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Abstract

Colorectal cancer is a major health problem, where advances towards computer-aided diagnosis (CAD) systems to assist

the endoscopist can be a promising path to improvement. Here, a deep learning model for real-time polyp detection based

on a pre-trained YOLOv3 (You Only Look Once) architecture and complemented with a post-processing step based on an

object-tracking algorithm to reduce false positives is reported. The base YOLOv3 network was fine-tuned using a dataset

composed of 28,576 images labelled with locations of 941 polyps that will be made public soon. In a frame-based

evaluation using isolated images containing polyps, a general F1 score of 0.88 was achieved (recall = 0.87, preci-

sion = 0.89), with lower predictive performance in flat polyps, but higher for sessile, and pedunculated morphologies, as

well as with the usage of narrow band imaging, whereas polyp size\ 5 mm does not seem to have significant impact. In a

polyp-based evaluation using polyp and normal mucosa videos, with a positive criterion defined as the presence of at least

one 50-frames-length (window size) segment with a ratio of 75% of frames with predicted bounding boxes (frames

positivity), 72.61% of sensitivity (95% CI 68.99–75.95) and 83.04% of specificity (95% CI 76.70–87.92) were achieved

(Youden = 0.55, diagnostic odds ratio (DOR) = 12.98). When the positive criterion is less stringent (window size = 25,

frames positivity = 50%), sensitivity reaches around 90% (sensitivity = 89.91%, 95% CI 87.20–91.94; speci-

ficity = 54.97%, 95% CI 47.49–62.24; Youden = 0.45; DOR = 10.76). The object-tracking algorithm has demonstrated a

significant improvement in specificity whereas maintaining sensitivity, as well as a marginal impact on computational

performance. These results suggest that the model could be effectively integrated into a CAD system.

Keywords Colorectal cancer � Polyp detection � Deep learning � Real time

1 Introduction

Colorectal cancer (CRC) is one of the biggest health issues,

being the third most common type of cancer worldwide [1]

and having a high mortality. The gold standard method for

CRC screening is colonoscopy [2] and the establishment of

population-based CRC screening programs is an efficient

strategy to reduce CRC-associated mortality and incidence

[3]. These screening programs are aimed at detecting and

removing adenomatous polyps that can potentially result in

CRC [4]. Also, early CRC diagnosis is known to increase

the 5-year survival rate from 18 to 88.5% [5]. The adenoma

detection rate (ADR) is a recommended quality measure of

colonoscopy that represents the proportion of examinations

performed by an endoscopist that detect one or more ade-

nomas. It has been found that each 1% increase in ADR is

associated with a 3% decrease in the risk of interval CRC

[6]. The adenoma detection rates ranged from 7.4 to 52.5%

and polyps are missed during colonoscopic examination at

a rate that varies from 6 to 27% [6, 7]. Polyps can be

missed due to several factors, including their characteristics

(size and morphology), quality of bowel preparation,

physicians’ experience, or physicians’ fatigue [8]. In

addition, some studies revealed that having a second

observer during endoscopy increases polyp detection rate

(PDR) [9, 10], although it is not clear if the same applies to

increasing ADR [11]. Given these circumstances, there has

been a great interest in the development of computer-aided

diagnosis (CAD) systems based on artificial intelligence to

assist endoscopists in detecting polyps in colonoscopy

images.Extended author information available on the last page of the article
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In recent years, deep learning (DL), as part of a broader

family of machine learning (ML) methods based on arti-

ficial neural networks (ANN), has gained a lot of attention

in the field of medical image analysis due to its superior

performance in image classification when compared to

previous techniques, being nowadays considered the state-

of-the-art. In this regard, a recent review identified more

than three-hundred studies using DL-based approaches in

medical image analysis [12], and a meta-analysis published

in 2019 demonstrated that the diagnostic performance of

DL-based models is equivalent to that of health-care pro-

fessionals [13]. Naturally, there has been a growing interest

in the application of DL to the analysis of colonoscopy

images for polyp detection and/or classification, and sev-

eral reviews on this topic have been also published

[14–18]. In fact, the first randomized clinical trials of CAD

systems for polyp detection based on DL have been per-

formed recently [11, 19–23]. These clinical trials demon-

strated that such automatic polyp detection systems can

detect polyps initially missed by endoscopists and can

increase both PDR and ADR. Moreover, a recent meta-

analysis studied these clinical trials, demonstrating that

there is an increase in both PDR and ADR when AI-as-

sisted colonoscopy is performed [24]. Although the cost–

benefit ratio and the effect on the incidence of interval

colorectal should be further investigated, these results

demonstrate that DL is a promising technology for the

development of automatic polyp detection systems that

could effectively assist endoscopists during colonoscopy

by providing them a second, unbiased opinion.

In this context, the PolyDeep project (http://www.poly

deep.org) aims to create a CAD system capable of

detecting colorectal polyps in real time and classifying

them. This project has been developed by the authors of

this work, who have created a new dataset of videos and

images of colorectal polyps with samples donated selflessly

by patients of the Digestive Service of the Complexo

Hospitalario Universitario de Ourense (CHUO) (Ourense,

Spain).

In this work, the first results of this project on training

and evaluating a real-time automatic polyp detection sys-

tem based on DL are reported. In the proposed model, a

pre-trained You Only Look Once (YOLO) v3 model was

used and fine-tuned with an in-house database of 28,576

polyp images from 941 different polyps. Polyp images

were acquired under both white light (WL) and narrow

band imaging (NBI). To reduce the false positive bounding

boxes, an efficient object-tracking algorithm was imple-

mented and evaluated.

2 State of the art

As stated in the introduction, there are several recent

reviews [14–18] analysing novel approaches reporting DL-

based systems for polyp detection [14]. Some of the pub-

lished works only perform polyp detection without local-

ization, meaning that they report systems aimed to predict

whether there are one (or more) polyps in a given video

frame, but without indicating the exact location of the

polyp. Other systems also try to locate polyps in the

frames, showing their positions with either a bounding box

(a square or a circle) or a binary mask. The first task is

usually called polyp localization, while the later polyp

segmentation. Polyp localization or polyp segmentation

systems are usually able to predict the locations of one or

more polyps in the same frame.

For any system based on one of these approaches to be

useful in clinical practice, it must be able to operate in real

time and, therefore, it must process at least 25 frames per

second. According to the updated information of our

review, available at this GitHub repository (https://github.

com/sing-group/deep-learning-colonoscopy) as of August

2021, only 13 out of 33 studies report their ability to

operate in real time.

As noted in the available reviews, comparing the per-

formance of the different studies is difficult due to the high

degree of heterogeneity in several aspects. First, most of

the studies use private databases of varying sizes, while

others use one or more publicly available databases such as

CVC-ClinicDB [25], CVC-ColonDB [26, 27], CVC-

PolypHD [26, 27], ETIS-Larib [28], or the ASU-Mayo

Clinic Colonoscopy Video dataset [29]. Even when the

same performance metrics are used to evaluate those sys-

tems (i.e. sensitivity, predictive positive value or PPV,

specificity, negative predictive value or NPV), some stud-

ies report frame-based metrics while others calculate

polyp-based metrics. Another drawback is the fact that

some studies report performances using datasets of manu-

ally selected images, usually having a higher quality than

those frames found in routine colonoscopy videos. This

selection bias may produce overestimated performance

results that cannot be achieved in actual practice. The

validation schemes also vary between studies, with some of

them reporting only training performance or even lack of

test datasets. Finally, some studies evaluate the perfor-

mance of a single model, while others try different con-

volutional neural network (CNN) architectures and

hyperparameter configurations to identify the most

promising combination.

From the 33 studies listed in our repository, Lee et al.

