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Abstract—This paper proposes a novel online coordination
method for the charging of plug-in electric vehicles (PEVs) in
smart distribution networks. The goal of the proposed method is
to optimally charge the PEVs in order to maximize the PEV
owners’ satisfaction and to minimize system operating costs
without violating power system constraints. Unlike the solutions
reported in the literature, the proposed charging architecture
guarantees the feasibility of the charging decisions by means
of a novel prediction unit that can forecast future PEVs power
demand and through an innovative two-stage optimization unit
that ensures effective charging coordination. Coordinated PEV
discharging also enables improved utilization of power system
resources. Simulation results for a typical distribution network
are provided as a demonstration of the effectiveness of the
proposed architecture.

Index Terms—Distribution systems, energy management, elec-
tric vehicle, smart parking lot, M/G/∞ queue.

I. INTRODUCTION

ECONOMIC, and environmental concerns have led to
a recent increase in interest in low or zero emission

vehicles. One promising type of low emission vehicle is the
plug-in electric vehicle (PEV), the development of which has
been motivated by the recent growth of renewable energy
sources and the almost universal availability of electric power
systems. PEVs are now commercially available at a wide
range of prices, and thousands of PEVs are operating in many
countries around the world.

It has been shown that the PEV charging process, if not
managed effectively, can entail potential risk to the electric
power system, even with low PEV penetration [1], [2]. The
risk is due primarily to the probability that PEVs will likely
be clustered in specific geographical areas, resulting in sig-
nificant stress on the local power distribution system. If not
managed appropriately, the additional load imposed by high
PEV penetration is expected to have severe consequences, such
as increased power losses, phase imbalances, power quality
problems, transformer degradation, and fuse blowouts [2].
The literature provides two categories of solutions that have
been proposed in order to resolve these problems. The first
involves uncoordinated PEV charging, which is possible either
through upgrades to the power system infrastructure or through
the deployment of distributed generation (DG) units to meet
the excess power demand [3]. The second category targets
coordinated PEV charging or charging/discharging, which
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relies on a two-way communication infrastructure under a
smart grid paradigm [4]. Coordinated smart PEV charging and
discharging is known to be overall more beneficial for electric
grid operators and customers than uncoordinated operation [5].

A smart charging and discharging coordination architecture
consists of three main units: a data collection and storage
unit, a prediction unit, and an optimization unit [6]. The
data collection and storage unit governs the collection of
information related to current PEV power demands, the current
state-of-charge (SOC) of PEV batteries, and the power demand
of regular loads. In most cases, an aggregator is assumed to be
in place to deal with PEV data collection and storage. The role
of the aggregator is to collect information from the PEVs and
send it to the grid operator, and to send charging/discharging
decisions from the operator to the chargers. The prediction
unit should provide accurate forecasts of future PEV power
demands and regular loads in the power system. Based on this
information, the optimization unit should then make optimal
coordinated charging and discharging decisions that guarantee
service reliability, maximize operator profit, satisfy system
constraints, and meet customer power demands.

One limitation of the solutions proposed in the literature
is that most fail to address coordinated PEV charging and
discharging decisions that are based on real-time measure-
ments from the grid. As a result, the effect of current and
future PEV charging and discharging decisions on the power
grid is not considered. While some studies involve coordinated
decisions based on PEV load forecast data, not many details
are available with respect to the actual performance of the PEV
load forecast, and perfect PEV load forecast data are usually
assumed. The system response to short-term fluctuations in
the PEV load is therefore not examined. As well, in most
cases, the problem formulation fails to include consideration of
electric power grid constraints and customer power demands.
Customer satisfaction and the feasibility of the decisions are
hence not guaranteed.

This paper presents a real-time coordinated charging and
discharging architecture for a smart grid. The proposed archi-
tecture is capable of dynamically managing PEV charging and
discharging in commercial, industrial, or residential parking
lots. The research contributions can be summarized as follows:
• A novel real-time smart coordinated charging and dis-

charging architecture: The architecture consists of two
new prediction and optimization units, which can improve
power system resource utilization.

• An innovative parking lot prediction unit based on an
M/G/∞ queuing model: The input to the prediction
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unit includes current information about the PEVs in the
parking lot along with the PEV arrival and departure rates
(based on historical data). The unit then outputs, with a
small probability of prediction error, a predicted number
of PEVs that will be simultaneously present in the parking
lot during the next time interval.

• An optimization unit that captures current and future
power demands of both the PEVs and the regular electric
loads over a specific time interval: The proposed opti-
mization unit solves a two-stage optimization problem in
order to determine its charging/discharging decisions. The
goal of the first stage is to reach a feasible power allo-
cation decision for the PEVs (a target PEV SOC), while
including consideration of the electric grid constraints,
customer demands, and current and future system power
loads. The second stage is designed to efficiently utilize
available resources in order to satisfy the target PEV SOC
requirements while minimizing system operating costs.

• An evaluation of the performance of the proposed ar-
chitecture in a variety of scenarios, based on computer
simulations: The simulation results demonstrate the su-
perior performance of the proposed architecture relative
to a first-come, first-served (FCFS) benchmark.

