
 

 

REAL-TIME POSITIONING AND TRACKING FOR VISION-BASED  

UNMANNED UNDERWATER VEHICLES 
 

Jiangying Qin1,*, Ke Yang2, Ming Li1,3,*, Jiageng Zhong1, Hanqi Zhang1 

 

1 State Key Laboratory of Information Engineering in Surveying Mapping and Remote Sensing, Wuhan University, Wuhan 430079, 

China - (jy_qin, zhongjiageng, hqzhang)@whu.edu.cn 

2 School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430079, China - YyangkeK@whu.edu.cn 

3 Department of Physics, ETH Zurich, Zurich 8039, Switzerland - mingli39@ethz.ch 

 

Commission IV, WG IV/5 

 

 

KEY WORDS: Unmanned Underwater Vehicle (UUV), Vision Positioning, Tracking, Deep Learning, Underwater Measurement, 

SLAM. 

 

 

ABSTRACT: 

 

Unmanned underwater vehicle (UUV) is a key technology for marine resource exploration and ecological monitoring. How to use 

vision-based active positioning and three-dimensional perception to realize UUV underwater autonomous navigation and positioning 

is the basis for UUV's underwater operations. The complexity and unstructured characteristics of seawater bring new challenges to 

vision-based underwater high-precision positioning. Traditional visual localization algorithms mainly include geometric-based visual 

localization algorithms (such as ORB-SLAM2) and deep learning-based visual localization algorithms (such as DXSLAM). In this 

paper, based on the typical marine environment (low brightness, dynamic fish interference, underwater light spot, high turbidity), the 

experimental analysis and comparison of different visual positioning methods of UUV is carried out, which provides a reference for 

realizing the real-time localization of UUV, and further provides a better solution for UUV underwater measurement and monitoring 

operations. 

 

 

1. INTRODUCTION 

 

In recent years, people have become more and more aware of 

the importance of the ocean in the fields of resources and 

ecology, and their interest in ocean exploration has also 

increased day by day. Unmanned underwater vehicle (UUV) 

technology is a key technology for marine resource exploration 

and ecological monitoring. Due to its significant cost advantage, 

high mobility and ability to complete various complex 

underwater tasks, it has become the first choice for underwater 

surveying operations (Chen, 2021; Sahoo et al., 2019). The 

ability to perceive the three-dimensional environment is the key 

to UUV underwater operations, which must be solved for 

UUV's safe navigation and multi-cooperative tasks. High-

precision positioning is the basis for realizing environmental 

perception, and it is also the core issue of ocean exploration and 

detection. 

 

Conventional UUVs provide noise estimates of motion by being 

equipped with an Inertial Measurement Unit (IMU) or a 

Doppler Velocity Log (DVL). Inertial Navigation System (INS) 