[30] reported the best overall performance on a public

dataset (CVC-ClinicDB), with an F1 of 0.94, a sensitivity
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of 90.2%, and a PPV of 98.2% (frame-based metrics). Four

studies reporting polyp-based metrics using private datasets

achieved sensitivities superior to 93% [31, 32]. From these,

Misawa et al. [31] reported a PPV of 48% and a specificity

of 40%, and Urban et al. [32] reported PPV values of 35%

and 60%, associated with two different datasets where they

achieved sensitivities of 100% and 93%, respectively.

From a technical perspective, multitudes of frameworks

have been proposed for object detection following different

strategies. These strategies fall in two main types: (i) re-

gion proposal based (RPB) frameworks, and (ii) regres-

sion/classification based (RCB) frameworks. The RPB

frameworks divide the object detection task into an initial

region proposal generation phase followed by a classifi-

cation of the proposed regions into different object cate-

gories. On the other hand, the RCB frameworks generate

categorized regions in a single step, treating the problem as

a regular regression or classification problem [33]. The

multi-stage composition of the RBP frameworks, which

includes region proposal generation, feature extraction with

CNN, classification, and bounding box regression, nega-

tively affects the time required to process a frame, condi-

tioning its application in real time [33]. Therefore, the use

of frameworks following this strategy was discarded for

this work, since real-time processing capability is a

mandatory feature for a model that detects polyps during

endoscopy. Regarding RCB frameworks, the two most

relevant implementations are YOLO [34] and SSD [35].

Between these two alternatives, YOLO was finally used

because of the performance and prediction time of the

YOLOv3 version (the most recent at the time of starting

our PolyDeep project), which seems to outperform SSD

[36].

Most of the existing studies perform polyp localization

using architectures like R-CNN (and its variants Fast/Faster

R-CNN) [37–40], Single Shot MultiBox Detector (SSD)

[41–43], and YOLO [30, 44–47]. Although these archi-

tectures allow performing simultaneous object detection

(i.e. localization) and classification (i.e. determining the

type of object detected), most of the studies train them on

one class to perform only polyp localization. There are,

however, exceptions to this. For instance, Liu et al. [39]

trained a Faster R-CNN network to locate polyps and

adenomas, while Tian et al. [48] and Ozawa et al. [49]

trained their networks to differentiate between several

polyp classes. On the other hand, works indicating the

location of polyps as binary marks use encoder–decoder

architectures for object segmentation like SegNet or Unet

[50, 51]. Recently, Qadir et al. [52] reported a real-time

polyp detection model based on an encoder–decoder

architecture named MDeNetplus that converts binary

masks into bounding boxes for polyp localization. Finally,

Urban et al. [32] presented polyp localization as a

regression problem, training different network architec-

tures (VGG16, VGG19, and ResNet50) to predict the size

and location of the bounding boxes. A recent work com-

pared the performance of different architectures perform-

ing polyp detection [53], showing the inability of Faster

R-CNN and RetinaNet to operate in real time (8 and

16 FPS respectively). In this benchmarking, YOLO net-

works achieved state-of-the-art performance, being able to

work in real time ([ 40 FPS).

Remarkably, many authors pick a state-of-the-art per-

forming architecture and apply different post-processing

techniques and algorithms to increase the polyp detection

performance, typically considering temporal information

with the aim of reducing false positives [54]. For instance,

Qadir et al. [55] introduced a false positive reduction unit

that exploits the temporal dependencies among frames in

colonoscopy videos, integrating past and future frames

when making a decision on a specific frame. Similarly, Xu

et al. [54] proposed an inter-frame similarity correlation

unit to both reduce false positive identifications and correct

false negatives (i.e. correct missed identifications). In this

line, we propose a post-processing algorithm to filter

YOLOv3 predictions with the goal of reducing false

positives.

3 Methods

3.1 YOLOv3 object detection model

YOLO models divide the image into an S 9 S grid, whose

cells are assigned with the responsibility of detecting an

object if its centre is within the boundaries of the cell. Each

cell predicts k bounding boxes with a confidence score that

combines the probability of the box containing an object

and the accuracy of the bounding box, calculated as the

intersection over union (IoU) between the predicted box

and the ground truth. The location of the centre of each

bounding box (\x, y[coordinates) is predicted as an offset

relative to the bounds of the corresponding grid cell, while

the size of the bounding box (width and height) is predicted

relative to the image size. Regarding the class prediction,

each cell predicts C class probabilities conditioned to the

presence of an object in the cell. In summary, each

bounding box consists of five values (x, y, width, height,

and confidence), each cell consists of B bounding boxes

and C class predictions, and, therefore, the size of the

YOLO output layer is S 9 S 9 (B * 5 ? C).

During the last years, several versions of the YOLO

framework have been published, each one introducing

some modifications to the base ideas of the original YOLO

network with the aim of improving both the performance

and prediction time of the previous versions. Thus, for
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example, YOLOv2 (also known as YOLO9000) [56]

introduces the concept of the anchor boxes, which are used

as the reference for the bounding boxes location instead of

the cell. Each cell has K associated anchor boxes, whose

dimensions are determined by a k-means procedure.

YOLOv2 also moves the class prediction from cell level to

boundary box level, allowing the location of objects with

different classes associated to the same cell. Therefore, the

size of the YOLOv2 output layer becomes S 9 S 9 B *

(5 ? C). The most relevant innovation of the next version,

YOLOv3 [36], is the prediction at multiple scales by using

anchor boxes from the last layer but also from two previous

layers, achieving better results with objects of different

sizes. Both YOLOv2 and YOLOv3 also replace the back-

bone network, evolving the original Darknet network used

by YOLO.

Recently, and within a short period of time, the

YOLOv4 [57] and YOLOv5 [58] networks have been

published. However, it should be noted that these networks

have been published by independent authors different from

the author of the three original YOLO networks, who has

decided to abandon their development. One of the conse-

quences of this is that, contrary to what one might think,

YOLOv5 is not an evolution of YOLOv4, but both are

derived from YOLOv3. Of these two new versions, only

YOLOv4 has received official support from the original

author of YOLO.

Regarding the technical aspect, YOLOv4 makes use of

techniques such as bag of freebies and bag of specials,

among others, to improve performance and speed com-

pared to YOLOv3. In addition, it also uses CSPDarknet53

as a backbone, which is a version of Darknet that uses

Cross-Stage-Partial-connections (CSP) [59]. On the other

hand, YOLOv5 natively reimplements YOLO for PyTorch

[60], achieving better support and performance. In addi-

tion, it introduces several improvements, such as the use of

a CSP backbone, the use of mosaic data augmentation and

auto learning bounding box anchors.

As explained before, the YOLOv3 was selected to

accomplish this work, part of the PolyDeep project that our

research groups are developing. Specifically, the GluonCV

0.7.0 implementation for the Apache MXNet 1.4.1 frame-

work was used. This framework was preferred over other

popular alternatives, such as TensorFlow [61] or CNTK

(Microsoft Cognitive Toolkit) [62], because it showed

superior performance in several benchmarks consulted.

GluonCV is an extension of Apache MXNet that provides

implementations of state-of-the-art DL algorithms in

computer vision. It also includes the Model Zoo library,

which contains several pre-trained models. From these

models, YOLOv3 was selected with a 416 9 416 input

layer. Although GluonCV also provides YOLOv3 imple-

mentations with input layers of 320 9 320 and 608 9 608,

the 416 9 416 implementation was selected because it

attains the best trade-off between performance and pre-

diction time [36].

Since the volume of data available for model develop-

ment and evaluation was not very large, the use of transfer

learning was considered necessary. For this reason, the

YOLOv3 model pre-trained with the PASCAL VOC

dataset [63] available in the Model Zoo of GluonCV was

used. This dataset includes images from a general domain

used in the PASCAL VOC 2007 and 2012 challenges. The

original object classes of this model were discarded and

replaced by a single one (polyp), reusing the weights of the

aeroplane object class, which achieved best results as not

reusing class weights in the preliminary model tests done.

3.2 Data augmentation

As is commonly known, DL models require a large amount

of data to be trained, which can be difficult to obtain in

medical domains due to the high costs associated to data

annotation. To overcome this problem, several strategies

have been proposed by the scientific community, being

data augmentation one of the most commonly used.