The remainder of the paper is organized as follows. A
review of related work is provided in Section II; the pro-
posed system architecture is described in Section III; and the
prediction and optimization units of the proposed architecture
are explained in Sections IV and V, respectively. Section VI
presents sample case studies, and Section VII summarizes the
conclusions.

II. RELATED WORK

The literature includes reports of a number of studies related
to the problem of coordinated PEV charging and discharging
in a smart grid. This work can be divided into two categories
of solutions: The first includes myopic solutions, in which the
charging and discharging decisions are based solely on the
current information in the grid [7] - [11]. The second cate-
gory includes forecast-based solutions, in which future power
demands in the grid are considered during the determination
of the charging and discharging decisions [13] - [20].

In [7], a real-time coordinated PEV charging strategy is
proposed, which takes into account the time-varying energy
process and the charging time and zone preferred by the
PEV owner. PEV demand side management is presented in
[8], with the goal of providing dynamically configurable dis-
persed energy storage during peak power demand and outage
conditions. An autonomous distributed vehicle-to-grid (V2G)
control system is suggested in [9] as a means of satisfying the
requirements for scheduled charging. In [10], the development
of a framework is for V2G ancillary service modeling and
operation is described. An optimal PEV charging model that
responds to the time-of-use price in a regulated market is pro-
posed in [11]. The authors in [12] presented a new PEV battery
energy management mechanism based on cloud computing
networks, which reduces PEV interactions with parking lots
and the grid. The energy management mechanism is useful for

massive implementations of PEVs and other smart devices that
require direct communication with the grid. However, the work
fails to include consideration of the utility benefits and the
distribution system constraints. Since the studies mentioned
are based on myopic solutions, the effect of current and future
PEV charging and discharging decisions on the power grid is
not considered. The feasibility of such decisions is thus not
guaranteed, which means that achieving the target SOC level
for PEVs can jeopardize power system reliability.

In [13], a probabilistic method is proposed for the estimation
of the amount of power that can be delivered from PEVs
to the grid. The charging coordination strategy presented in
[14] is based on solving a global problem that optimizes
day-ahead charging decisions and a local problem that op-
timizes the real-time connection of the vehicles to the grid. In
[15], the researchers introduce a PEV charging coordination
methodology based on day-ahead and/or real-time markets.
Another study [16] led to the development of an intelligent unit
commitment model for V2G that optimizes power system costs
and emissions. Stochastic unit commitment models for PEV
operation with volatile wind power generation are proposed in
[17] and [18]. The work described in [19] resulted in fuzzy
logic controllers for managing PEV charging/discharging in
real time. The authors of [20] developed a dual PEV co-
ordination mechanism that operates on two different levels:
market operation and real-time operation. While these existing
studies deal with coordinated decisions based on forecast data,
they fail to include a method of forecasting the PEV load
and are not based on real-time measurements and short-term
predictions. The system response to short-term fluctuations in
PEV load has thus not yet been examined.

In general, the formulation of PEV charging/discharging
coordination, as reported in the literature, is based on either
single-objective or multi-objective optimization. The goal of
single-objective optimization approaches is to minimize the
charging cost or system losses. In the absence of appropriate
coordination, consideration of the customer target SOC in
the problem constraints may result in infeasible decisions
during cases of extreme peak load. An additional objective
is to maximize the SOC of the PEV batteries, a goal that
may be achieved at the expense of higher system operating
costs. In multi-objective optimization, the objective function
is to balance the operating cost with customer satisfaction.
However, the reality is that customer satisfaction and the
reliability of the PEV charging service should instead have
higher priority than the system operating cost. As well, some
research fails to address power system constraints in the
problem formulation (e.g., [8], [11], [14]), a deficiency that
means the methods developed in these studies can guarantee
neither the feasibility of the charging and discharging decisions
nor customer satisfaction.

The goal of the research presented in this paper was to pro-
vide a smart real-time coordinated charging and discharging
architecture for smart grids that can address the limitations
mentioned above. The incorporation of short-term predictions
of PEV power demands and the use of a two-stage optimiza-
tion framework guarantees both the feasibility of the charging
and discharging decisions and PEV customer satisfaction.
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Fig. 1. Proposed SRTCS architecture.

III. PROPOSED PEV COORDINATION ARCHITECTURE

The proposed smart real-time coordination system (SRTCS)
architecture is shown in Fig. 1. The smart distribution system
has a set of buses I, with each bus having a set of chargers
Ci, i ∈ I. A maximum of one PEV is connected per charger.
The SRTCS is also partitioned into sections, each served by
one aggregator. The set of system aggregators is denoted
by A = {A1, A2, . . . , AN}, where N is the total number
of aggregators in the system. The whole system is served
by one central vehicle controller (CVC). The prediction and
optimization units are located inside the aggregators and the
CVC, respectively.

Each vehicle driver provides the system with the vehicle
charging identity (ID), his/her parking duration, and the re-
quired SOC value, which should be less than or equal to
a maximum value displayed on the charging panel.1 The
maximum SOC value depends on the battery capacity, the
battery characteristics, the charger capacity, and the parking
duration. The current SOC value of the PEV is also made
available to the aggregator through the physical measurement
of the battery pack voltage. Three types of SOC values can
therefore be defined: required, maximum, and current.

