a sorted list w.r.t keyword frequencies.

In summary, equipped with its fast update and efficient

space management features, 3D has the advantage in handling

real time personalized query against the other methods.

IX. CONCLUSION

In this work, we presented a general framework to support

real time personalized keyword search on social networks

by leveraging the unique characteristics of the SNPs. We

first proposed a general ranking function that consists of

the three most important dimensions (time,social,textual) to

cater to various user preferences. Then, an update-efficient 3D

cube index is designed, upon which we devised an efficient

Threshold Algorithm called CubeTA. We further proposed

several pruning methods in social distance query computation.

Extensive experiments on real world social network data have

verified the efficiency and scalability of our framework. In

future, we would like to study how to design an effective

ranking function to provide high-quality personalized results.

Acknowledgement. This work is funded by the NExT Search

Centre (grant R-252-300-001-490), supported by the Singa-

pore National Research Foundation under its International

Research Centre @ Singapore Funding Initiative and admin-

istered by the IDM Programme Office. Guoliang Li is partly

supported by the 973 Program of China (2015CB358700) and

NSF of China (61373024 and 61422205).

REFERENCES

[1] X. Hu and H. Liu, “Text analytics in social media,” Mining Text Data,
2012.

[2] C. C. Aggarwal, Ed., Social Network Data Analytics. Springer, 2011.
[3] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin,

“Earlybird: Real-time search at twitter,” in ICDE, 2012.
[4] C. Chen, F. Li, B. C. Ooi, and S. Wu, “Ti: An efficient indexing

mechanism for real-time search on tweets,” in SIGMOD, 2011.
[5] R. Schenkel, T. Crecelius, M. Kacimi, S. Michel, T. Neumann, J. X.

Parreira, and G. Weikum, “Efficient top-k querying over social-tagging
networks,” in SIGIR, 2008.

[6] S. Amer-Yahia, M. Benedikt, L. V. S. Lakshmanan, and J. Stoyanovich,
“Efficient network aware search in collaborative tagging sites,” PVLDB,
2008.

[7] S. Maniu and B. Cautis, “Network-aware search in social tagging
applications: instance optimality versus efficiency,” in CIKM, 2013.

[8] M. Mathioudakis and N. Koudas, “Twittermonitor: trend detection over
the twitter stream,” in SIGMOD, 2010.

[9] M. Qiao, L. Qin, H. Cheng, J. X. Yu, and W. Tian, “Top-k nearest
keyword search on large graphs,” in PVLDB, 2013.

[10] B. Bahmani and A. Goel, “Partitioned multi-indexing: Bringing order
to social search,” in WWW, 2012.

[11] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jack-
son, S. Kunnatur, S. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss,
C. Yang, and N. Zhang, “Unicorn: A system for searching the social
graph,” PVLDB, 2013.

[12] J. Yao, B. Cui, Z. Xue, and Q. Liu, “Provenance-based indexing support
in micro-blog platforms,” in ICDE, 2012.

[13] R. Zhong, G. Li, K.-L. Tan, and L. Zhou, “G-tree: An efficient index
for knn search on road networks,” in CIKM, 2013.

[14] K. C. K. Lee, W.-C. Lee, B. Zheng, and Y. Tian, “Road: A new spatial
object search framework for road networks,” TKDE, vol. 24, no. 3, 2012.

[15] F. Wei, “Tedi: Efficient shortest path query answering on graphs,” in
Graph Data Management, 2011.

[16] T. Akiba, Y. Iwata, and Y. Yoshida, “Fast exact shortest-path distance
queries on large networks by pruned landmark labeling,” in SIGMOD,
2013.

[17] R. Agarwal, M. Caesar, P. B. Godfrey, and B. Y. Zhao, “Shortest paths
in less than a millisecond,” in WOSN, 2012.

[18] J. Cheng, Y. Ke, S. Chu, and C. Cheng, “Efficient processing of distance
queries in large graphs: A vertex cover approach,” in SIGMOD, 2012.

[19] A. B. Adcock, B. D. Sullivan, and M. W. Mahoney, “Tree-like structure
in large social and information networks,” in ICDM, 2013.

[20] R. Li, S. Bao, Y. Yu, B. Fei, and Z. Su, “Towards effective browsing of
large scale social annotations,” in WWW, 2007.

[21] X. Li, L. Guo, and Y. E. Zhao, “Tag-based social interest discovery,” in
WWW, 2008.

[22] J. Zobel and A. Moffat, “Inverted files for text search engines,” ACM

Comput. Surv., vol. 38, no. 2, 2006.
[23] J. Gao, W. Yuan, X. Li, K. Deng, and J.-Y. Nie, “Smoothing clickthrough

data for web search ranking,” in SIGIR, 2009.
[24] G. Karypis and V. Kumar, “Parallel multilevel k-way partitioning scheme

for irregular graphs,” in Supercomputing, 1996.
[25] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita, “Improved

histograms for selectivity estimation of range predicates,” in SIGMOD,
1996.

[26] R. Fagin, A. Lotem, and M. Naor, “Optimal aggregation algorithms for
middleware,” in PODS, 2001.

[27] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
NUMERISCHE MATHEMATIK, 1959.