Data augmentation encompasses various techniques that

allow the generation of new images from those already

available by applying, in general, relatively simple trans-

formations. Apart from the obvious benefit of having more

images available, data augmentation is interesting because

it reduces overfitting, since using images with small

alterations prevents the model from memorising them, thus

achieving a more generalised model.

Data augmentation techniques can be classified into two

categories, depending on the strategy followed: data

warping and oversampling. Data warping techniques alter

an image without changing its label, applying alterations

such as colour or geometric transformations, image rota-

tion, image flipping, among others. On the other hand,

oversampling techniques generate new synthetic images

from those available. This includes mixing images, feature

space augmentations, and generative adversarial networks

[64].

In a previous review done by Nogueira-Rodrı́guez et al.

[14], it was observed that the transformations most com-

monly used in polyp detection studies using DL were

image rotation and mirroring, although translation, crop-

ping, scaling and zooming modifications were also used. In

this work, the default data augmentation pipeline imple-

mented in the GluonCV library for YOLOv3 was used

(class gluoncv.data.transforms.pre-

sets.yolo.YOLO3DefaultTrainTransform),

which includes several of the aforementioned transforma-

tions. This pipeline was only modified to eliminate the

initial random colour distortion step, since it produced

10378 Neural Computing and Applications (2022) 34:10375–10396

123



worse results in preliminary tests. Therefore, the data

augmentation pipeline finally used during the proposed

model training consist of the following sequential steps:

1. Random image expansion: the size of the image is

expanded up to four times the original size with a

probability of 0.5. The new space added is filled with

the colour (0.485, 0.456, 0.406) in the RGB colour

model.

2. Random cropping with bounding box constraints: the

image is cropped using the target bounding box as

reference. The size ratio between the cropped region

and the original image ranges from 0.3 to 1, with a

maximum aspect ratio of 2. This operation also uses a

constraint to discard image crops that have an IoU with

the bounding box under 0.9, 0.7, 0.5, 0.3, 0.1, or 0 (i.e.

ignoring this constraint), selecting this value randomly.

This data augmentation technique is taken from the

training of the SSD network [35].

3. Resizing with random interpolation method: the image

is resized to the size of the neural network input (i.e.

416 9 416, see Sect. 3.1). The interpolation method is

selected at random from among nearest neighbours

interpolation, bilinear interpolation, area-based (resam-

pling using pixel area relation), bicubic interpolation

over 4 9 4 pixel neighbourhood, and Lanczos inter-

polation over 8 9 8 pixel neighbourhood.

4. Random horizontal flip: the image is horizontally

mirrored with a probability of 0.5.

Figure 1 shows the results of applying this data aug-

mentation process to a sample polyp image. Although for

illustration purposes in this example all the transformations

were applied, it must be taken into account that during

model training they are randomly activated and, therefore,

some transformations may not be applied.

3.3 Object-tracking algorithm

In order to filter out isolated bounding boxes in video

predictions (i.e. those that appear only during a few

frames), an efficient object-tracking algorithm was devel-

oped as a candidate bounding box (CBB) post-filter. As can

be seen in Fig. 2, this algorithm is integrated into the

network through a module downstream of the object

detection network (YOLOv3 in this work), which is

responsible for applying the algorithm to filter the network

output, maintaining the information needed for the algo-

rithm from the previous frames and manipulating the image

to generate the final output.

The algorithm is run on every video frame after CBBs

were produced by the neural network, and selects those

CBBs whose average of the max IoU found with CBBs on

previous frames (up to a specified window size) is above an

specified threshold. The basic idea is that only a bounding

box, which is consistently produced in similar positions in

a set of frames, should be considered. In this sense, con-

firmed bounded boxes are those with a high average IoU

with a bounding box found on each previous frame.

Fig. 1 Example of the data augmentation steps applied to a sample

polyp image. The steps, which are listed in order of application, are:

a original image, b random image expansion, c random cropping with

bounding box constraints, d resizing with random interpolation

method, and e random horizontal flip
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Figure 3 shows an example of the proposed algorithm

working with a window size of three and a threshold for the

average of max IoU of 0.5, where the CBB 1 in the current

frame will pass the filter criterion and the CBB 2 does not.

Figure 4 shows the pseudocode of the object-tracking

algorithm. CBBs (candidateBBs) in the current frame

are filtered out producing a subset of them (fil-

teredBBs), by taking into account all CBBs in the pre-

vious frames (previousBBsQueue, of size

windowSize) for computing their max IoUs average,

which must be above the specified threshold

(averageIoUThreshold).

Fig. 2 Representation of the network architecture in which an object-tracking module has been added for filtering the CBBs proposed by the

object detection network

Fig. 3 Example of the object-tracking algorithm filtering candidate

bounding boxes (CBBs). The current frame has two CBBs (1 and 2).

A window of the previous three frames is used in order to compare

current CBBs with previous ones via IoU to finally compute, for each

CBB, the average of the max. IoU found on each previous frame.

Given a threshold of 0.5, CBB box 1 passes the filter, whereas CBB 2

does not
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As can be seen, to do this, the algorithm iterates over the

list of CBBs (candidateBBs) looking for the BB of

each frame in the window with the one that has the highest

IoU value. Bounding boxes on each frame are stored as a

list in previousBBsQueue. The maximum IoU

(maxIoU) of each frame is accumulated to calculate a final

average value (averageIoU) that is compared to a

threshold (averageIoUThreshold). In the case of

exceeding it, the candidate BB will be added to the final list

of bounding boxes (filteredBBs). Finally, the oldest

frame is pulled from previousBBsQueue, and the list

of CBBs (candidateBBs) for the current frame are

pushed.

3.4 Pipeline development

In this work, pipelines used for model development and

evaluation were implemented with Compi [65]. Compi is a

framework for the development of pipeline-based, com-

mand-line applications, which provides developers with

several useful features, such as the automatic generation of

the user interface, the packaging of applications together

with their dependencies in Docker images, or an easy way

to distribute applications through the public Compi Hub

repository [66].

In Compi, a computational pipeline is defined in an

XML file. Within this XML file the pipeline is divided into

several tasks, which, apart from containing the code, can

define dependencies on other tasks, the interpreter to be

used to execute the code (by default, Compi uses Bash) or

the input parameters required by the task, among others.

This division into tasks allows Compi to optimize the use

of resources when the pipeline is executed, reducing the

time required to complete the execution of the pipeline. In

addition, Compi also allows partial executions, which

include only a subset of the tasks or resuming an execution

from a previous task after an execution failure.

The ability to optimise pipeline execution, together with

the ease of managing pipeline dependencies, which facili-

tates its reuse and reproducibility, were the two main rea-

sons for which this framework was chosen to develop the

analysis pipeline. However, other additional features have

also been used, such as the automatic generation of

graphical representations of the pipeline.

4 Data

Colonoscopy videos were collected from study participants

who underwent CRC screening colonoscopy from January

2018 to November 2019 in CHUO. People with positive

results in faecal occult blood tests were invited to partici-

pate in the study and signed the informed consent. After

that period, a dataset of 330 explorations from different

patients was obtained. All colonoscopy images and videos

were recorded using state-of-the-art endoscopy suites

equipped with Olympus EVIS EXERA III CV-190 pro-

cessors and Olympus 185 and 190 series colonoscopes

(Olympus, Tokyo, Japan). Exploration videos were initially

saved in MP4 format in the colonoscopy equipment, and

later uploaded into a tool for further annotation and image

extraction. These videos were annotated identifying the

region of the video where 941 unique polyps are visible

and linking these annotations to the corresponding polyp

histology. The videos were also annotated to indicate the

presence of other conditions, such as the existence of

Fig. 4 Pseudocode of the object-tracking algorithm that filters

candidate bounding boxes (candidateBBs) based on the average

of the max. IoU (averageIoU) with the bounding boxes of each

previous frame (previousBBsQueue) up to a window size

(windowSize)
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surgical instruments, on-screen information, water, and the

imaging modality (WL or NBI). Normal mucosa video

regions were also annotated. Currently, the necessary

procedures to make this dataset publicly available through

the biobank of the Instituto de Investigación Sanitaria

Galicia Sur (IISGS) (https://www.iisgaliciasur.es/home/

biobank-iisgs) are being carried out.