The operation of the CVC and the aggregator is illustrated
in Fig. 2. The aggregator receives a request for information
from the CVC at a time instant tu, u ∈ U , with U denoting
a vector that represents the CVC information request events.
At tu, the aggregator starts to process the vehicle data in all

1The driver-required SOC value can be less than the maximum SOC value
because it is dependent on the drivers preferences, the current electricity price,
and his/her daily trips.

Fig. 2. Flow chart of the CVC and aggregator operation.

parking lots in the territory served by the aggregator. Using the
processed data, the aggregator defines a prediction interval τau
for each a ∈ A and u ∈ U . The prediction unit forecasts the
number of PEVs in the system during the prediction interval
τau, which is given as the maximum parking duration of all
PEVs under the jurisdiction of the aggregator a ∈ A. The
choice of τau ensures that the CVC has information about the
PEV load in the system sufficiently far ahead to enable optimal
coordination decisions to be produced. Each aggregator sends
its prediction duration τau to the CVC, which defines a unified
prediction interval τu so that all aggregators can impose a
synchronous operation such that τu = max{τau, a ∈ A}.
Given τu, which is sent back from the CVC, each aggregator
runs its prediction unit in order to forecast the number of
PEVs in the system during the next τu interval, interval,
given the current PEV load in the system. Each aggregator
then transmits to the CVC the information about currently
connected PEVs along with the predicted number of PEVs.
Once the CVC receives this information from all aggregators
in the system, it runs its optimization unit. To produce its
charging/discharging decisions, the optimization unit solves a
two-stage optimization problem. The first stage is aimed at
reaching a feasible power allocation decision with respect to
a target SOC value for each PEV connected, while including
consideration of the electric grid constraints, customer demand
(SOC required by the PEV), and current and future system
power loads. Future power loads include both the PEV loads
predicted by the aggregators for the next τu interval and the
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regular load forecast. The regular load forecast can follow
any of the conventional techniques described in [21]. The
first stage is referred to as the delivered energy maximization
stage (DEMS). The second stage is designed to achieve the
efficient utilization of the available resources in order to
satisfy the target PEV SOC, as calculated in the DEMS, while
minimizing system operating costs. The second optimization
stage is referred to as the operating cost minimization stage
(OCMS). The completion of this sequential structure results
in charging/discharging decisions that are guaranteed to be
feasible. The decisions are then transmitted from the CVC
to the aggregators, which send an individual control signal
to each charger under its jurisdiction. The entire process is
repeated after a time duration ∆t for a synchronous operation,
∆t � τu. The duration of ∆t should be sufficiently long to
allow for computation and communication delays.

In the following two sections, the aggregator prediction unit
and the CVC optimization unit are discussed in greater detail.

IV. AGGREGATOR PEV PREDICTION UNIT

The aggregator PEV prediction unit predicts the number of
PEVs that will be simultaneously present in the parking lots
under the jurisdiction of that aggregator during the next τu
interval.

The time is partitioned into a set of intervals T =
{T1, T2, . . . , TJ}, where T covers 24 h of the day, with the
duration of one interval Tj � τu for any u ∈ U . The time
intervals of T reflect temporal variations in the PEV arrival
rates during the course of a day, as shown in Fig. 3, which
indicates the arrival rates for typical residential parking lots,
each of which serves one or more residential buildings. Within
time interval Tj ∈ T , PEV arrivals to the parking lots under
the jurisdiction of aggregator a ∈ A are modeled as a Poisson
process, with an arrival rate λaj . The durations of the PEVs’
stay in the parking lot T raj follow a general distribution with
probability density function (PDF) fT r

aj
(t) and mean time T̄ raj .

The capacity of each parking lot under the jurisdiction of
aggregator a is Hmax

a PEVs.
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Fig. 3. Temporal variations in the PEV arrival rates.

The next operation takes place during each time interval
Tj ∈ T and for each parking lot under the jurisdiction
of each aggregator a ∈ A. Once the aggregator receives
the unified prediction interval value τu from the CVC, the
prediction unit determines the number of PEVs that will be
simultaneously present during τu. The prediction interval is
partitioned into a set of periods Du = {D1u

, D2u
, . . . , DBu

},
each with an equal duration ∆t, where Bu = d τu∆te. This
process is shown in Fig. 4, with the end of period Dbu being
denoted by tbu . Given the number of PEVs present at the time
instant H(tu) and their parking durations, a simple calculation
provides the number of PEVs that will stay until the end
of each period in Du, which is denoted by H̃1(tbu). Since
the PEV arrivals follow a Poisson process, the duration of
each PEVs stay follows a general distribution, and since all
PEVs are served without queuing, the transient analysis of an
M/G/∞ queuing model [22], [23] can be used to determine
the number of PEVs that will arrive during Dbu ∈ Du and
stay in each parking lot until the end of each period tbu .
Specifically, assuming a stationary PEV arrival and departure
process in Tj , PEV arrivals follow a Poisson process with
a mean υabu = λaj · bu · ∆t · qabu, where qabu denotes the
probability that a PEV arriving at a parking lot under the
jurisdiction of aggregator a during (tu, tbu ] is still present in
the same parking lot at time tbu . The probability qabu is given
by the following [23]:

qabu =

∫ bu·∆t

0

1

bu ·∆t
Pr(T raj > s)ds

=

∫ bu·∆t

0

1

bu ·∆t
(1− FT r

aj
(s))ds. (1)

Hence, the predicted number of new PEV arrivals by the end
of period Dbu , H̃2(tbu) is given as the minimum integer that
satisfies

H̃2(tbu )∑
h=0

υhabue
−υabu

h!
≥ (1− ε) (2)

where ε ∈ [0, 1] is the prediction error probability.
As a result, the predicted number of PEVs that will be

simultaneously present in the parking lots under the jurisdic-
tion of aggregator a by the end of tbu is given by H̃(tbu) =

u=1 time
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u=2 time
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u=3 time
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Fig. 4. Prediction intervals.