obtains direction information and speed information through 

inertial sensors to calculate the moving distance of UUV. This 

method is suitable for long-range tasks and has the advantage of 

a passive approach, i.e. no signals need to be sent or received 

from external systems. It does not rely on external references 

and is widely used in most underwater robot positioning and 

navigation scenarios. However, the error of inertial sensor will 

increase over time, eventually leading to significant drift in 

motion estimates (Mu et al., 2019; Jalal and Nasir, 2021). This 

type of drift is caused by factors such as ocean currents and the 

accuracy of the sensor itself, which cannot sense displacement 

caused by external forces or earth gravity. A possible solution is 

to use geophysical maps to match sensor measurements, also 

known as geophysical navigation (GN), which allows longer 

missions to be completed while maintaining relatively low 

position errors. However, this method needs to provide a 

geophysical map, and comparing and matching the map with 

sensor data will result in high computational cost, which is one 

of the main reasons for restricting the development of GN 

(González et al., 2020; Rice et al., 2004). Acoustic Beacon-

based System (ABS) has become an effective choice for 

underwater positioning because of its large sensing range. It 

obtains the actual position by measuring the flight time of 

acoustic signals. Acoustic systems are mostly implemented 

using acoustic repeaters, most of which require complex 

infrastructure, high deployment costs, expensive sensors, low 

resolution, and lack of semantic information, making it difficult 

to meet diverse semantic localization requirements. On the other 

hand, the velocities of light need to be carefully calibrated 

before using acoustic localization systems because they are 

affected by multipath Doppler effects and susceptibility to 

temperature rise. In addition, for small targets or dynamic 

targets, acoustic sensors have the problems of difficulty in 

feature extraction, poor detection accuracy, and high false 

detection rate, and it is difficult to obtain fine targets, which has 

also become one of the main reasons that restrict the application 

of acoustic sensors in the field of marine intelligent detection 

(Maurelli et al., 2021; Cong et al., 2021). The visual method 

solves this problem very well. It has rich semantic information, 

and has clear targets and high resolution. Especially in the 

coastal zone with good lighting environment, it can not only 

avoid noise interference caused by the influence of underwater 

landforms on acoustic sensors, but also collect rich texture and 

semantic information such as corals and fish when providing 

environmental perception and positioning information to 

underwater UUVs. Therefore, in recent years, visual sensors 

have been increasingly applied in the fields of underwater 
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mapping and marine life conservation (Hozyn and Zak, 2021; 

Mohammed et al., 2021). 

 

Due to the unstructured nature of seawater, the influence of 

complex ocean currents, fluid resistance, and the inability to use 

GPS signals, traditional terrestrial measurement and remote 

sensing methods are difficult to directly apply to the underwater 

environment, which brings new challenges for vision-based 

underwater high-precision positioning (Xing et al., 2021; Zhu et 

al., 2020). How to use vision-based real-time perception and 

active positioning capabilities to realize underwater autonomous 

positioning and navigation of UUVs is one of the current 

important tasks. 

 

Based on this, this paper mainly studies the vision-based high-

precision positioning of underwater UUV, visual simultaneous 

localization and mapping (VSLAM), deep learning and other 

technologies to achieve real-time underwater positioning and 

3D perception, and further realize autonomous navigation, 

positioning and automatic acquisition, and provide a technical 

basis for multi-task underwater monitoring and surveying. 

 

 

2. RELATED WORK 

 

Traditional vision-based localization methods are mainly 

divided into two categories: geometric-based visual localization 

methods and deep learning-based visual localization methods 

(Li et al., 2021). 

 

Geometry-based visual localization methods require a pre-built 

3D model of the scene. In the positioning process, a 2D-3D 

matching relationship is established by matching the feature 

points of the current image frame and the scene model (Lowe, 

2004; Bay et al., 2008; Rubleeet al., 2011), RANSAC is used to 

eliminate the mismatched points (Fischler and Bolles,1981; 

Chum and Matas, 2005), and finally the PnP algorithm is used 

to calculate the 6-DOF camera pose (Hesch and Roumeliotis, 

2011). There are many classical algorithms in the field of 

geometry-based visual localization. ORB-SLAM is a monocular 

SLAM system proposed by Raul et al., in 2015 (Mur-Artal et al., 

2017). Based on the PTAM architecture, it adds the functions of 

map initialization and closed-loop detection, and optimizes the 

method of key frame selection and map construction. It achieves 

good results in terms of processing speed, tracking and map 

accuracy. On the basis of ORB-SLAM, Raul et al. proposed the 

ORB-SLAM2 algorithm in 2017, which is a complete set of 

SLAM solutions based on monocular, binocular and RGB-D 

cameras (Mur-Artal et al., 2017). It can realize the functions of 

map reuse, loop detection and relocation, and is one of the most 

excellent geometric-based visual localization algorithms. The 

ORB-SLAM3(Campos et al., 2021) algorithm is a new SLAM 

framework proposed by Carlos et al. in 2021. Compared with 

the monocular version of ORB-SLAM and the stereo version of 

ORB-SLAM2, ORB-SLAM3 adds an IMU fusion algorithm. It 

is the first system capable of visual, visual-inertial and multi-

map SLAM with monocular, binocular and RGB-D cameras, 

pinhole and fisheye lens models. Under ideal conditions, the 

geometry-based visual localization method can accurately 

estimate the camera pose with high localization accuracy. 