4.1 Image dataset

The annotated colonoscopy videos were processed in two

ways to create the image dataset. First, a set of 16,691

images was systematically extracted from the polyp video

regions at a rate of 1 frame per second (taking the middle

frame of each second). Regions that contain several polyps,

on-screen information, blurry images, or any other non-

NBI tag were not considered. In addition, a second set of

11,885 manually selected images from the polyp video

regions (with good quality and where the polyp is clearly

visible) was pooled together with the previous set.

After this procedure, 28,576 polyp images (21,046 WL

and 7530 NBI) were obtained. These images were anno-

tated by a team of experienced endoscopists (JC, JH, MP,

DR, LR, and ES) with the locations of the polyps

(bounding boxes). All the endoscopists participated in the

Galician CRC screening program [67]. The median number

of colonoscopies performed annually by the endoscopists

enrolled in the screening program (71 from 7 hospitals)

was 278 (IQR 56–507) and the median adenoma detection

rate was 65.3% (IQR 60.0–70.1%). This initial dataset of

941 polyps was split into the following partitions:

Development dataset (Dataset 1). Labelled images from

the 70% of polyps that are further split into:

Training dataset (Dataset 1.1). Labelled images from

the 70% of the polyps to train the model (50% of

total). Total: 460 polyps, 13,873 images (see Table 1).

Validation dataset (Dataset 1.2). Labelled images from

the remaining 30% of the polyps to assess perfor-

mance during model learning (20% of total). Total:

198 polyps, 6045 images (see Table 1).

Image testing dataset (Dataset 2). Labelled images from

the remaining 30% of the polyps not belonging to

Dataset 1 containing a diverse set of polyps. Total: 283

polyps, 8658 images (see Table 1).

These splits were made at polyp level to ensure that all

images of the same polyp go to the same split. Moreover, in

order to keep partition sizes, in terms of number of images,

near to that at polyp level, a stratified sampling (stratifi-

cation by the number of images of each polyp) was carried

out. Table 1 summarizes the distribution of both datasets,

indicating the number of polyps and images in each

partition, as well as the disaggregated counts by polyp

histology, polyp morphology, polyp size and imaging

technology.

4.2 Video dataset

Two video datasets were also created. First, a video vali-

dation dataset (Dataset 3) was created including (i) 426

polyp video segments, those used to extract the images of

Dataset 1.2 (validation dataset), and (ii) 90 normal mucosa

video segments, containing regions without polyps from a

random sample of explorations. This dataset is used to

perform the object-tracking algorithm tuning (Sect. 5.3).

Second, a video testing dataset (Dataset 4) was created

including (i) 628 polyp video segments, those used to

extract the images of Dataset 2 (image testing dataset), and

(ii) 171 normal mucosa video segments, containing regions

without polyps from a random sample of explorations. This

dataset is used for the polyp-based evaluations (Sect. 5.1).

5 Experimental methodology

5.1 Evaluation metrics

The evaluation of the polyp location network is carried out

both at frame and at polyp level, by using testing datasets

composed of images with located polyps, as well as video

segments of polyp and normal mucosa, respectively.

For the frame-based evaluation, recall, precision, and

the associated F1 score are calculated. Briefly, recall is the

proportion of true bounding boxes that are correctly

detected, precision is the proportion of predicted bounding

boxes that are also true bounding boxes, and F1 is the

harmonic mean of recall and precision.

Concretely, given a set of true bounding boxes, which

are those annotated by the endoscopist in all frames, and a

set of predicted bounding boxes, which are those bounding

boxes produced by the network with a confidence score

above a threshold (as it is explained later in Sect. 5.2), true

positive, false positive, and false negative bounding boxes

are defined as follows: a true positive bounding box (TPbb)

is a bounding box of a polyp that is predicted by the net-

work with an IoU above 0.5 with a true bounding box. IoU

is the ratio of the overlapping area divided by the area of

the union of the real and the predicted bounding boxes. A

false positive bounding box (FPbb) is a predicted bounding

box that does not overlap with any true bounding box or

overlaps with true bounding boxes all with IoU below 0.5.

A false negative bounding box (FNbb) is a true bounding

box that does not overlap with any predicted bounding

boxes, or overlaps with predicted bounding boxes all with
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IoU below 0.5. Given these definitions, the following

metrics are defined as:

recallbb ¼
TPbb

TPbb þ FNbbð Þ

precisionbb ¼
TPbb

TPbb þ FPbbð Þ

F1bb ¼
2 � recallbb � precisionbb
recallbb þ precisionbbð Þ

In addition to these measures, Average Precision (AP) was

used during model development to select the best model.

AP is defined as the average precision for different confi-

dence score thresholds and it is equivalent to the Area

Under the Precision–Recall curve (AUPRC).

For the polyp-based evaluation, sensitivity, specificity,

the associated Youden’s index, as well the associated

likelihood ratios and diagnostic odds ratio (DOR) are cal-

culated. Briefly, sensitivity is the proportion of polyp

videos marked as positive, whilst specificity is the pro-

portion of normal mucosa videos marked as negative.

Youden index combines sensitivity and specificity with the

same weight (giving a score between 0 and 1), being 0 if

the same frame positivity is obtained for both polyp and

normal mucosa videos and 1 if the classification is perfect

(100% sensitivity and specificity). Likelihood ratios also

combine sensitivity and specificity. The positive likelihood

ratio gives the ratio of the probability of a polyp video

being marked as positive when compared to normal

mucosa videos, where the highest possible value is desired.

Conversely, the negative likelihood ratio gives the ratio of

the probability of a polyp video being marked as negative

when compared to normal mucosa videos, where a value

near to zero is desired. Finally, DOR combines the previ-

ous likelihoods ratios, for which a high value is preferred.

For this polyp-based evaluation, two different criteria

are defined to mark videos as positive:

Full video criterion: a video is marked as positive if the

proportion of the video frames containing predicted

bounding boxes is above a given threshold, and marked

as negative otherwise. For example, consider a video of

five frames where predicted bounding boxes are present

in the following layout: [no, no, yes, yes, no]. The

proportion of positives is 2/5 and therefore, with a

threshold of 50%, the video will be marked as negative.

Sliding window criterion: a video is marked as positive if

there is at least one segment of the video of size

w (window) where at least a ratio p (frames positivity) of

its frames contain one or more predicted bounding boxes

above the confidence score threshold. If there is not such

a segment, the video is marked as negative. For instance,

considering the previous example (with predicted

bounding boxes disposed as [no, no, yes, yes, no]), with

w = 3 and p = 0.60, the video will be marked as positive,

Table 1 Summary of the image

datasets. Totals in rows and

columns are highlighted in bold

Polyps Images

Total Train Val Test Total Train Val Test

Histology

Adenoma (A ? TSA ? SSA) 715 355 153 207 22,144 10,813 4440 6891

Hyperplastic 110 52 21 37 3850 1879 977 994

Others 116 53 24 39 2582 1181 628 773

Morphology

Flat 221 104 44 73 7125 3023 1432 2670

Sessile 420 212 87 121 12,690 6469 2727 3494

Pedunculated 190 92 44 54 6371 3184 1464 1723

Others (Depressed, Ulcerated, N/A) 110 52 23 35 2390 1197 422 771

Size

C 5 mm 423 218 86 119 14,044 6842 3078 4124

\ 5 mm 484 227 104 153 14,110 6884 2890 4336

N/A 34 15 8 11 422 147 77 198

Imaging

WL 921* 450* 193* 278* 21,046 10,194 4562 6290

NBI 614* 295* 119* 200* 7530 3679 1483 2368
P

941 460 198 283 28,576 13,873 6045 8658

A Adenoma, TSA traditional serrated adenoma, SSA sessile serrated adenoma

*Number of polyps that contain at least one image with the corresponding imaging technology (the same

polyp could have both images with different imaging technologies)
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since at frame 4, the window has a frames positivity

above 0.6 (window at frame 4 is [no, yes, yes]).