5

H̃1(tbu) + H̃2(tbu). If H̃(tbu) > Hmax
a , then H̃(tbu) = Hmax

a

because additional PEVs will not be admitted to the parking
lot chargers . All aggregators reply to the CVC request with
their prediction of the number of PEVs under their jurisdiction
during the next interval τu.

V. CVC OPTIMIZATION UNIT

TThe CVC optimization unit makes coordinated charg-
ing/discharging decisions over a time duration τu for all
chargers located under its jurisdiction. Two optimization units
are proposed: the first does not allow PEV discharging, while
the second does. Over the prediction interval τu and with con-
sideration of the predicted PEV and regular load values, each
unit solves two sequential optimization stages: DEMS and
OCMS. Although the two stages provide charging/discharging
decisions at every time instant tu and tbu , during τu, only the
decisions at time instant tu are implemented. The decisions
at the other time instants tbu during τu are used as initial
conditions employed for the solution of the two stages for the
next prediction interval τu+1, as shown in Fig. 4. The details
of the operation of the optimization unit for charging only and
for charging/discharging are explained in subsections A and B,
respectively.

AAccording to the distribution system code developed by
the Ontario Energy Board, a local distribution company may
disconnect loads for the following reasons: non-payment,
emergency, safety, or technical limit violation [24]. In this
work, it is therefore assumed that the utility will deliver the
required amount of energy to customers unless there is a
technical limit violation. Hence, as a first priority, the CVC
unit satisfies PEV energy requirements subject to the technical
limits of the system. As a second priority, the system then
minimizes operating costs.

A. Charging-Only Optimization Unit

In this case, only charging decisions are allowed. The
optimization unit solves the following two stages.

1) DEMS: The objective of this stage is to maximize the
energy delivered to all PEV batteries, including both those
already connected and those predicted. The energy delivered
at time instant t(b+1)u is denoted for a PEV (actual or
predicted) connected to charger c(i) ∈ Ci at bus i ∈ I, due
to a decision taken at time instant tbu as ED(c(i), tbu). The
charging decision X(c(i), tbu) is a percentage of the charging
power permitted for charger c(i) at time instant tbu , i.e.,
X(c(i), tbu) ∈ [0, 1]. The subset of chargers at bus i with
connected PEVs (actual and predicted PEVs) is set to be
Cip ⊂ Ci. The objective of the DEMS can then be described
as

max
X

∑
I

∑
Cip

ED(c(i), τu) (3)

where X = (X(c(i), tbu) : c(i) ∈ Cip, i ∈ I, tbu ∈ Du)
and ED(c(i), τu) is the energy delivered for a PEV battery at
charger c(i) during an interval τu.

The voltages and generated power levels at the system buses
are specified based on the power flow constraints, where the
decision variables are the voltage magnitudes and angles at all

buses other than the slack bus; in addition to, the generated
active and reactive powers at the slack bus. The DEMS should
thus satisfy the power flow constraints, as given by

PG(i, tbu)− PL(i, tbu) =
∑
i′∈I
{V (i, tbu)V (i′, tbu)

Y (i, i′) cos(θ(i, i′) + δ(i′, tbu)− δ(i, tbu))}, ∀i ∈ I, b, u
(4)

QG(i, tbu)−QL(i, tbu) = −
∑
i′∈I
{V (i, tbu)V (i′, tbu)

Y (i, i′) sin(θ(i, i′) + δ(i′, tbu)− δ(i, tbu))}, ∀i ∈ I, b, u (5)

where PG(i, tbu) and QG(i, tbu) denote the per unit active and
reactive power generated at bus i for time insta tbu , PL(i, tbu)
and QL(i, tbu) denote the per unit active and reactive power
demands, V (i, tbu) and δ(i, tbu) denote the per unit magnitude
and angle of the voltage, and Y (i, i′) and θ(i, i′) are the per
unit magnitude and angle of the Y-bus matrix admittance.

The voltage limits and thermal limits of the feeders should
also hold, i.e.,

Vmin ≤ V (i, tbu) ≤ Vmax, ∀i ∈ I, b, u (6)

|I(i, i′, tbu)| ≤ Imax(i, i′), ∀i, i′ ∈ I, b, u (7)

where I(i, i′, tbu) denotes the per unit current through the line
between buses i and i′.