However, in real-world scenarios, limited by correct and 

sufficient feature point matching, its localization robustness is 

poor. Inaccurate camera calibration, inaccurate system modeling, 

and complex environments (such as dynamic targets, missing 

textures, and complex lighting) will lead to poor localization 

accuracy or even impossible localization. 

 

In recent years, deep learning-based visual localization methods 

have attracted widespread interest. Different from traditional 

methods that rely on geometric models and mapping 

relationships to achieve localization tasks, the deep learning-

based method proposes a data-driven solution that uses the 

learning model to construct a mapping function and then regress 

the camera pose (Chen et al., 2020). Deep learning methods can 

automatically discover task-relevant features using highly 

expressive neural networks, which also makes them better 

suited to various environments that may exist. Deep learning-

based visual localization methods can be divided into two 

categories. The first is to use deep learning to regress the 6DOF 

camera pose in an end-to-end manner. PoseNet is the first 

attempt to perform end-to-end global pose regression using 

convolutional neural networks, it traines neural networks from a 

single frame of RGB images to regress a 6-DOF camera pose 

(Kendall et al., 2015). (Walch et al., 2017) proposes a novel 

CNN+LSTM architecture for camera pose regression for indoor 

and outdoor scenes. Among them, CNN is used to learn a 

suitable and robust localization feature representation, and 

LSTM plays the role of structured dimensionality reduction on 

the feature vector to improve the localization performance. 

(Radwan et al., 2018) adopts a multi-task learning approach to 

exploit the relationship between learned semantics, regression 

6-DoF global pose and odometry. (Debaditya et al., 2019) 

proposes to fine-tune a deep convolutional neural network 

(DCNN) using synthetic images obtained from a 3D indoor 

model to regress camera pose. The second category is to use 

deep learning methods to replace one or more modules in the 

traditional geometry-based visual localization. On the basis of 

retaining the traditional geometrical visual localization 

framework, the introduction of neural networks can further 

improve its localization performance. (Li et al., 2020) proposes 

a complete deep learning-based SLAM system that is robust to 

changes in environment and perspective. It uses HF-Net to 

extract keypoints, local descriptors and global descriptors of 

each image, and proposes a global descriptor-based 

relocalization method. (Tang et al., 2019) proposes to use the 

GCNv2 deep learning network to generate keypoints and 

descriptors, using binary descriptor vectors with the same 

descriptor format as ORB functions, so that it can be used as an 

alternative in SLAM systems. Visual localization algorithm 

based on deep learning provides a new possibility for traditional 

visual localization. Based on its data-driven and high 

generalization characteristics, it is more robust to complex 

environments that may exist in real life, and can better adapt to 

various unstructured environments. However, the accuracy of 

this type of method is lower than that of the geometry-based 

visual localization algorithm, which is also one of the important 

directions for the subsequent improvement. 

 

Based on this, this paper intends to solve the problem that the 

current UUV still lacks the ability of intelligent visual real-time 

perception and active positioning by researching key 

technologies such as UUV's navigation positioning and visual 

perception. Specifically, this paper compares the classical real-

time visual localization algorithms. By simulating various 

complex visual problems that may exist underwater, 

experimentally analyze the accuracy, robustness and time 

performance of different algorithms, so as to provide technical 

and theoretical reference for the realization of underwater real-

time positioning of UUV. 
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3. METHODOLOGY 

 

At present, most of the geometric-based visual localization 

algorithms and deep learning-based visual localization 

algorithms are based on the ground structured environment, and 

there are few studies on the underwater environment. Based on 

this, this paper selects the classical geometry-based visual 

localization algorithm and the deep learning-based visual 

localization algorithm for research experiments, and compares 

their localization performance in different underwater 

environments. Specifically, the geometry-based visual 

localization algorithm selects the classic ORB-SLAM2 

algorithm, and selects DXSLAM to represent the deep learning-

based visual localization algorithm. In addition, since this 

experiment does not set up control points underwater, this paper 

compares the camera trajectory of the aerial triangulation 

process as the true value of the trajectory with the visual 

localization algorithm. 