Given the previous criteria, a true positive video (TPv) is

a polyp video that is marked as positive, a true negative

video (TNv) is a normal mucosa video marked as negative,

a false positive video (FPv) is a normal mucosa video

marked as positive, and a false negative video (FNv) is a

polyp video marked as negative. Given these definitions,

the following metrics are defined as:

sensitivityv ¼
TPv

TPv þ FNvð Þ

specificityv ¼
TNv

TNv þ FPvð Þ

Youdenv ¼ sensitivityv þ specificityv � 1

LRþ ¼
sensitivityv

1� specificityvð Þ

LR� ¼
1� sensitivityvð Þ

specificityv

DOR ¼
LRþ

LR�

Finally, for comparing proportions (sensitivity and/or

specificity) for significant differences, 2-sample tests for

equality of proportions with continuity correction (two-

proportion z-tests) are used.

5.2 CNN model evaluation and selection

Model development is carried out by training the neural

network with the training dataset (see Dataset 1.1 in

Sect. 4.1). Training is performed iteratively for 50 cycles

or epochs, where all training images plus augmented

images generated with data augmentation techniques (see

Sect. 3.2) are presented to the network in batches of eight

images. After predicting each batch, network parameters

are adjusted via error backpropagation with a learning rate

of 0.001.

After each training epoch, the predictive performance of

the neural network is assessed via the validation dataset

(see Dataset 1.2 in Sect. 3.1). The model with the maxi-

mum AP (see Sect. 5.1) in the validation dataset is selected

as the best model, which is then configured with the con-

fidence score threshold established to the value that gives

the maximum F1.

5.3 Object-tracking algorithm tuning

The object-tracking algorithm described in Sect. 3.3 has

two parameters that need to be adjusted: window size and

average of max. IoU threshold. To do this, the performance

of the object-tracking algorithm was evaluated on a grid of

these two parameters (window size = {2, 5, 10, 15, 20},

average of max. IoU threshold = {0.05, 0.12, 0.25, 0. 50,

0.75}) using the video segments associated to the polyps in

the validation dataset and additional video segments of

normal-mucosa segments. The performance of each object-

tracking configuration was evaluated as follows:

1. Annotate each video without applying the object-

tracking filtering.

2. Annotate each video applying the object-tracking

filtering.

3. Compute the percentage of bounding boxes removed

by the object-tracking filtering in normal-mucosa and

polyp videos, separately. This will give us: Pn

(percentage of bounding boxes removed in normal-

mucosa videos) and Pp (percentage of bounding boxes

removed in polyp videos).

4. Compute the risk ratio as follows:

riskratio ¼
Pn

Pp

The risk ratio indicates the relative risk of a bounding

box to be removed in a normal mucosa video with respect

to that risk in a polyp video. Higher Pn values combined

with lower Pp values correspond to higher risk ratios,

which is what the object-tracking filtering is expected to do

(remove more bounding boxes in normal-mucosa videos

than in polyp videos). The combination of parameters with

the highest risk ratio will be used to perform the model

evaluation described in the next subsection.

5.4 Model evaluation

As explained before, two evaluations are carried out. First,

a frame-based evaluation, where the objective is to cor-

rectly localize a polyp in a set of images containing a polyp

(see Dataset 2 in Sect. 4.1). A frame-based evaluation is

used to both select the best model and evaluate it in an

independent set of images. Second, a polyp-based evalua-

tion, where the objective is to determine the presence of

polyps in a set of short videos divided into (i) polyp videos

containing polyps in all frames, and (ii) normal mucosa

videos without any polyps (see Dataset 4 in Sect. 4.2). A

comparison of the performance with and without the acti-

vation of the object-tracking algorithm (see Sects. 3.3 and

5.3) is also presented.

5.5 Software pipeline

In this work, four different Compi pipelines were devel-

oped (Supplementary Material 1): (i) dataset split for

development (training and validation datasets) and testing,
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(ii) model development, (iii) model evaluation (with ima-

ges), and (iv) video annotation. The source code of the

Compi pipelines is available at this public repository:

https://github.com/sing-group/polydeep-object-detection.

The dataset split pipeline (ttv.xml) is a preamble

pipeline containing the steps necessary to prepare the

dataset for the subsequent model development and evalu-

ation. This pipeline starts with the check-dataset step,

which is a control step that checks whether the dataset has

been downloaded locally and, if not, alerts the user and

ends the execution. Then, the create-ttv step analyses the

dataset to generate training, validation, and test subsets

based on the number of images of each polyp (see

Sect. 4.1). As a result, this step generates three files with

the polyp identifiers that correspond to each subset of the

data.

The model development pipeline (train.xml) is

responsible for the model development. This pipeline also

starts with the check-dataset step, which is followed by

another control step (check-gpu) that checks the sanity of

the GPU memory, as a failure in it could cause erroneous

results. After that, the model-development step performs

the model training and validation, generating several files

with the performance results. This step is followed by the

generate-plot-data that post-processes previous result files

in order to plot them in the three following steps: plot-loss,

plot-map, and plot-metrics, which generate several plots

that summarize the model evaluation results. Finally, a

cleanup step removes some auxiliary files generated during

the pipeline execution.

Then, the model evaluation pipeline (test.xml) is

responsible for evaluating the model selected in the

development phase with a new/unseen dataset of images.

This pipeline has the same control steps as the model

development pipeline (i.e. check-dataset and check-gpu)

and a new control step (check-neural-network) to check

that the trained model exists. Then, the test step evaluates

the model with the test dataset created with the dataset split

pipeline, generating a file with the performance results.

Finally, the video annotation pipeline (video-anno-

tation.xml) allows applying the model to video seg-

ments of polyp and normal-mucosa regions to obtain

annotated videos. This pipeline starts with the same control

steps that the model evaluation pipeline. Then, this pipeline

comprises three main stages: (i) download videos (down-

load-polyp-videos and download-normal-mucosa-videos),

(ii) extract video segments (extract-polyp-segments and

extract-normal-mucosa-segments), and (iii) use the model

to detect polyps in each frame of the video segments

(predict-polyp-segments and predict-normal-mucosa-seg-

ments). A final a cleanup step removes some auxiliary files

generated during the pipeline execution.

6 Results

6.1 CNN model evaluation and selection

As explained in Sect. 5.2, the neural network was trained

for 50 epochs. AP was recorded for both training and

validation datasets after each epoch. Figure 5 shows the

learning curve of the training process. The best model is

achieved at the 37th epoch with the maximum AP of

0.9201. For this model, the confidence threshold that

maximizes F1 bb is 0.1906 (F1 bb = 0.9085, recallbb-
= 0.9047, precisionbb = 0.9124). This corresponds to the

model selected for the evaluation with the testing datasets.

6.2 Object-tracking algorithm tuning

The performance of the object-tracking algorithm was

evaluated on a grid of parameters (window size = {2, 5, 10,

15, 20}, average of max. IoU threshold = {0.05, 0.12, 0.25,

0. 50, 0.75}) using the video segments associated to the

polyps in the validation dataset and additional video seg-

ments of normal-mucosa. Table 2 presents the risk ratio of

each parameter combination (see Sect. 5.3). The highest

risk ratio is achieved with a window size of 5 and an

average of max. IoU threshold of 0.12. In this case, the

mean bounding box removal with object tracking in nor-

mal-mucosa videos is 45%, while in polyp videos is 8.52%.