The power generated at each bus is obtained from the DG
connected to that bus, with the exception of bus 1, which is
connected to the main substation:

PG(i, tbu) = PDG(i, tbu), QG(i, tbu) = QDG(i, tbu),

∀i ∈ I \ Is, b, u (8)

where PDG(i, tbu) and QDG(i, tbu) denote the per unit DG
active and reactive power levels generated at bus i for time
instant tbu , which is based on current measurements and
forecasted data, and Is is the set containing the slack bus.

The total active power consumed by load PL(i, tbu) is the
sum of the power consumed by the regular load PRL(i, tbu)
and the PEV load PPEV (i, tbu):

PL(i, tbu) = PRL(i, tbu)+PPEV (i, tbu), ∀i ∈ I, b, u. (9)

The power consumed at each bus due to the PEV load
is dependent on the charging decision X(c(i), tbu), the
chargers power limit transferred to/from the battery in kW
PCH(c(i), tbu), and the efficiency of the charger ηCH(i), as
given by

PPEV (i, tbu) =
∑
Cip

X(c(i), tbu) · PCH(c(i), tbu)

ηCH(i) ·K
,

∀i ∈ I, b, u (10)

where K is the base power for the per unit system in kW. The
chargers power transfer limit PCH(c(i), tbu) is a function of
the PEV battery SOC and is limited by the capacity of the
charger. This function is dependent on the characteristics of
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the battery:

PCH(c(i), tbu) = f
c(i),tbu
CH (SF (c(i), tbu)), ∀i ∈ I, b, u

(11)
where f c(i),tbuCH (·) is a function that represents the characteris-
tics of the PEV battery connected to charger c(i) at bus i and
time tbu , and SF (c(i), tbu) is the SOC achieved at time instant
t(b+1)u for a PEV connected to charger c(i) ∈ Ci at bus i ∈ I,
due to a decision taken at time tbu . The relationship between
the energy delivered to a PEV battery and the battery SOC is
expressed as

ED(c(i), τu) = EB(c(i))
∑
b

{SF (c(i), tbu)− S0(c(i))},

∀i ∈ I, u.
(12)

where EB(c(i)) is the battery capacity in kWh of the vehicle
connected to charger c(i) at bus i, and S0(c(i)) denotes the
initial SOC of the PEV at charger c(i).

The SOC of the connected PEVs should be limited by the
SOC desired by the user SD(c(i), tbu):

SF (c(i), tbu) ≤ SD(c(i), tbu), ∀i ∈ I, b, u. (13)

On the other hand, the predicted incoming PEVs are assumed
to require a final SOC of 100% and to arrive with a minimum
SOC of Smin, which represents the worst case condition:

S0(c(i)) = Smin, SD(c(i)) = 100%,∀c(i) ∈ Cir, i ∈ I (14)

where Cir ⊂ Ci denotes the set of chargers reserved for the
newly arrived PEVs.

The SOC values for different PEVs are updated according
to

SF (c(i), t(b+1)u) = SF (c(i), tbu)+

X(c(i), tbu)PCH(c(i), tbu)∆t
60

EB(c(i))
, ∀i ∈ I, 1 ≤ b ≤ B − 1, u.

(15)

The DEMS is thus given by

max
X

∑
I

∑
Cip

ED(c(i), τu)

s.t. (4)− (15)

X ∈ [0, 1].

(16)

2) OCMS: Based on the charging decisions X , a feasible
target SOC SR(c(i)) can be calculated for each PEV, given
the power system constraints and the SOC required by the
customers. The target SOC will be the same as the customer-
desired SOC as long as it does not violate the technical
constraints of the system. The OCMS is designed to find
alternative charging decisions X that can satisfy the feasible
target SOC SR(c(i)) and the system power constraints, while
at the same time minimizing system operating costs. During
time interval τu, the operating costs consist of two parts: the
cost of losses CL(τu) and the peak demand charges CP (τu).

The cost of losses is given by

CL(τu) =
∑
b

ce(tbu) ·K · Ps(tbu) · ∆t

60
(17)

where ce(tbu) is the price signal, which represents the cost
of kWh during interval tbu , and Ps(tbu) is the system power
loss, given by

Ps(tbu) =
1

2

∑
i

∑
i′

G(i, i′){V 2(i, tbu) + V 2(i′, tbu)−

2V 2(i, tbu)V 2(i′, tbu) cos(δ(i′, t)− δ(i, t))}, ∀b, u (18)

where G(i, i′) is the per unit conductance of the line between
buses i and i′. TThe peak demand charges are calculated based
on the peak load reached within one month, but the SRTCS
operates in real time over time interval τu. To incorporate
the peak demand charges CP (τu) within the SRTCS, a target
peak value P̃max(τu) is used as in [25], which is updated to
the maximum total load power incurred during τu, Pmax(τu),
but only if this maximum power exceeds P̃max(τu):

P̃max(τu) = max{P̃max(τu−1), Pmax(τu−1)}. (19)

The OCMS minimizes the peak demand charges only if the
maximum power incurred during τu is greater than the target
peak value:

CP (τu) = cd ·K · (Pmax(τu)− P̃max(τu)),

Pmax(τu) > P̃max(τu); (20)

otherwise, CP (τu) = 0, where cd denotes the peak demand
charges in $/kW. By definition,

Pmax(τu) = max
b
{
∑
i∈I

PL(i, tbu)}. (21)

The OCMS is hence given by

min
X

CL(τu) + CP (τu)

s.t. (4)− (7), (14), (15), (21)

SF (c(i), τu) = SR(c(i))

X ∈ [0, 1].

