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Abstract. We present the first validation of the Swisens
Poleno, currently the only operational automatic pollen mon-
itoring system based on digital holography. The device pro-
vides in-flight images of all coarse aerosols, and here we
develop a two-step classification algorithm that uses these
images to identify a range of pollen taxa. Deterministic
criteria based on the shape of the particle are applied to
initially distinguish between intact pollen grains and other
coarse particulate matter. This first level of discrimination
identifies pollen with an accuracy of 96 %. Thereafter, in-
dividual pollen taxa are recognized using supervised learn-
ing techniques. The algorithm is trained using data obtained
by inserting known pollen types into the device, and out of
eight pollen taxa six can be identified with an accuracy of
above 90 %. In addition to the ability to correctly identify
aerosols, an automatic pollen monitoring system needs to be
able to correctly determine particle concentrations. To fur-
ther verify the device, controlled chamber experiments us-
ing polystyrene latex beads were performed. This provided
reference aerosols with traceable particle size and number
concentrations in order to ensure particle size and sampling
volume were correctly characterized.

1 Introduction

The incidence of pollinosis and related diseases has in-
creased considerably over the past decades, sparking grow-

ing research interest into aeroallergens and pollen monitor-
ing. Among aeroallergens, pollen is the most important im-
pacting approximately 20 % of the population in Switzer-
land and other high-income countries (D’Amato et al., 2007;
Wüthrich et al., 1995; Ring et al., 2001). Most often, sensi-
tized patients exposed to allergenic pollen experience symp-
toms of allergic rhinitis or hay fever, but exposure to pollen
has also been shown to exacerbate the development of more
severe diseases like asthma, all of which have significant ef-
fects on public health and the economy (Greiner et al., 2012;
Gamble et al., 2008).

Beyond the issue of public health, the airborne transport
of pollen plays a key role in ecosystem dynamics, with im-
portant implications for agriculture, forestry, and the ge-
ographic dispersion of plants (Garzia-Mozo, 2011; Oteros
et al., 2014). The relevance of pollen and other bioaerosols
for atmospheric chemistry and physics has also been increas-
ingly acknowledged since they represent a significant frac-
tion of atmospheric particulate matter and have been shown
to influence cloud formation and precipitation (Jaenicke,
2005; Pöschl, 2005; Möhler et al., 2007; Deguillaume et al.,
2008; Pope, 2010). Furthermore, in the context of climate
change, pollen concentrations undergo fluctuations in terms
of taxa, abundance, and seasonal trends. Pollen monitoring
thus provides valuable information about the evolution of the
local biosphere and its response to anthropogenic forcings
such as pollutant emission or intensive urbanization. While
still uncertain, some evidence shows that the combination of
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a globally warming climate and the perpetuation of contem-
porary human lifestyle is very likely to increase the preva-
lence, intensity, and related costs of pollen-related allergenic
diseases in the coming decades (Ring et al., 2001; D’Amato
et al., 2001, 2016; Beggs, 2016).

Airborne pollen has been monitored since the mid-
twentieth century in Switzerland and elsewhere in Europe
(Clot, 2003; Spieksma, 1990), most commonly with Hirst-
type samplers (Hirst, 1952). These instruments continuously
collect airborne particles on a rotating cylinder tape, which
is then collected, and pollen particles are manually iden-
tified and counted using optical microscopy, typically on
a weekly basis. Because this is such a time- and labour-
intensive method, the spatial and temporal resolution of the
measurements is severely limited. Another drawback of this
type of sampler is the inevitable delay between the obser-
vations and their analysis (up to 9 d), which has important
implications in terms of pollen forecasts. In particular, the
availability of real-time data with high temporal resolution is
a key step (Sofiev, 2019) in the development of accurate fore-
casting models for atmospheric pollen transport (Pasken and
Pietrowicz, 2005; Schueler et al., 2006; Sofiev et al., 2006;
Vogel et al., 2008; Zink et al., 2013; Sofiev, 2017). More
accurate predictions would represent a tremendous asset for
both the scheduling of patients’ activities and the planning of
their medical treatment.

To respond to the need for real-time pollen information,
numerous partly or fully automated monitoring systems have
been developed and investigated over the past decade, with
some recently having reached an operational level. Among
the existing devices on the market, two main categories of
instruments can be identified in terms of the different tech-
niques utilized, either microscope-based or in situ measure-
ments (Kawashima et al., 2007; Perring et al., 2015; Oteros
et al., 2015; Crouzy et al., 2016; Šauliene et al., 2019).
The former aim to automatize the microscopic analysis pro-
cess, while the latter make use of air-flow cytometry mea-
surements, avoiding the collection step and performing real-
time particle-by-particle identification. In the category of
air-flow cytometers, most existing devices rely on fluores-
cence and elastic light-scattering measurements combined
with machine-learning algorithms to identify and quantify
airborne pollen concentrations. Some of these systems have
already shown promising results and are currently tested in
different European countries (Crouzy et al., 2016; Šauliene
et al., 2019; Chappuis et al., 2019). Automatic pollen mon-
itoring is part of a broader field of research on automatic
bioaerosol monitoring (Kawashima et al., 2017; Calvo et al.,
2018; O’Connor et al., 2015; Savage et al., 2017), which was
the object of a recent review article (Huffman et al., 2019).

In this paper we evaluated a new automated pollen mon-
itoring system based on air-flow cytometry, the Swisens
Poleno. This device captures holographic images of each air-
borne particle in addition to measurements of optical proper-
ties such as fluorescence intensity, lifetime, and elastic light

scattering. Here, we focus on the use of digital hologra-
phy for online pollen monitoring since this technique allows
a certain degree of visual identification of pollen taxa. We
use a combination of classical image analysis and a neural
network algorithm to assess the performance of the instru-
ment in terms of pollen identification compared to manually
classified calibration sets. Aerosol sampling, particle sizing,
and counting performance are evaluated using a reference
particle counter at the Swiss Federal Institute of Metrology,
METAS (Horender et al., 2019).