6.3 Model evaluation

6.3.1 Frame-based evaluation

For the frame-based evaluation on polyp detection, an

overall recall, precision, F1 and AP of 0.8720, 0.8901,

0.8810, and 0.8880 were obtained, respectively. Perfor-

mance by subsets of polyps, according to their morphology,

histology, size, and imaging technology was also measured

(Table 3).

Regarding histology, the obtained F1 bb score is similar

for both adenoma and hyperplastic subtypes (0.8830 and

0.8949, respectively). Regarding morphology, there is

more variation, with the F1 score obtained when testing

with images of polyps of flat morphology being much

lower (0.7779) than the average. However, images of

pedunculated polyps were more accurately predicted,

achieving the highest F1 score of 0.9453. Small polyps

seem not to be more difficult to detect, since the network

performance was even better in smaller ones than in bigger

ones (F1 score of 0.8946 and 0.8653, respectively). Finally,

regarding imaging technologies, images with NBI activated

were slightly better classified (F1 score of 0.9031) than

those with WL (F1 score of 0.8725).
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6.3.2 Polyp-based evaluation

For the polyp-based evaluation, where network predictions

are obtained for each frame of polyp and normal mucosa

videos, performance measures are obtained applying the

two predefined criteria to identify positive videos (see

Sect. 5.1). Moreover, metrics under activation of the

object-tracking algorithm (Sects. 3.3 and 5.3) are also

reported.

Results applying the full video criterion, where a pro-

portion of the video frames with predicted bounding boxes

is needed to be marked as positive, are shown in Table 4.

Different parameters for this definition, i.e. different pro-

portion thresholds, were tested.

As it can be seen in Table 4, sensitivity ranges from

80.41 to 99.36% without object tracking, and from 71.02 to

98.73% when it is used. Specificity ranges from 20.47 to

99.42% without object tracking, and from 52.63 to 99.42%

when it is used. Under this definition of positive video,

sensitivity is affected by the activation of object tracking as

the criteria becomes more stringent, whereas specificity

increases in general, which is an expected behaviour. Best

performances attending to Youden index are found for the

definition if a threshold of 50% is used, for both without

Fig. 5 Learning curves of the training process. X-axis shows the epoch and Y-axis the AP metric for both training and validation datasets. Epoch

number 37 is the one with the best AP in the validation dataset (AP = 0.9201). Validation trend is the average of the five values around the point

Table 2 Risk ratios calculated after applying the object-tracking algorithm with different parameter combinations. The highest risk ratio (5.28) is

highlighted in bold

window size

2 5 10 15 20

average of 

max. IoU 

threshold

0.05 3.15 2.55 1.96 1.67 1.49

0.12 4.84 5.28 4.43 3.92 3.52

0.25 4.49 3.88 3.12 2.69 2.4

0.50 3.15 2.55 1.96 1.67 1.49

0.75 2.01 1.56 1.29 1.18 1.12
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and with object tracking configurations, reaching values of

0.90 (Sens = 93.79% 95; Spec = 96.49%) and 0.89

(Sens = 89.97%, Spec = 98.83%), respectively, being dif-

ferences in sensitivity statistically significant (p-value\

0.05). The maximum sensitivity is reached when the

positive criterion is less stringent (i.e. minimum ratio of

frames with predicted bounding boxes of 15%), obtaining a

similar sensitivity (p-value = 0.3842) around 99% in both

object tracking configurations, but with a significantly (p-

value\ 0.001) better specificity when using object track-

ing (52.63% vs. 20.47%).

As an illustration of the polyp-based test and the full

video criterion, Fig. 6 shows the clear affinity of the net-

work to produce locations in polyp videos in comparison to

normal mucosa videos. Although the object-tracking filter,

which removes candidate bounding boxes, decreases the

frequency of bounding boxes in videos, this decrease is

different with respect to the type of video: 51% of candi-

date bounding boxes are removed in normal mucosa

videos, whereas only 9% of bounding boxes are removed in

polyp videos, giving a risk ratio of 5.65.

Results applying the sliding window criterion, where a

segment containing a minimum proportion of bounding

boxes is needed to mark a video as positive, are shown in

Table 5. Different parameters for this definition, i.e. dif-

ferent frames positivity thresholds and window sizes, were

tested.

As it can be seen in Table 5, sensitivity ranges from

74.52 to 90.13% without object tracking, and from 72.61 to

89.81% when it is used. Specificity ranges from 33.33 to

78.36% without object tracking, and from 54.97 to 83.04%

when it is used. Whereas sensitivity is not affected by the

activation of object tracking, specificity increases in gen-

eral, which is an expected behaviour. Best performances

attending to Youden index are found for the definition of

positive if a window size of 50 frames (2 s) and a frames

positivity threshold of 75% is used, for both without and

with object tracking configurations, reaching values of 0.53

(Sens = 74.52%, Spec = 78.36%) and 0.55 (Sens =

72.61%, Spec = 83.04%), respectively. No statistically

significant differences were found for sensitivity, whereas

specificity was significantly higher with object tracking in

two of four configurations. The maximum sensitivity is

reached when the positive criterion is less stringent (i.e.

window size of 25 and frames positivity of 50%), reaching

Table 4 Performance metrics for video classification attending to the usage of object tracking and under different parameters of the full video

criterion

Threshold (%) Without object tracking With object tracking

(window: 5, mean IoU[ 0.12)

15 50 75 15 50 75

Sens (%)

95% CI

99.36

(98.37–99.75)

93.79*

(91.62–95.42)

80.41***

(77.13–83.33)

98.73

(97.51–99.35)

89.97

(87.37–92.08)

71.02

(67.35 to 74.43)

Spec (%)

95% CI

20.47

(15.10–27.13)

96.49

(92.56–98.38)

99.42

(96.76–99.90)

52.63***

(45.17–59.98)

98.83

(95.84–99.68)

99.42

(96.76–99.90)

Youden 0.20 0.90 0.80 0.51 0.89 0.70

LR? 1.25 26.73 137.51 2.08 76.92 121.44

LR- 0.03 0.06 0.20 0.02 0.10 0.29

DOR 40.15 415.32 697.97 86.11 757.82 416.59

Threshold: minimum ratio of frames that should contain bounding boxes in the video to be marked as positive. p-values to test for significance for

greater values when comparing object tracking activation are marked with ‘*’ (p-value\ 0.05), ‘**’ (p-value\ 0.01), or ‘***’ (p-

value\ 0.001)

Table 3 Performance metrics for the overall image test dataset, for

different subsets attending to the histology, morphology, size of the

polyp, as well as for the imaging technology used: WL white light,

NBI narrow band imaging

recall precision F1

Overall 0.8720 0.8901 0.8810

Histology

Adenoma 0.8764 0.8898 0.8830

Hyperplastic 0.8742 0.9167 0.8949

Morphology

Flat 0.7779 0.8429 0.8091

Sessile 0.9018 0.8952 0.8985

Pedunculated 0.9489 0.9418 0.9453

Size

C 5 mm 0.8637 0.8669 0.8653

\ 5 mm 0.8784 0.9115 0.8946

Imaging

WL 0.8593 0.8861 0.8725

NBI 0.9058 0.9005 0.9031
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a similar sensitivity around 90% (p-value = 0.9251) in both

object tracking configurations, but with significantly

greater specificity (p-value\ 0.01) when using object

tracking (54.97% vs. 33.33%).

As an illustration of the polyp-based test and the sliding

window criterion, Fig. 7 shows where predicted bounding

boxes are generated (without object tracking in grey, object

tracking activated in red) across two example videos, one

with polyp (top) and another of normal mucosa (bottom)

(see videos in Supplementary Material 2 and 3). As it can

be seen, the polyp video contains more frames with pre-

dicted bounding boxes than the normal mucosa video.

Lines show the count of frames with predicted bounding

boxes across a sliding window of the last 25 frames without

(grey) and with (red) object-tracking filtering. The polyp

video contains several continuous regions where all 25 last

frames contain predicted bounding boxes, whereas the

normal mucosa video does not contain any segment of 25

frames where all of them contain predicted bounding

boxes. Moreover, the red line tends to be more decoupled

from the grey line in normal mucosa videos than in polyp

videos, showing the affinity of the object-tracking to

remove boxes in normal mucosa videos, as it was also

pointed out by the risk-ratio (Sect. 6.2).