(22)

B. Charging/Discharging Optimization Unit

In this case, discharging decisions are allowed. However,
charging/discharging decisions are not implemented unless the
charging-only decisions cannot satisfy the customer needs.
In other words, decisions from the charging-only unit are
checked first, and if they satisfy all of the customers needs
(100% success), the charging decision is implemented. If
the charging decisions cannot achieve 100% success, the
charging/discharging unit is enabled, and its results are imple-
mented only if they would achieve greater success than those
produced by the charging-only unit. The charging/discharging
optimization unit has the same structure as the charging-only
one, including the objective functions and constraints of the
DEMS and OCMS, with the exception of constraints (10) and
(11), and the X range, as discussed next.

Since discharging is permitted, X ∈ [−1, 1], in which
positive decisions denote charging and negative ones indicate
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Fig. 5. 38-bus distribution test feeder.

discharging. The power delivered or consumed by each charger
is given by

Po(c(i), tbu) =
X(c(i), tbu) · PCH(c(i), tbu)

ηCH(i) ·K
,

∀X(c(i), tbu) ≥ 0 (23)

Po(c(i), tbu) =
X(c(i), tbu) · PCH(c(i), tbu) · ηCH(i)

K
,

∀X(c(i), tbu) < 0. (24)

The total power delivered by each parking lot is given by

PPEV (i, tbu) =
∑
Cip

Po(c(i), tbu), ∀i ∈ I, b, u. (25)

The power transfer limit of the charger PCH(c(i), tbu) has
different characteristics for charging and discharging:

PCH(c(i), tbu) = f
c(i),tbu
CH (Sf (c(i), tbu)),

∀X(c(i), tbu) ≥ 0 (26)

PCH(c(i), tbu) = f
c(i),tbu
DCH (Sf (c(i), tbu)),

∀X(c(i), tbu) < 0. (27)

The charging/discharging optimization unit uses discharging
only to increase the success rate of the PEV charging through
a vehicle-to-vehicle (V2V) scheme; i.e., no power is delivered
to the grid. Hence, we have

PPEV (i, tbu) ≥ 0, ∀i ∈ I, b, u (28)

to ensure that power is exchanged only among PEVs within
the same parking lot; i.e., no power is delivered to the grid.2

To ensure that whenever the vehicle owner unplugs his/her
PEV before the declared departure time the SOC is not less
than its initial value, the discharging scheme should satisfy the

2For a V2G scheme, this constraint is removed from the SRTCS.

following constraint:

SF (c(i), tbu) ≥ S0(c(i)), ∀i ∈ I, b, u. (29)

VI. SIMULATION RESULTS AND DISCUSSION

To evaluate the performance of the proposed SRTCS, two
case studies were examined using a 38-bus system [26] that
contains a mix of residential, commercial, and industrial cus-
tomers and PEV parking lots, all of which are supplied from
the main power substation, as shown in Fig. 5. The total system
peak load is 4.37 MVA. The system line data, customer type,
and load point demand are as given in [26]. The system under
study, including aggregators and prediction units, was modeled
in a MATLAB software tool. The CVC optimization unit was
modeled in a General Algebraic Modeling System (GAMS)
software tool. To update the SOC of the PEV batteries,
charging/discharging decisions are sent from the GAMS to
the MATLAB environment. For the simulation, ∆t = 10 min,
and the simulation covers 24 h of one day. The maximum
computation times for the prediction and optimization units in
the system under study are 1.1 sec and 75 sec, respectively.
The hardware utilized for simulation was a quad core 2.8 GHz
processor with 6 GB of RAM. The error probability for the
prediction unit is ε = 0.1. The peak demand charge is 3
$/kW [27], and the energy cost is as shown in Fig. 6. The
initial moving peak value for the day under study is set to the
maximum regular load demand: 3.715 MW.

The system contains four parking lots on buses 22, 29, 34,
and 36, as shown in Fig. 5. The PEV parking residence time
is modeled in the prediction unit as an exponential random
variable with mean times of 120 min, 180 min, 120 min, and
100 min for the four parking lots, respectively. For simplicity,
all chargers are assumed to be second-level chargers with
a 7.2 kW rating. All PEVs are assumed to have an all-
electric range (AER) of 50 miles. All PEV batteries have
the same charging/discharging characteristics, as given in [29]
with some adjustment to the match the ratings of the PEV
chargers and the AER. For simplicity, the function representing
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Fig. 6. Real-time energy price.

the battery characteristics in (11), which is included in the
Appendix, is assumed to be identical for all vehicles.