 

3.1 ORB-SLAM2 

 

ORB-SLAM2 is a complete set of SLAM schemes based on 

monocular, binocular and RGB-D cameras proposed by Mur-

Artal et al. in 2017. It basically continues the algorithm 

framework of PTAM and can realize the functions of map reuse, 

loop closure detection and relocation. It has been widely used 

due to its advantages such as perfection and good generalization. 

 

ORB-SLAM2 innovatively uses three threads to implement 

SLAM, the tracking thread for real-time tracking of feature 

points, the local mapping thread for local Bundle Adjustment 

and the loopback detection thread for global pose graph. 

Among them, the tracking thread mainly extracts ORB feature 

points for each image, and compares them with the nearest key 

frame, calculates the position of the feature points and roughly 

estimates the camera pose. Or initialize the pose by global 

relocalization, and then track the reconstructed local map to 

optimize the pose. The local mapping thread mainly completes 

the local map construction. This includes inserting keyframes, 

validating and filtering recently generated map points, and then 

generating new map points. It uses Bundle Adjustment to solve 

more accurate camera poses and spatial positions of feature 

points. The process of visual odometry is completed by the 

tracking thread and the local mapping thread. The loopback 

detection thread performs loopback detection on the global map 

and keyframes to eliminate accumulated errors. Since there are 

too many map points in the global map, the optimization of this 

thread does not include map points, but only pose graphs 

composed of camera poses. The unique three-thread structure of 

the ORB-SLAM series has achieved good tracking and mapping 

effects, and can ensure the global consistency of the trajectory 

and the map, so it has been widely researched and applied. 

 

The main innovations of ORB-SLAM2 are: (1) It is the first 

open-source SLAM system based on monocular, binocular, and 

RGB-D cameras, including loop detection, relocation, and map 

reuse functions; (2) ORB-SLAM2 is based on BA optimization, 

which achieves higher accuracy than cutting-edge methods 

based on closest point iteration (ICP), optical and depth error 

minimization; (3) By using both far and near binocular points 

and monocular observations, the accuracy is higher than that of 

directly using the binocular SLAM method; (4) A lightweight 

relocation mode is proposed, which can achieve effective map 

reuse in areas that cannot be mapped. 

 

3.2 DXSLAM 

 

DXSLAM is a complete deep learning-based SLAM system 

proposed by Li et al., which is robust to changes in environment 

and perspective. It uses image global features for relocalization 

and uses a new loop closure detection system. Also, DXSLAM 

is not GPU dependent and can run on CPU. 

 

The overall framework of DXSLAM is similar to ORB-SLAM2, 

and the difference is mainly in the feature point extraction part. 

It uses HF-Net to extract features from each image frame. The 

image is first passed through a shared encoder and then through 

three parallel decoders, which predict keypoint detection scores, 

dense local descriptors, and global descriptors, respectively. 

Local features are mainly used for positioning and mapping 

processes, and global features are mainly used to build an 

efficient relocation module for fast relocation when system 

initialization or tracking fails. This method uses a trained bag-

of-words model for local feature matching. Further, in order to 

reduce the system initialization time, FBoW is used to replace 

the traditional BoW, which greatly improves the system 

efficiency. Furthermore, since the BoW matching method 

aggregates local features through the distribution of local 

features, ignoring their spatial relationships, false matching may 

occur. Therefore, DXSLAM establishes a highly reliable loop 

closure detection method based on local features, global 

features and bag of words. 