Similarly to the previous analysis, but by taking all the

testing videos, Fig. 8 shows the distribution of the

25-frames-length video segments, according to the number

of their 25 frames that contain predicted bounding boxes,

comparing polyp videos against normal mucosa videos. As

it is shown in 8, video segments whose 25 frames contain

predicted bounding boxes are the most frequent segments

in polyp videos, whereas segments with none of their 25

frames containing predicted bounding boxes are the most

frequent in normal mucosa videos.

Finally, Fig. 9 shows representative examples of polyp

identifications. The upper row corresponds to valid iden-

tifications (true positives) of sessile hyperplastic, flat ade-

noma, and pedunculated adenoma polyps. The bottom row

shows false positive identifications in different normal-

mucosa areas.

Normal mucosa Polyp

Without object tracking With object tracking Without object tracking With object tracking
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Fig. 6 Average bounding boxes per frame under different conditions (without and with object-tracking filtering, and with normal mucosa and

polyp videos)

10388 Neural Computing and Applications (2022) 34:10375–10396

123



6.4 Performance

We have tested a video annotation in a desktop computer

with a 3.4 GHz CPU (AMD Ryzen 5 2600), 16 Gb of

RAM memory, a NVIDIA GeForce RTX 2080 Ti 11 Gb

GPU, for polyp detection, and a NVIDIA GeForce GTX

1050 Ti GPU, as main GPU for the operative system.

Table 6 shows the average times to carry out several steps:

Time 1: network prediction, which is the time consumed

by the neural network to predict a frame.

Table 5 Performance metrics for video classification attending to the usage of object tracking and under different parameters of the sliding

window criterion

Without object tracking With object tracking

(window: 5, mean IoU[ 0.12)

PT 50% 75% 50% 75%

WS 25 50 25 50 25 50 25 50

Sens (%)

95% CI

90.13

(87.79–92.46)

77.55

(74.12–80.64)

89.17

(86.74–91.60)

74.52

(70.97–77.77)

89.81

(87.20–91.94)

76.91

(73.46–80.04)

88.38

(85.63–90.65)

72.61

(68.99–75.95)

Spec (%)

95% CI

33.33

(26.70–41.00)

57.89

(50.40–65.04)

64.33

(56.90–71.12)

78.36

(71.60–83.87)

54.97***

(47.49–62.24)

69.00*

(61.72–75.46)

66.08

(58.70–72.75)

83.04

(76.70–87.92)

Youden 0.23 0.35 0.53 0.53 0.45 0.46 0.54 0.55

LR? 1.35 1.84 2.50 3.44 1.99 2.48 2.60 4.28

LR- 0.30 0.39 0.17 0.33 0.18 0.33 0.17 0.33

DOR 4.56 4.75 14.85 10.59 10.76 7.41 14.81 12.98

PT frames positivity threshold: minimum ratio of frames in a video segment that should contain bounding boxes to be marked as positive, WS

Window Size: minimum length in frames of the video segment with a bounding box ratio above PT to be marked as positive. LR? positive

likelihood ratio, LR- negative likelihood ratios, DOR diagnostic odds ratio = LR?/LR-

p-values to test for significance for greater values when comparing object tracking activation are marked with ‘*’ (p-value\ 0.05), ‘**’ (p-

value\ 0.01), or ‘***’ (p-value\ 0.001)

|||||||| || || | | |||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||| | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | ||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | |||| ||
||| || | | | ||||||||||||||||||||||||||||||||| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| |||||||||||||| | ||| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||| || | || |||||||||| ||||||||||||||||||||| |||||||||||||||||||||||||||||| |||| |

0

10

20

0 100 200 300 400

frame

p
re

v
io

u
s
 2

5
 f
ra

m
e
s
 w

it
h
 B

B
s

(a) POLYP

||| | | ||| | |||| || ||||||||| || |||||||||| ||| | |||||||||||||| | | | | ||| |||||||| | | ||||| | | ||| |||| | | || | | || | || | |
| || ||| || ||||||||| | ||||||||| || |||||||||||||| | | | || |||||| ||||| | ||| |||| | ||

0

10

20

0 100 200 300

frame

p
re

v
io

u
s
 2

5
 f

ra
m

e
s
 w

it
h
 B

B
s

(b) NORMAL MUCOSA

Fig. 7 Prediction over a polyp video (top) and a normal mucosa video (bottom). Bars show frames where there are predicted bounding boxes and

lines show the number of the last 25 frames that contain bounding for both without (grey) and with (red) object-tracking filtering
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Time 2: frame processing, which includes the object

tracking execution, if active, as well as painting the

frame and the predicted bounding boxes on screen.

Time 3: input/output, which includes frame read and

write.

As it can be seen in Table, the overall per-frame time

including all tasks (last row in Table) is around 0.041 s,

which yields a frame rate of about 24 frames per second,

sufficient to be considered real time. Object tracking does

not seem to affect performance significantly (? 2% of the

time consumed).

7 Discussion

The ability to operate in real time is mandatory for any

polyp detection system to be useful in clinical practice.

Therefore, Fig. 10 shows the F1 scores for polyp detection

only for those recent studies based on DL that can operate

in real time, along with the results obtained in the present

study. As it can be seen, the results here reported for the

frame-based evaluation (F1 = 0.88) are very close to the

third one by Wang et al. [50] (F1 = 0.91). Remarkably, the

authors of such study have been the first ones in performing

prospective clinical trials with polyp detection systems

[11].

In the frame-based analysis, recall was lower for flat

polyps (0.78) compared to the recall for sessile and

pedunculated polyps (0.90, and 0.95, respectively). This

finding is in line with the results of Lee et al., who also

obtained a lower recall for flat polyps using a private

dataset [30]. In the present study, there are far less train

images for flat polyps (3023) than for sessile and pedun-

culated (6469 and 3184, respectively), a fact that may be an

explanation for the lower recall. Differences are not found

regarding histology and polyp size. Recall is 0.87 for both

adenomatous and hyperplastic polyps, and 0.86 and 0.88

for polyps with a size C 5 mm and\ 5 mm, respectively.

After initial evaluation on image datasets, polyp detec-

tion systems must demonstrate their performance when

facing colonoscopy videos, a closer scenario to real clinical

Table 6 Average per-frame

time in milliseconds to perform

several computations

Without object tracking With object tracking

Time 1 22.21 ± 2.52 21.33 ± 2.50

Time 1 ? Time 2 35.68 ± 1.53 36.01 ± 1.33

Time 1 ? Time 2 ? Time 3 (all) 41.10 ± 2.33 41.94 ± 2.40

NP network prediction, OT object tracking

Fig. 8 Distribution of video segments by the number of frames

containing predicted bounding boxes across all the testing video

dataset

Fig. 9 Representative examples

of polyp identifications: A–B–C

True positives corresponding to

sessile hyperplastic, flat

adenoma, and pedunculated

adenoma polyps; D–E–F false

positive identifications in

different normal-mucosa areas
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settings. Wang et al. [50] evaluated their system with two

video datasets: one containing short videos of polyps

(similar to the video dataset here presented), and one

containing 54 full-range unaltered colonoscopy videos.

Similarly, Urban et al. [32] and Lee et al. [30] performed

evaluations on unaltered colonoscopy videos. Misawa et al.