In the following section, the Swisens Poleno air-flow cy-
tometer is presented as well as the methodology used for the
data analysis. Thereafter, the performance achieved in pollen
identification and counting using holographic images from
the device is shown. Although the focus of the present paper
is on the use of digital holography to identify pollen grains,
a validation of the output of the fluorescence using standard
particles is also performed. Finally, the significance of the re-
sults for pollen monitoring are discussed, and an overview of
the future perspectives for this new technology is provided.

2 Materials and methods

2.1 Swisens Poleno

We used the first unit of the commercially available Poleno
device developed by Swisens AG (Switzerland). The device
provides in-flight measurement of particle shape, size, and
fluorescence using various light sources and detectors. The
schematic structure of the device is presented in Fig. 1. Laser
light scattering triggers the measurement, together with pro-
viding a first estimation of particle size, velocity, and align-
ment by combining the information of two trigger lasers. Fol-
lowing the trigger, two focused images at 90 ◦ from each
other are reconstructed using digital holography as in Berg
and Videen (2011), and UV-induced fluorescence produces
information regarding the particle composition. UV-induced
fluorescence lifetime and spectra are measured at three dif-
ferent excitation wavelengths (280, 365, and 405 nm) us-
ing five measurement emission windows between 320 and
720 nm. Finally, a measurement of the time-resolved optical
polarization characteristics of the particle is acquired before
it exits the device.

Since atmospheric pollen concentrations are typically low
compared to other aerosols (on the order of 10–10 000 pollen
grains per cubic metre), a high sampling rate is necessary to
sample pollen effectively. This is all the more relevant since
the threshold for allergic response is typically even lower,
varying depending on the taxa, from just a few grains to a few
tens of grains per cubic metre. In the Swisens Poleno, this
level of sampling is achieved using a concentrator based on
the principle of a virtual impactor that enables an effective
flow rate of 40 L min−1. An hourly time resolution providing
concentrations relevant for pollen exposure thresholds can
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Figure 1. Measurement principle of the Swisens Poleno (courtesy Swisens AG).

thus easily be achieved with this sampling rate. The draw-
back, however, is that the saturation level occurs at coarse
particle (> 10 µm) concentrations above 30 000 particles per
cubic metre. Note that size-dependent particle loss occurs in
the concentrator; corrected concentration factors were deter-
mined from the controlled chamber experiments presented at
the end of the paper. A Sigma-2 inlet was chosen to protect
the device from precipitation as its sampling, in particular the
role of wind speed and particle size, has been documented in
detail (Verein Deutscher Ingenieure, 2013).

2.2 Calibration dataset

A large (> 750 particles per pollen taxon) calibration dataset
was collected for eight different pollen taxa using online
measurements from the Swisens Poleno device. The taxa
were chosen to present a good range of particle size – from
small nettle pollen grains through to large pine pollen grains

– and morphology. Note that the list includes taxa relevant
for pollen allergies such as two different Betulaceae, Dactylis

glomerata as a proxy for grasses, and ash. These samples
were used to train a machine learning algorithm applied to
identify the different pollen taxa. Only one particle type was
calibrated at a time, allowing the data points to be labelled
directly, although dirt, debris, and agglomerates needed to
be eliminated from the dataset manually through visual in-
spection of the holographic images. To generate a large num-
ber of events without saturating the detector, pollen samples
were continuously aerosolized using sound waves in a closed
chamber around the detector inlet. Figure 2 shows exam-
ples of the reconstructed images generated for the calibra-
tion dataset. The pollen identification presented here is based
just on these reconstructed images since they are expected to
contain enough relevant morphological information to per-
mit sufficient identification of the taxa of interest. Fluores-
cence and lifetime measurements are expected to be perti-
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nent for extending the scope of the device to characterize
other bioaerosols (e.g. spores) and pollutants. The dataset ob-
tained includes 12 234 pollen grains (two images per grain)
and is summarized in Table 1; 80 % of this dataset was used
for algorithm calibration and 20 % for validation purposes.
The images are greyscale and have a resolution of 200 pix-
els ×200 pixels. Each pixel represents a 0.56 µm by 0.56 µm
physical domain.

2.3 Shape analysis for pollen detection

A large range of coarse aerosol particles were seen in the
events recorded by the Swisens Poleno. To provide a clean
dataset to the pollen classification algorithm, the pollen par-
ticles needed to be discriminated from all others. In principle
this can be done by applying thresholds to the confidence
estimates provided by deep-learning pollen-classification al-
gorithms; however, this simple method did not yield the re-
quired level of accuracy. An additional step was therefore im-
plemented in the algorithm (thus becoming a two-step classi-
fier), using shape analysis to discriminate between pollen and
non-pollen particles prior to applying the full pollen classifi-
cation.

In general, unbroken biological particles tend to have
a smooth, convex shape, while dust, debris, or other nonbio-
logical particles have rougher, more chaotic shapes (see, for
example, Fig. 3). Two deterministic image analysis routines
were developed and evaluated to select the best available
method for distinguishing pollen from other detected parti-
cles. Both use the contour of each particle, which is extracted
from the reconstructed holographic images in three steps: (1)
pixels are separated into two classes using the Otsu binariza-
tion algorithm (Otsu, 1979), which is based on a dynamic in-
tensity threshold; (2) the largest cluster corresponding to the
particle of interest is then identified; and (3) a convolution
operation extracts the contour of the particle.

The first routine for biological particle identification uses
the OpenCV2 library (Bradski, 2000) to fit (in a least-squares
sense) an ellipse to each contour (Fitzgibbon et al., 1999). As
a feature for biological particle identification the fraction fc

of the contour located further than a certain distance from the
fitted ellipse is considered (red pixels in Fig. 3). For pollen
grains, this value is typically low, while for more fragmented
particles this fraction can reach up to 60 % of the contour
(0 % and 46 % respectively for the examples shown in Fig. 3).