Two case studies were examined. The first investigated
the performance of the SRTCS with charging-only (SRTCS-
C) decisions for a low PEV penetration level. The second
case study evaluated the performance of the SRTCS for
a high PEV penetration level with both charging-only and
charging/discharging (SRTCS-C/D) decisions. In both cases,
the proposed SRTCS was compared to an FCFS approach for
coordinated charging decisions [28]. In the FCFS approach,
PEV charging decisions are based on allocating priority to
vehicles that arrive at the parking lot earlier. The SRTCS
was also compared to an uncoordinated charging approach,
whereby all PEVs connected to the grid are charged without
consideration of the technical limitations of the system and
in the absence of communication between the grid operators
and the PEVs. A success factor SF is introduced as a figure
of merit. The success factor is defined as the mean success
of PEV charging for all vehicles in the system over the 24 h
under study and is given by

SF =
1

H
·
H∑
h=1

ED(h)

ER(h)
(30)

where H denotes the total number of PEVs served during the
24 h of the day, and ED(h) and ER(h) denote the energy
delivered and required for PEV h, respectively.

A. Smart PEV Charging with Low PEV Penetration

In this case study, the total PEV load represents 18% of the
total system load. The PEV arrival rates at the parking lots are
shown in Fig. 3. The regular load of the system over the 24
h period is shown in Fig. 7(a) [30]. TThe maximum number
of PEVs, i.e., chargers, in each parking lot is 25, 75, 25, and
25 for buses 25, 29, 34, 36, respectively. As shown in Fig.
7(b), both the uncoordinated (UNCR) and FCFS approaches
yield the same performance, which is attributable to the low
PEV penetration level, which enables the system to charge all
connected PEVs without violating the technical limitations. On
the other hand, the proposed SRTCS can significantly reshape
the charging requirement of the PEVs connected to the system.
With the use of the SRTCS, during the regular load peak, PEV
charging is limited and is performed either before or after the
peak load interval, thanks to the prediciton unit. In contrast to
the uncoordinated and FCFS approaches, with the SRTCS, the
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Fig. 7. Power demands for regular and PEV loads for different scenarios:
(a) Regular load demand; (b) PEV demand at low penetration; and (c) PEV
demand at high penetration.

TABLE I
SYSTEM OPERATING COSTS AND SUCCESS FACTORS FOR THE LOW

PENETRATION CASE

Scheme
SF

(%)

Percentage 

reduction 

in CL (%)

Percentage 

reduction 

in CP (%)

Feasibility

UNCR 100.0 0.0 0.0 Feasible

FCFS 100.0 0.0 0.0 Feasible

SRTCS-C 100.0 14.6 47.2 Feasible

PEV charging peaks occur at the periods of minimum regular
load: around 11:30 am, 5:30 pm, and after 1 am. IWith low
PEV penetration, all three charging approaches can achieve a
success factor of SF = 100%. Table I shows the percentage
reduction in operating costs compared to the UNCR scenario.
Because the PEV charging energy is allocated during low price
periods, the SRTCS results in a significant reduction in the cost
of the system losses: 14.6%. The peak demand charges for the
SRTCS are also 47.2% lower due to the ability of the SRTCS
to shift the peak of the PEV load to the off-peak periods of
the regular load, as shown in Fig. 7(b).
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TABLE II
SYSTEM OPERATING COSTS AND SUCCESS FACTORS FOR THE HIGH

PENETRATION CASE

Scheme
SF

(%)

Percentage 

reduction 

in CL (%)

Percentage 

reduction 

in CP (%)

Feasibility

UNCR 100.0 0.0 0.0 Infeasible

FCFS 85.7 17.7 76.0 Feasible

SRTCS-C 91.3 17.9 71.7 Feasible

SRTCS-C/D 97.7 15.9 67.1 Feasible

B. Smart PEV Charging/Discharging with High PEV Penetra-
tion

In the second case study, the PEV penetration represents
42% of the total load of the system. For uncoordinated vehicle
charging, such a penetration level is beyond the technical
limitations of the system. The PEV arrival rates are given in
Fig. 8. The maximum number of PEVs in each parking lot is
50, 150, 50, and 50 for buses 25, 29, 34, 36, respectively. The
PEV load results are shown in Fig. 7(c) and Table II. While
the uncoordinated approach can achieve a success factor of
SF = 100%, the charging decisions are infeasible because
they violate the system constraints. Using the predictions for
the regular and PEV loads, the SRTCS can shift the PEV load
so that a higher success factor is achieved than with the FCFS
approach, at a slightly higher cost in losses and a lower peak
load charge. As shown in Fig. 7(c), the SRTCS reduces the
PEV load during regular load peak periods, e.g., 3:30 pm and
10:30 pm, to reduce the peak demand charges, and the PEV
load also peaks during the regular load off-peak periods, as in
the previous case.

The results demonstrate that the SRTCS is more reliable
than the other approaches with respect to addressing the
PEV charging requirements through the efficient utilization of
system resources. The SRTCS achieves a significantly higher
success factor of 97.7% when discharging is enabled, which
successfully shifted the peak PEV consumption to regular load
off-peak periods, as shown in Fig. 7(c). However, this result
is obtained at the expense of a higher operating cost than in

the charging-only case. The higher cost with respect to losses
is due to excess charging energy, which correlates with the
higher success factor. On the other hand, the higher peak
demand in the case of enabled discharging compared with
the charging-only case is due to the change in load pattern
that occurs immediately after the operation of the discharging
unit. An examination of Fig. 9 offers an explanation of this
effect. The discharging unit is activated at 7:40 pm due to the
failure of the charging unit to deliver the energy required. Once
the discharging unit is activated, some of the vehicle energy
is discharged and transferred to other vehicles in the same
parking lot, with the goal of maximizing the entire amount of
energy delivered to the PEVs within the time interval under
study. This process results in equal or higher loading on the
system after 7:40 pm in the discharging case compared with
the situation in the charging-only case because the discharged
PEVs will be transferred to become part of the demand at a
later time instant after 7:40 pm. This shift can then create a
higher total peak demand in the system at the trough shown
in Fig. 7(c), which occurs at 10:30 pm.