[31] also used a set of 155 polyp-positive short videos and

391 polyp-negative videos. Similarly, a video testing

dataset (Dataset 4) was created here by including polyp

video segments at different moments of those 283 polyps

belonging to Dataset 2 (image testing dataset), yielding a

total of 628 polyp videos, along with 171 normal mucosa

videos. To perform a polyp-based evaluation using colo-

noscopy videos as input, a criterion for polyp detection

must be defined. Misawa et al. [31] defined polyp detection

‘‘as the system output over the cut-off value for[ 75% of

the duration of each short video’’. This criterion, also

applied by Lee et al. [30] with a threshold of[ 50% and

presented in Sect. 5.1 as full video criterion, is only

applicable to short videos of a defined length. However, for

its application in real time a temporal window size must be

defined, since the length of the short polyp videos is not

known in advance. This fact led to the sliding window

criterion, where only a video segment of a defined length

(e.g. 2 s) containing a minimum proportion of bounding

boxes is needed to be considered as a positive polyp

detection. This criterion can be applied in real time, con-

sidering the last frames in the temporal window size.

Using the first definition (full video criterion; Table 4),

Misawa et al. [31] reported a sensitivity of 95% and a

specificity of 40% (Youden = 0.34). The polyp detection

system presented here obtained a sensitivity of 80.41%

(95% CI 77.13- 83.33) and a specificity of 99.42% (95% CI

96.76–99.90) (Youden = 0.8). When the threshold is low-

ered to[ 50%, a sensitivity of 93.79% (95% CI

91.62–95.42) is achieved, keeping specificity in 96.49%

(95% CI 92.56–98.38) (Youden = 0. 9).

When the second definition (sliding window criterion;

Table 5) is used, which is not comparable with other

studies as it has not been previously described, sensitivity

ranges from 74.52 to 90.13% and specificity ranges from

33.33 to 78.36%. As explained in the results section, the

best performance according to the Youden index is found

for the definition of positive if a window size of 50 frames

(2 s) and a frames positivity threshold of 75% is used, and

the maximum sensitivity is reached when the positive cri-

terion is less stringent (i.e. window size of 25 and frames

positivity of 50%). This criterion seems to be realistic and

applicable to real-time polyp detection systems.

Nevertheless, to reduce false positive rates, an efficient

object-tracking algorithm was implemented and evaluated.

When object tracking is combined with the second defini-

tion of positive videos, sensitivity ranges from 72.61 to

89.81% and specificity ranges from 54.97 to 83.04% when

it is used. As it can be seen, sensitivity is not affected by

the activation of object tracking while specificity increases

in general. In addition, the risk ratio analysis shows the

clear affinity of the object-tracking algorithm to remove

boxes on normal mucosa videos: 51% of candidate

bounding boxes are removed in normal-mucosa videos,

whereas only 9% of bounding boxes are removed in polyp

videos, giving a risk ratio of 5.65. Therefore, the applica-

tion of a post-processing object tracking filter seems to be

beneficial for reducing the false positive rate. This

Fig. 10 F1 scores for polyp detection for recent studies based on DL that can operate in real-time
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approach has been applied in previous studies. For

instance, Qadir et al. [55] added a false positive reduction

unit to their network, able to exploit temporal dependencies

between frames and correct the outputs. More recently, Lee

et al. [30] applied a median filter to reduce false positive

output frames in the YOLOv2 network predictions and Xu

et al. [54] proposed an inter-frame similarity correlation

unit to both reduce false positive identifications and correct

false negatives.

The polyp detection system here presented was devel-

oped and evaluated using a private dataset, which is

comparable in size to other private datasets used in similar

studies [66]. Remarkably, this dataset includes both WL

and NBI polyp-images, normal-mucosa images, and, unlike

other public datasets for polyp detection, it includes addi-

tional information regarding polyp histology, morphology

and size. Public datasets are essential for the development

of new systems and, especially, to enable fair comparisons

between polyp detection systems using the same testing

datasets. Due to these reasons, the necessary procedures to

make this dataset publicly available through the biobank of

the Instituto de Investigación Sanitaria Galicia Sur (IISGS)

(https://www.iisgaliciasur.es/home/biobank-iisgs) are cur-

rently being performed. This way, the dataset described

and used here will be publicly accessible for other

researchers, allowing not only the development and eval-

uation of polyp detection systems, but also systems for

automatic polyp classification. The publication of this

dataset will increase the public datasets available, which

has been recently also increased with the addition of the

PICCOLO dataset [68].

Finally, the work presented here has some limitations

that should be acknowledged and that will guide the future

work. First, as explained before, flat polyps are underrep-

resented, similarly to what happens in other datasets [68].

Since these types of polyps are less frequently found,

special efforts (e.g. multicentre acquisitions) will be nee-

ded to increase their availability. Second, the lack of val-

idation with external datasets. Although an independent

test set of images (unseen during model development) was

used for a frame-based evaluation, and the fact that a

polyp-based evaluation on test videos was performed, it

would be positive to assess the generalization capability of

the polyp detection system here presented using a private

dataset by using public testing datasets. Last of all, as it

happens with every other polyp detection system reported,

the usefulness must be assessed by developing clinical

trials that can ultimately determine whether these systems

can increase the adenoma or polyp detection rates of the

endoscopists.

8 Conclusions

This work has described the development of a DL model

for real-time polyp detection, which could be integrated, in

the future, into a CAD system. YOLOv3 was selected as

the base architecture for the development of this model due

to its balance between performance and prediction time and

complemented with an object-tracking filtering step able to

reduce false positives.

Due to the low availability of public datasets [14], as

part of this work, a database of images and videos of polyps

taken during colonoscopies and manually annotated by

expert endoscopists was created. This database, which

currently contains 28,576 polyp images taken from the

videos of 941 polyps, will soon be published through the

biobank of the Instituto de Investigación Sanitaria Galicia

Sur (IISGS).

The evaluation of this model was done using both a

frame-based analysis and a polyp-based analysis. In polyp-

based analysis, two different criteria were used to deter-

mine when polyp was effectively detected in a video. On

the one hand, a criterion taken from other similar works

[30, 31] was used, which is based on the percentage of

positive frames in the whole video (full video criterion).

On the other hand, a new criterion based on the percentage

of positive frames in a sliding window (sliding window

criterion) was also used, which is considered more rigorous

and realistic.

Under the frame-based evaluation, the model obtained

an F1 score of 0.88, which is comparable to the results

obtained by the best models developed in the field. In a

polyp-based evaluation using polyp and normal mucosa

videos, with a positive criterion defined as the presence of

at least one 50-frames-length (window size) segment with a

ratio of 75% of frames with predicted bounding boxes

(frames positivity), our system with object-tracking acti-

vated, achieved 72.61% of sensitivity (95% CI

68.99–75.95) and 83.04% of specificity (95% CI

76.70–87.92) (Youden = 0.55, diagnostic odds ratio

(DOR) = 12.98). When the positive criterion is less strin-

gent (window size = 25, frames positivity = 50%), sensi-

tivity reaches around 90% (sensitivity = 89.91%, 95% CI

87.20–91.94; specificity = 54.97%, 95% CI 47.49–62.24;

Youden = 0.45; DOR = 10.76). Experiments also showed

a general improvement when using object-tracking

filtering.

Based on these results, and taking into account that the

model is able to process a frame in 0.041 s, we consider

that the developed model is valid to be tested in a real-time

environment and integrated into a CAD system.

Regarding future work, several approaches can be

explored. Firstly, more research in object-tracking filtering
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will be conducted, since it has demonstrated to be a

promising way to improve the specificity while maintain-

ing sensitivity of the detection model. On the other hand,

the sensitivity could be improved by increasing the number

of samples of the less frequent polyp histologies and

morphologies. Finally, in order to improve model valida-

tion, the model can be tested with public datasets, such as

ETIS-Larib [28], and it can also be tested under a clinical

trial.
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Andraka N, Bilbao R, Glover B, Saratxaga CL, Sánchez-Mar-

gallo FM (2020) PICCOLO white-light and narrow-band imaging

colonoscopic dataset: a performance comparative of models and

datasets. Appl Sci 10:8501. https://doi.org/10.3390/app10238501

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Authors and Affiliations

Alba Nogueira-Rodrı́guez1,2 • Rubén Domı́nguez-Carbajales3 • Fernando Campos-Tato1 •
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