The second method is based on the fractal dimension,
which characterizes the state of self-similarity or roughness,
and is also estimated from the particle contour. Such analysis
of natural objects was first introduced by Mandelbrot (1983)
and is now widely used in a variety of applications, such as
plant leaf or sediment identification (Backes et al., 2009; Or-
ford and Whalley, 1983). We make use of the so-called box-
counting algorithm to estimate the fractal dimension of the
holographic images because of its computational simplicity
(Theiler, 1990). This method consists of splitting each image

into grid boxes and counting the number of boxes N(s) that
contain a fragment of the perimeter of the particle, where s

is the box size. By repeating the procedure for decreasing
values of s, the fractal dimension is then estimated by com-
puting the slope of log(N(s)) over log( 1

s
) (see Fig. 3c).

The performance of these two methods (ellipse fitting and
fractal dimension) is compared using the reference dataset,
which contains images from all calibrated pollen taxa (1640
particles) and manually selected coarse aerosols (1554 non-
pollen particles), measured during late spring and summer
2018 in Payerne, Switzerland. Smaller particles were filtered
out prior to this comparison to keep only particles roughly
in the pollen size range (10 to 200 µm). Note that only a re-
duced subset of pollen calibrations was used to keep a bal-
anced dataset with respect to the non-pollen category.

Using manually labelled data to verify the output of the
classification algorithm, we performed a grid optimization
to find the set of parameters that best discriminates between
pollen and other airborne particles; that is, a filter that si-
multaneously provides sufficient recall (ensuring that most
pollen grains are classified as pollen) and precision (ensur-
ing that only pollen grains are classified as pollen).

2.4 Pollen classification using deep learning

Developments in computer hardware have made it possible
to perform efficient training of complex artificial, or “deep”,
neural networks; their use in image recognition problems is
the iconic application of deep learning. Mimicking the visual
cortex, a series of so-called convolutional layers identify rel-
evant patterns and concentrate the information diluted over
a large image. Extracted features are then used as input for
fully connected layers of artificial neurons, which combine
the features to determine associated labels for each image.
This technique is part of the family of supervised-learning
algorithms; networks need to be trained using images for
which the label is known. We used the open-source software
library Keras (Chollet, 2015) with TensorFlow (Abadi et al.,
2015) as computational back end to implement the pollen
identification algorithm.

The model used to classify pollen grains is based on
the VGG16 architecture (Simonyan and Zisserman, 2014),
which has successfully been applied to a wide range of differ-
ent image classification problems (Russakovsky et al., 2015).
The basic model is shown in Fig. 4, with the vision model be-
ing applied separately to the two orthogonal images and the
output then being processed with two fully connected layers.
This ensures that the model is able to use the information
from both images. For the final layer, softmax activation is
used to map the network output to a probability distribution
(Chollet, 2015). The predicted pollen label is determined by
taking the most probable class. Note that probability infor-
mation is also useful since the plausibility of the final classi-
fications can be easily verified (Crouzy et al., 2016; Šauliene
et al., 2019). Furthermore, although not carried out here,
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Figure 2. Reconstructed holographic images from the Swisens Poleno for different pollen taxa: 1. Ambrosia artemisiifolia, 2. Corylus

avellana, 3. Dactylis glomerata, 4. Fagus sylvatica, 5. Fraxinus excelsior, 6. Pinus sylvestris, 7. Quercus robur, and 8. Urtica dioica.

Table 1. List of pollen taxa used to train the classification algorithm, including the number of events used for training and validation of the
machine learning algorithm for each taxa. Note that all pollen were in a dry state.

Common name Taxa (Latin) Supplier # Training events # Validation events

Ragweed Ambrosia artemisiifolia Bonapol 1063 266
Hazel Corylus avellana Bonapol 1156 289
Grasses Dactylis glomerata Bonapol 602 151
Beech Fagus sylvatica Allergon 859 215
Ash Fraxinus excelsior Allergon 826 207
Pine Pinus sylvestris Bonapol 3601 901
Oak Quercus robur Bonapol 775 194
Nettle Urtica dioica Bonapol 903 226

a threshold could be applied to the classification when per-
forming operational measurements to retain only the pollen
grains classified above a sufficient confidence level.

3 Results and discussion

3.1 Pollen identification

The discrimination between pollen and other coarse aerosols
is evaluated in Fig. 5 in the form of a normalized confusion
matrix for each of the two image analysis algorithms. Each
line in Fig. 5 is normalized to 1 and the values along the
diagonal provide the recall for each category.

The convexity hypothesis for unbroken biological particles
seems to hold particularly well for pollen grains. Indeed, in
nearly all cases one of the two images has an almost perfect
elliptical fit for pollen particles, which translates into only
a very small fraction of contour pixels that strongly deviates
from the optimal ellipse, i.e. fc ≈ 0. Other particles most of-
ten present values of fc ≥ 20% for both images. Good pre-
cision can be obtained by using a low fc threshold, albeit at
the expense of recall. The best results (achieving both good

precision and recall) were obtained by imposing different
thresholds on the two images: at least one of the two images
needs to satisfy a hard condition on the value of fc, while the
other should not present excessive deviation from its fitted el-
lipse. When using optimal values of the two fc thresholds, an
overall accuracy of 96 % was achieved for the discrimination
of pollen from other particles.

Visually, the contours of pollen grains clearly exhibit
smoother shapes than non-pollen particles. However, it can
be noted from Fig. 5 that the fractal dimension method did
not function as well as the ellipse fitting one. While an over-
all accuracy of 77 % is reached, the number of non-pollen
particles classified as pollen (false positives) is still too high
to ensure a satisfactory classification in the second step of
the deep-learning algorithm. Note that the ellipse fitting al-
gorithm alone performs better than any combination of the
two methods (not shown here).