However, according to utility regulations [24], from the
operators’ point of view, the service reliability of the PEV
charging (in terms of the success factor) is considered a
higher priority than the operating costs. The charging schemes
can be compared by assuming an individual success factor
SFn(h)=ER(h)/ED(h), where 0% < SFn(h) < 100%. The
entire range of the SFno(h) is divided into 7 levels, as shown
in Table III. As indicated, with the SRTCS-C/D scheme, in
the entire 24 h period, only 1.4% of the PEVs, representing a
total required charging energy of 125.6 kWh, left the parking
lots without receiving any charge. On the other hand, with the
charging-only scheme, 6.39% of the PEVs, representing a total
required charging energy of 755.7 kWh, left the parking lot
without receiving any charge. These values are much higher
with the FCFS charging scheme. Most of the vehicles are
plugged in for short periods (10 min to 1 h) during the peak
period from 7:40 pm to 11:30 pm. For a 100% individual
success factor, when the discharging unit was enabled, 96.41%
of the PEVs received the charging energy they required, for
a total of 14, 514.5 kWh, while only 87.33% and 80.53% of
the PEVs were fully satisfied in the charging-only and FCFS
cases, respectively.

VII. CONCLUSIONS AND FUTURE WORK

This paper has presented a proposed real-time system for
managing the dynamics associated with coordinated charg-
ing/discharging decisions for PEVs in a smart grid. The
SRTCS incorporates two novel prediction and optimization
units. For better coordination of vehicle charging, the pre-
diction unit provides information regarding the future PEV
load in the system. The two-stage optimization unit guarantees
the feasibility of the charging/discharging decisions by first
maximizing PEV owner satisfaction and then minimizing
system operating costs. The performance of the SRTCS has
been investigated for both low and high PEV penetration levels
and for charging-only and charging/discharging decisions. The
simulation results demonstrate the robust performance of the
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TABLE III
DETAILS OF THE INDIVIDUAL SUCCESS FACTORS FOR THE HIGH PENETRATION LEVEL

 
 Percentage of served  

PEVs (%) 

Required energy  

(kWh) 

Delivered energy  

(kWh) 

 
FCFS 

SRTCS-

C 

SRTCS-

C/D 
FCFS 

SRTCS-

C 

SRTCS-

C/D 
FCFS 

SRTCS-

C 

SRTCS-

C/D 

SF °=0% 11.20 6.39 1.40 1304.4 755.7 125.6 0.0 0.0 0.0 

0% < SF° ≤ 20% 0.58 0.51 0.31 148.8 119.2 57.2 25.5 12.1 3.9 

20% < SF° ≤ 40% 2.39 1.23 0.55 473.1 254.2 115.4 159.4 73.7 29.9 

40% < SF° ≤ 60% 2.73 1.20 0.61 579.2 243.8 103.9 299.1 121.5 53.1 

60% < SF° ≤ 80% 1.64 1.81 0.51 340.8 407.9 99.7 233.0 293.2 68.6 

80% < SF° < 100% 0.92 1.30 0.20 167.9 242.9 43.8 151.0 217.7 42.3 

SF° =100% 80.53 87.33 96.41 12044.5 13034.0 14514.5 12044.5 13034.0 14514.5 
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Fig. 9. Detailed illustration of the performance of the SRTCS-C/D for a high
penetration level.

proposed SRTCS with respect to its ability to address the
dynamics of multiple parking lots in a timely manner. The
findings also reveal the effectiveness of the SRTCS architec-
ture in providing a higher PEV charging success rate than
other charging approaches. The advantages of the proposed
SRTCS can thus be summarized as providing immunity to
extreme loading conditions, robustness, and an acceptable
computation time, all of which make it suitable for practical
implementation.

Although the discharging operation results in an improved
SOC for the PEVs, a number of related technical issues present
challenges, such as its unknown impact on battery life and
the requirement for PEV manufacturers to agree to include
such an operation in their design. Future research should thus
include the investigation of appropriate compensation for PEV
owners who adopt such a strategy. Compensation that is too
low would discourage them from embracing the discharging
strategy, while compensation that is too high would motivate

0

10

20

30

40

50

60

70

80

90

100

0

1

2

3

4

5

6

7

8

0 20 40 60 80 100 120

S
O

C
 (

%
)

P
 
(k

W
)

Time (min)

P

SOC
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utilities to deploy other options such as DG or storage devices.
The establishment of an appropriate compensation value that
balances the benefits for both PEV owners and utilities needs
further study.

APPENDIX

Fig. 10 rrepresents the charging characteristics of a typical
PEV Li-ion battery pack [29]. The charging characteristics
consist of two regions: a constant-current charging phase and
a constant-voltage phase, in which the charging power decays
gradually, as shown, in order to avoid battery overcharging.
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