Estimating the fractal dimension of an object from a holo-
graphic image is sensitive to the image resolution, which is
thought to have a significant influence on the determination
of the fractal dimension (see Baveye et al., 1998). Indeed,
more detailed images tend to improve the estimation of the
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Figure 3. Illustration of the image analysis routines applied to (a–

c) a pollen grain (Quercus robur) and (d–f) coarse particulate mat-
ter.

fractal dimension of an object as more details of the con-
tour become apparent. Furthermore, the binarization process
(i.e. reducing the greyscale holographic image to black and
white) may also affect the box-counting calculation. Should
higher-resolution images be available in future versions of
the Poleno, the fractal dimension method may be worth im-
plementing. At this point, given the better accuracy of the
ellipse-fitting technique, we utilize this method in the final
algorithm.

3.2 Pollen classification

Once a particle has been identified as a pollen grain it needs
to be classified into the right taxa. Using the convolutional
neural network (CNN) described in Sect. 2.4, each airborne
particle is assigned a taxa with a corresponding confidence
level of prediction. Results from the classification model are
presented as a normalized confusion matrix in Fig. 6. The

sum of each line is normalized to 1, and the diagonal values
indicate the recall for the different pollen taxa.

Overall the classification algorithm performs very well,
with six of the eight pollen taxa being classified with an ac-
curacy of over 90 %. The exceptions are Corylus, which is
confused in 10 % of cases with Fraxinus, and Dactylis, which
is confused 22 % of the time with Corylus. Note that in this
regard the problem presented to the algorithm is somewhat
artificial; Corylus and grass pollen are not likely to be simul-
taneously present in the atmosphere in concentrations rele-
vant for pollen allergies. Nevertheless, a larger mix of pollen
taxa is likely to be observed in reality, highlighting the need
for further developments to the classification algorithm us-
ing a larger number of species and including fresh pollen. In
this line, it will be essential to include birch in the identifica-
tion algorithm. This may, however, prove to be challenging
given the morphological similarities of the members of the
Betulaceae family.

To better understand the functioning of the neural network,
Fig. 7 presents activation heat maps (Kotikalapudi and con-
tributors, 2017) of pollen particles. These show which parts
of the image the network focuses on to make the taxa pre-
diction; in our case, strongly on the particle shape. This is
apparent in the heat maps (Fig. 7), as the highest activation
regions follow the outline of the pollen grains. This may ap-
pear to be an obvious result but confirms the validity of the
CNN step of the classification algorithm and indicates that
the predictions are based on a physical feature of the particle
and not on some other information embedded in the images.
This verification is essential, as differences in light intensity
or the presence of dust on lenses could lead to discrimination
between calibrations not based on pollen morphology but on
artefacts.

Although there are some limitations to the use of dry
pollen for model training purposes, the performance obtained
suggests that holography alone is sufficient to distinguish
between different pollen taxon. Combined with the results
of the previous section on pollen identification, we propose
a two-step approach for operational pollen monitoring using
digital holography, first applying classical image analysis to
identify pollen and subsequently using deep learning to clas-
sify these particles into individual pollen taxa. As mentioned
in Sect. 2.4, the identification algorithm provides a measure
of confidence in addition to the predicted label. Note that raw
results are presented in the confusion matrix (Fig. 6); in an
operational setup confidence thresholds could be used to in-
crease precision further. Due to the large sampling of such
an automatic system, a certain loss of particles from intro-
ducing confidence thresholds can be accepted without losing
statistical significance of the sampling.
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Figure 4. Vision model based on the VGG16 architecture (Simonyan and Zisserman, 2014) as used here for pollen classification.

Figure 5. Normalized confusion matrix summarizing the performance of (a) the ellipse-based classifier and (b) fractal-based classifier.
“Pollen” refers to a mix of different pollen taxa, while “Non-pollen” encompasses all other coarse aerosols.

3.3 Reference particle counts and fluorescence

observations

The focus of this study was to assess the performance of the
Swisens Poleno in terms of pollen identification. While this
is key, it is equally as important to accurately quantify air-

borne pollen concentrations. At present, this remains a dif-
ficult task since no method, standardized or other, exists to
aerosolize a known quantity of a known pollen taxa. Pollen
grains are both considerably larger than other, nonbiological
aerosol particles and relatively fragile, so producing homog-
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Figure 6. Normalized confusion matrix for the pollen taxa identifi-
cation, the second step of the classification algorithm.

Figure 7. Visualization of the areas on which the convolutional neu-
ral network for pollen classification focuses.

enized airborne concentrations is currently not possible with
conventional techniques.

To assess the accuracy of the particle concentrations ob-
tained with the Swisens Poleno, a measurement campaign
was carried out at the Swiss Federal Institute of Metrology
(METAS). The custom-made facility at METAS has been de-
scribed in detail in Horender et al. (2019). The aim was to
compare the Poleno device with reference particle concen-

trations and fluorescence observations in a controlled cali-
bration chamber using polystyrene latex (PSL) spheres. Dif-
ferent sizes, ranging from 0.5–20 µm, were tested along with
three types of fluorescent PSL (blue 2.07 µm, plum purple
2.07 µm, and red 2.07 µm) to provide a first insight into the
quality of the fluorescence measurements. For each size, the
concentrations measured by the Poleno were compared to
the reference concentrations for approximately 20 min. The
fluorescent PSL used here have been fully characterized by
the Max Planck Institute for Chemistry (MPIC) (Könemann
et al., 2018) for a large range of excitation wavelengths.
Those corresponding to the Poleno excitation wavelengths
have been reproduced in Fig. 8 and serve as a reference for
the fluorescence measurements. Since fluorescence intensity
is measured in arbitrary units (a.u.), the fluorescence mea-
sured by the Poleno (filled dots) is scaled to the MPIC refer-
ence values (solid lines) using the maximum for each of the
five emission windows located between 335 and 700 nm.

The results presented here are encouraging, both in terms
of particle concentration and fluorescence measurements.
The Poleno seems to follow the fluctuations in terms of par-
ticle concentration very well, with Pearson correlation val-
ues of 0.905 and 0.916 for the 5 and 10 µm sizes respec-
tively (see Fig. 8). Similar results are observed for the other
particle sizes tested (not shown), indicating that the Poleno
measures the size of the certified PSL particles correctly. It
is important to note, however, that the Poleno values have
been scaled to the METAS values since the particle con-
centrator is size selective, with larger particles being better
sampled. Once a size-scaling curve has been established it
can be effectively applied to all future measurements, which
is a significant improvement compared to the current prac-
tice of deriving scaling factors for automatic pollen monitors
from Hirst-type measurements (Crouzy et al., 2016; Šauliene
et al., 2019). The systematic analysis of the efficiency of the
concentrator goes beyond the scope of this paper but will be
described in future work. The reproducibility of the scaling
factors obtained was verified by repeating the experiments
with the 2 µm particles three times.

Despite the fact that the Poleno does not measure a con-
tinuous fluorescence emission spectrum, Fig. 8 confirms that
it already provides an insight into the shape of the spectra
for the different excitation wavelengths. The Poleno fluores-
cence signals agree well with the offline reference measure-
ments performed at MPIC (Könemann et al., 2018) for all
five emission windows and combined with the holographic
images, potentially provide the opportunity to extend the
number of particle types that can be recognized (e.g. further
pollen taxa, spores, or pollutants).

4 Towards operational pollen monitoring

The focus of this study was to assess the performance of the
Swisens Poleno, the first operational automatic pollen mon-

Atmos. Meas. Tech., 13, 1539–1550, 2020 www.atmos-meas-tech.net/13/1539/2020/



E. Sauvageat et al.: Online pollen monitoring using digital holography 1547

Figure 8. (a, b) Concentrations (5 and 10 µm PSL spheres) scaled to the METAS reference measurements in UTC. (c, d) Comparison
of fluorescence measurements. Solid lines are the reference fluorescence intensities measured by the Max Planck Institute of Chemistry
presented in Könemann et al. (2018). Median measurements from the Poleno are shown with error bars (interquartile range). Each excitation
wavelength is scaled individually (see text for details).

itoring system based on digital holography. The potential of
using these in-flight images to classify pollen particles in
real-time was shown for eight pollen taxa using a two-step
classification algorithm. The first step distinguishes intact
pollen grains from other coarse aerosol particles using a de-
terministic ellipse-fitting method, providing a 96 % discrimi-
nation accuracy for pollen. Thereafter, individual pollen taxa
are recognized using supervised learning techniques. The al-
gorithm is trained using data obtained by inserting known

pollen types into the device, and six out of eight pollen taxa
can be identified with an accuracy of above 90 %.

The ability of the device to accurately count particles was
tested against reference measurements in controlled chamber
experiments using polystyrene latex spheres. This is a key
aspect for any monitoring device that is to be used opera-
tionally and to date has not been accurately assessed. These
tests, together with validation of the fluorescence measure-
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ments carried out in the same chamber, provide very promis-
ing results.

The holographic images open the possibility for a human
expert to perform online training and improve the model
through a feedback loop. This effectively means that falsely
classified pollen are identified manually and put into the cor-
rect class, for the model to use in the next training phase. The
same principle could potentially be applied when the device
is deployed in a new region with different pollen taxa by cre-
ating new pollen classes. Since the Swisens Poleno measures
1 m3 of air every 25 min, such new datasets can be created
relatively quickly.

Finally, while not included in this study, the use of the flu-
orescence observations may allow the identification of par-
ticles other than pollen, for example, spores or other pollu-
tants. Although the use of holography is a clear novelty of
the present work, development of the method to addition-
ally include florescence would build upon pioneering work
performed using other devices (Toprak and Schnaiter, 2013;
Hernandez et al., 2016; Savage et al., 2017). This could lead
to synergies with air pollution monitoring networks and be
of significant benefit to other sectors, such as agriculture and
forestry, where real-time information concerning the distri-
bution of spores could lead to better crop management prac-
tices. Future work in this direction is being continued, as is
the development of the machine learning algorithm to iden-
tify further pollen taxa.

Code and data availability. All data and algorithms presented in
the paper are experimental and subject to further development. They
are available for research purposes on request to the authors of
the paper. Work is in progress to harmonize the algorithms and
make them public together with the data via open-software and data
repositories.

Author contributions. BCl, BCr, ES, and YZ designed the study.
BCr, KV, KA, and FT carried out the METAS campaign. ES and
YZ analysed all available data. ES, YZ, BCr, and FT prepared the
paper with contributions from all other authors.

Competing interests. The authors declare that they have no conflict
of interest. At the time of writing YZ was affiliated with the Lucerne
University of Applied Sciences and Arts but has since been hired by
Swisens, AG. In no way did this affect this publication.

Acknowledgements. METAS has received funding from the EM-
PIR Projects 16ENV07-Aeromet and 19ENV08-Aeromet II. The
EMPIR programme is co-financed by the participating states and
from the European Commission Horizon 2020 research and inno-
vation programme. This work also contributes to the EUMETNET
AutoPollen Programme.

Financial support. The experiments carried out at the METAS
were performed with funding from the EMPIR projects (grant nos.
16ENV-07-Aeromet and 19ENV-08-Aeromet II).

Review statement. This paper was edited by Francis Pope and re-
viewed by two anonymous referees.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C.,
Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S.,
Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Joze-
fowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D.,
Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Van-
houcke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P.,
Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X.: Tensor-
Flow: Large-Scale Machine Learning on Heterogeneous Sys-
tems, available at: http://tensorflow.org/ (last access: 31 Octo-
ber 2019), software available at: http://tensorflow.org (last ac-
cess: 31 October 2019), 2015.

Backes, A. R., Casanova, D., and Bruno, O. M.: Plant leaf iden-
tification based on volumetric fractal dimension, Int. J. Pattern
Recogn., 23, 1145–1160, 2009.

Baveye, P., Boast, C. W., Ogawa, S., Parlange, J.-Y., and Steen-
huis, T.: Influence of image resolution and thresholding on the
apparent mass fractal characteristics of preferential flow patterns
in field soils, Water Resour. Res., 34, 2783–2796, 1998.

Beggs, P. J.: Impacts of Climate Change on Allergens and Allergic
Diseases, Cambridge University Press, Cambridge, UK, 2016.

Berg, M. J., and Videen, G.: Digital holographic imaging of aerosol
particles in flight, J. Quant. Spectrosc. Ra., 112, 1776–1783,
https://doi.org/10.1016/j.jqsrt.2011.01.013, 2011.

Bradski, G.: The OpenCV Library, Dr. Dobb’s Journal of Software
Tools, 120, 122–125, 2000.

Calvo, A., Baumgardner, D., Castro, A., Fernández-González, D.,
Vega-Maray, A., Valencia-Barrera, R., Oduber, F., Blanco-
Alegre, C., and Fraile, R.: Daily behavior of urban Fluorescing
Aerosol Particles in northwest Spain, Atmos. Environ., 184, 262–
277, https://doi.org/10.1016/j.atmosenv.2018.04.027, 2018.

Chappuis, C. M., Tummon, F., Clot, B., Konzelmann, T.,
Calpini, B., and Crouzy, B.: Automatic pollen monitor-
ing: first insights from hourly data, Aerobiologia, 1–12,
https://doi.org/10.1007/s10453-019-09619-6, 2019.

Chollet, F.: Keras, available at: https://github.com/fchollet/keras
(last access: 24 September 2019), 2015.

Clot, B.: Trends in airborne pollen: an overview of 21 years of data
in Neuchâtel (Switzerland), Aerobiologia, 19, 227–234, 2003.

Crouzy, B., Stella, M., Konzelmann, T., Calpini, B., and Clot, B.:
All-optical automatic pollen indentification: Towards an opera-
tional system, Atmos. Environ., 140, 202–212, 2016.

D’Amato, G., Liccardi, G., D’Amato, M., and Cazzola, M.: The
role of outdoor air pollution and climatic changes on the ris-
ing trends in respiratory allergy, Resp. Med., 95, 606–611,
https://doi.org/10.1053/rmed.2001.1112, 2001.

D’Amato, G., Cecchi, L., Bonini, S., Nunes, C., Annesi-
Maesano, I., Behrendt, H., Liccardi, G., Popov, T., and

Atmos. Meas. Tech., 13, 1539–1550, 2020 www.atmos-meas-tech.net/13/1539/2020/

http://tensorflow.org/
http://tensorflow.org
https://doi.org/10.1016/j.jqsrt.2011.01.013
https://doi.org/10.1016/j.atmosenv.2018.04.027
https://doi.org/10.1007/s10453-019-09619-6
https://github.com/fchollet/keras
https://doi.org/10.1053/rmed.2001.1112


E. Sauvageat et al.: Online pollen monitoring using digital holography 1549

Van Cauwenberge, P.: Allergenic pollen and pollen allergy in
Europe, Allergy, 62, 976–990, https://doi.org/10.1111/j.1398-
9995.2007.01393.x, 2007.

D’Amato, G., Pawankar, R., Vitale, C., Lanza, M., Molino, A.,
Stanziola, A., Sanduzzi, A., Vatrella, A., and D’Amato, M.: Cli-
mate change and air pollution: effects on respiratory allergy, Al-
lergy Asthma Immunol. Res., 8, 391–395, 2016.

Deguillaume, L., Leriche, M., Amato, P., Ariya, P. A., Delort, A.-
M., Pöschl, U., Chaumerliac, N., Bauer, H., Flossmann, A. I., and
Morris, C. E.: Microbiology and atmospheric processes: chemi-
cal interactions of primary biological aerosols, Biogeosciences,
5, 1073–1084, https://doi.org/10.5194/bg-5-1073-2008, 2008.

Fitzgibbon, A., Pilu, M., and Fisher, R. B.: Direct least square fitting
of ellipses, IEEE T. Pattern Anal., 21, 476–480, 1999.

Gamble, J. L., Reid, C., Post, E., and Sacks, J.: A review of the im-
pacts of climate variability and change on aeroallergens and their
associated effects, Global Change Research Program, Washing-
ton, 2008.

Garzia-Mozo, H.: The use of aerobiological data on agronomical
studies, Ann. Agr. Env. Med., 1–6, 18, 2011.

Greiner, A. N., Hellings, P. W., Rotiroti, G., and
Scadding, G. K.: Allergic rhinitis, The Lancet, 378, 2112–
2122, https://doi.org/10.1016/S0140-6736(11)60130-X, 2012.

Hernandez, M., Perring, A. E., McCabe, K., Kok, G., Granger, G.,
and Baumgardner, D.: Chamber catalogues of optical and fluo-
rescent signatures distinguish bioaerosol classes, Atmos. Meas.
Tech., 9, 3283–3292, https://doi.org/10.5194/amt-9-3283-2016,
2016.

Hirst, J. M.: An automatic volumetric spore trap, Ann.
Appl. Biol., 39, 257–265, https://doi.org/10.1111/j.1744-
7348.1952.tb00904.x, 1952.

Horender, S., Auderset, K., and Vasilatou, K.: Facility for
calibration of optical and condensation particle counters
based on a turbulent aerosol mixing tube and a refer-
ence optical particle counter, Rev. Sci. Instrum., 90, 075111,
https://doi.org/10.1063/1.5095853, 2019.

Huffman, J. A., Perring, A. E., Savage, N. J., Clot, B.,
Crouzy, B., Tummon, F., Shoshanim, O., Damit, B., Schnei-
der, J., Sivaprakasam, V., Zawadowicz, M. A., Craw-
ford, I., Gallagher, M., Topping, D., Doughty, D. C.,
Hill, S. C., and Pan, Y.: Real-time sensing of bioaerosols: Re-
view and current perspectives, Aerosol Sci. Tech., 0, 1–31,
https://doi.org/10.1080/02786826.2019.1664724, 2019.

Jaenicke, R.: Abundance of cellular material and proteins in the at-
mosphere, Science, 308, 73–73, 2005.

Kawashima, S., Clot, B., Fujita, T., Takahashi, Y., and Naka-
mura, K.: An algorithm and a device for counting airborne pollen
automatically using laser optics, Atmos. Environ., 41, 7987–
7993, https://doi.org/10.1016/j.atmosenv.2007.09.019, 2007.

Kawashima, S., Thibaudon, M., Matsuda, S., Fujita, T., Lemo-
nis, N., Clot, B., and Oliver, G.: Automated pollen monitoring
system using laser optics for observing seasonal changes in the
concentration of total airborne pollen, Aerobiologia, 33, 351–
362, https://doi.org/10.1007/s10453-017-9474-6, 2017.

Könemann, T., Savage, N. J., Huffman, J. A., and Pöh-
lker, C.: Characterization of steady-state fluorescence prop-
erties of polystyrene latex spheres using off- and online
spectroscopic methods, Atmos. Meas. Tech., 11, 3987–4003,
https://doi.org/10.5194/amt-11-3987-2018, 2018.

Kotikalapudi, R. and contributors: keras-vis, available at: https:
//github.com/raghakot/keras-vis (last access: 31 October 2019),
2017.

Mandelbrot, B. B.: The fractal geometry of nature, vol. 173, WH
Freeman, New York, 1983.

Möhler, O., DeMott, P. J., Vali, G., and Levin, Z.: Micro-
biology and atmospheric processes: the role of biological
particles in cloud physics, Biogeosciences, 4, 1059–1071,
https://doi.org/10.5194/bg-4-1059-2007, 2007.

O’Connor, D. J., Daly, S. M., and Sodeau, J. R.: On-
line monitoring of airborne bioaerosols released from a
composting/green waste site, Waste Manage., 42, 23–30,
https://doi.org/10.1016/j.wasman.2015.04.015, 2015.

Orford, J. and Whalley, W.: The use of the fractal dimension to
quantify the morphology of irregular-shaped particles, Sedimen-
tology, 30, 655–668, 1983.

Oteros, J., Orlandi, F., García-Mozo, H., Aguilera, F., Dhiab, A. B.,
Bonofiglio, T., Abichou, M., Ruiz-Valenzuela, L., del
Trigo, M. M., Díaz de la Guardia, C., Domínguez-
Vilches, E., Msallem, M., Fornaciari, M., and Galán, C.:
Better prediction of Mediterranean olive production using
pollen-based models, Agron. Sustain. Dev., 34, 685–694,
https://doi.org/10.1007/s13593-013-0198-x, 2014.

Oteros, J., Pusch, G., Weichenmeier, I., Heimann, U., Möller, R.,
Röseler, S., Traidl-Hoffmann, C., Schmidt-Weber, C., and
Buters, J. T. M.: Automatic and Online Pollen Monitoring, Int.
Arch. Allergy Imm., 167, 158–166, http://www.karger.com/DOI/
10.1159/000436968, 2015.

Otsu, N.: A threshold selection method from gray-level histograms,
IEEE T. Syst. Man Cyb., 9, 62–66, 1979.

Pasken, R. and Pietrowicz, J. A.: Using dispersion and
mesoscale meteorological models to forecast pollen
concentrations, Atmos. Environ., 39, 7689–7701,
https://doi.org/10.1016/j.atmosenv.2005.04.043, 2005.

Perring, A. E., Schwarz, J. P., Baumgardner, D., Hernandez, M. T.,
Spracklen, D. V., Heald, C. L., Gao, R. S., Kok, G., McMeek-
ing, G. R., McQuaid, J. B., and Fahey, D. W.: Airborne ob-
servations of regional variation in fluorescent aerosol across
the United States, J. Geophys. Res.-Atmos., 120, 1153–1170,
https://doi.org/10.1002/2014JD022495, 2015.

Pope, F.: Pollen grains are efficient cloud condensation nuclei,
Environ. Res. Lett., 5, 044015, https://doi.org/10.1088/1748-
9326/5/4/044015, 2010.

Pöschl, U.: Atmospheric Aerosols: Composition, Transformation,
Climate and Health Effects, Angew. Chem. Int. Edit., 44, 7520–
7540, https://doi.org/10.1002/anie.200501122, 2005.

Ring, J., Krämer, U., Schäfer, T., and Behrent, H.: Why are
allergies increasing?, Curr. Opin. Immunol., 13, 701–708,
https://doi.org/10.1016/S0952-7915(01)00282-5, 2001.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.,
Berg, A. C., and Fei-Fei, L.: ImageNet Large Scale Visual
Recognition Challenge, Int. J. Comput. Vision, 115, 211–252,
https://doi.org/10.1007/s11263-015-0816-y, 2015.
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Matavulj, P., Brdar, S., Panic, M., Sikoparija, B., Clot, B.,
Crouzy, B., and Sofiev, M.: Automatic pollen recognition with
the Rapid-E particle counter: the first-level procedure, expe-

www.atmos-meas-tech.net/13/1539/2020/ Atmos. Meas. Tech., 13, 1539–1550, 2020

https://doi.org/10.1111/j.1398-9995.2007.01393.x
https://doi.org/10.1111/j.1398-9995.2007.01393.x
https://doi.org/10.5194/bg-5-1073-2008
https://doi.org/10.1016/S0140-6736(11)60130-X
https://doi.org/10.5194/amt-9-3283-2016
https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
https://doi.org/10.1111/j.1744-7348.1952.tb00904.x
https://doi.org/10.1063/1.5095853
https://doi.org/10.1080/02786826.2019.1664724
https://doi.org/10.1016/j.atmosenv.2007.09.019
https://doi.org/10.1007/s10453-017-9474-6
https://doi.org/10.5194/amt-11-3987-2018
https://github.com/raghakot/keras-vis
https://github.com/raghakot/keras-vis
https://doi.org/10.5194/bg-4-1059-2007
https://doi.org/10.1016/j.wasman.2015.04.015
https://doi.org/10.1007/s13593-013-0198-x
http://www.karger.com/DOI/10.1159/000436968
http://www.karger.com/DOI/10.1159/000436968
https://doi.org/10.1016/j.atmosenv.2005.04.043
https://doi.org/10.1002/2014JD022495
https://doi.org/10.1088/1748-9326/5/4/044015
https://doi.org/10.1088/1748-9326/5/4/044015
https://doi.org/10.1002/anie.200501122
https://doi.org/10.1016/S0952-7915(01)00282-5
https://doi.org/10.1007/s11263-015-0816-y


1550 E. Sauvageat et al.: Online pollen monitoring using digital holography

rience and next steps, Atmos. Meas. Tech., 12, 3435–3452,
https://doi.org/10.5194/amt-12-3435-2019, 2019.

Savage, N. J., Krentz, C. E., Könemann, T., Han, T. T., Mainelis, G.,
Pöhlker, C., and Huffman, J. A.: Systematic characterization
and fluorescence threshold strategies for the wideband inte-
grated bioaerosol sensor (WIBS) using size-resolved biological
and interfering particles, Atmos. Meas. Tech., 10, 4279–4302,
https://doi.org/10.5194/amt-10-4279-2017, 2017.

Schueler, S., Schlünzen, and Heinke, K.: Modeling of oak
pollen dispersal on the landscape level with a mesoscale
atmospheric model, Environ. Model. Assess., 11, 179,
https://doi.org/10.1007/s10666-006-9044-8, 2006.

Simonyan, K. and Zisserman, A.: Very Deep Convolutional Net-
works for Large-Scale Image Recognition, arXiv 1409.1556,
2014.

Sofiev, M.: On impact of transport conditions on variability
of the seasonal pollen index, Aerobiologia, 33, 167–179,
https://doi.org/10.1007/s10453-016-9459-x, 2017.

Sofiev, M.: On possibilities of assimilation of near-real-time pollen
data by atmospheric composition models, Aerobiologia, 35, 523–
531, https://doi.org/10.1007/s10453-019-09583-1, 2019.

Sofiev, M., Siljamo, P., Ranta, H., and Rantio-Lehtimäki, A.: To-
wards numerical forecasting of long-range air transport of birch
pollen: theoretical considerations and a feasibility study, Int.
J. Biometeorol., 50, 392, https://doi.org/10.1007/s00484-006-
0027-x, 2006.

Spieksma, F. T. M.: Pollinosis in Europe: new observations and de-
velopments, Rev. Palaeobot. Palyno., 64, 35–40, 1990.

Theiler, J.: Estimating fractal dimension, J. Opt. Soc. Am. A A, 7,
1055–1073, 1990.

Toprak, E. and Schnaiter, M.: Fluorescent biological aerosol parti-
cles measured with the Waveband Integrated Bioaerosol Sensor
WIBS-4: laboratory tests combined with a one year field study,
Atmos. Chem. Phys., 13, 225–243, https://doi.org/10.5194/acp-
13-225-2013, 2013.

Verein Deutscher Ingenieure: VDI 2119, techreport, VDI/DIN-
Kommission Reinhaltung der Luft (KRdL) – Normenausschuss,
Berlin, Germany, 2013.

Vogel, H., Pauling, A., and Vogel, B.: Numerical simu-
lation of birch pollen dispersion with an operational
weather forecast system, Int. J. Biometeorol., 52, 805–814,
https://doi.org/10.1007/s00484-008-0174-3, 2008.

Wüthrich, B., Schindler, C., Leuenberger, P., and Ackermann-
Liebrich, U.: Prevalence of atopy and pollinosis in the adult pop-
ulation of Switzerland (SAPALDIA study), Int. Arch. Allergy
Imm., 106, 149–156, 1995.

Zink, K., Pauling, A., Rotach, M. W., Vogel, H., Kaufmann, P., and
Clot, B.: EMPOL 1.0: a new parameterization of pollen emission
in numerical weather prediction models, Geosci. Model Dev., 6,
1961–1975, https://doi.org/10.5194/gmd-6-1961-2013, 2013.

Atmos. Meas. Tech., 13, 1539–1550, 2020 www.atmos-meas-tech.net/13/1539/2020/

https://doi.org/10.5194/amt-12-3435-2019
https://doi.org/10.5194/amt-10-4279-2017
https://doi.org/10.1007/s10666-006-9044-8
https://doi.org/10.1007/s10453-016-9459-x
https://doi.org/10.1007/s10453-019-09583-1
https://doi.org/10.1007/s00484-006-0027-x
https://doi.org/10.1007/s00484-006-0027-x
https://doi.org/10.5194/acp-13-225-2013
https://doi.org/10.5194/acp-13-225-2013
https://doi.org/10.1007/s00484-008-0174-3
https://doi.org/10.5194/gmd-6-1961-2013

	Abstract
	Introduction
	Materials and methods
	Swisens Poleno
	Calibration dataset
	Shape analysis for pollen detection
	Pollen classification using deep learning

	Results and discussion
	Pollen identification
	Pollen classification
	Reference particle counts and fluorescence observations

	Towards operational pollen monitoring
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