 

The main innovations of DXSLAM are: (1) Using HF-Net to 

extract feature points, the SLAM system has better robustness in 

the case of changes in the environment and perspective; (2) The 

introduction of global features makes the system relocation 

more robust. In addition, FBoW has a higher success rate and a 

smaller amount of computation than traditional BoW; (3) A 

loop closure detection method based on global and local 

features is proposed; (4) It is the first SLAM system based on 

the deep learning feature point method and can run without 

GPU. 

 

 

4. EXPERIMENTS 

 

4.1 Experimental Data and Computing Environment  

 

In order to compare the underwater positioning performance of 

the two algorithms, this paper conducts experiments on the two 

algorithms in typical underwater scenes. In the experiment, the 

processor used is Intel(R) Core (TM) i7-8750H, the memory is 

8GB, and the GPU used is GeForce GTX 1060. The dataset 

includes a variety of typical underwater environmental 

characteristics, such as low brightness (as shown in figure 1a), 

dynamic fish interference (as shown in figure 1b), underwater 

light spots (as shown in figure 1c), and high turbidity (as shown 

in figure 1d), so as to realize the simulation of real complex 

underwater environment. 
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                         (a)                                            (b) 

   
                         (c)                                            (d) 

Figure 1. Schematic of the underwater dataset 

 

4.2 Experimental Results and Analysis 

 

Table 1 shows the average accuracy results obtained by 

localizing different underwater datasets with the two methods. 

For low brightness datasets, the average accuracy of ORB-

SLAM2 and DXSLAM are 0.52m and 1.01m, respectively, and 

the accuracy of ORB-SLAM2 is significantly higher than that of 

DXSLAM; For the dynamic fish interference dataset, the 

accuracy of the two is 1.15m and 1.00m, and the DXSLAM 

positioning accuracy is higher; For the underwater light spots 

dataset, the accuracy of the two is 0.31m and 0.23m 

respectively, both of which have obtained higher accuracy but 

the DXSLAM positioning effect is better; For the high turbidity 

dataset, the localization accuracy of ORB-SLAM2 is 0.46m, 

and the localization accuracy of DXSLAM is 0.71m, ORB-

SLAM2 achieves better localization results. 

 

 ORB-SLAM2 DXSLAM 

low brightness(a) 0.52 1.01 

dynamic fish 

interference(b) 

1.15 1.00 

underwater light spots(c) 0.31 0.23 

high turbidity(d) 0.46 0.71 

Table 1. Average precision comparison table (m) 

 

Figure 2 is a comparison diagram of the trajectories calculated 

by different methods on four sets of data and the real 

trajectories, in which the black dotted line represents the real 

trajectory; the blue line represents the trajectory calculated by 

DXSLAM, and the green line represents the camera trajectory 

calculated by ORB-SLAM2. On the whole, there are different 

degrees of trajectory drift in the four sets of data, which may be 

related to the complexity of the underwater environment. 

Specifically, for low brightness datasets, the trajectory of ORB-

SLAM2 is closer to the groundtruth with less drift at the start 

and end points. It is worth noting that at the abscissa 40m-45m, 

the trajectory solved by DXSLAM is jagged, and there is an 

obvious problem of sudden movement. For the dynamic fish 

interference dataset, both trajectories have a large drift 

compared with the real trajectories, especially in the range of -

20m to 10m on the abscissa, which may be related to the fact 

that there are more fish in this part of the video and the 

movement speed is faster. For the underwater light spot dataset, 

the error of the two is relatively small, which indicates that the 

light spot has little influence on the visual positioning, and the 

DXSLAM trajectory is relatively closer to the real trajectory. 

Especially at the end point ORB-SLAM2 drifts more and 

DXSLAM is closer to the true trajectory. For high turbidity 

datasets, ORB-SLAM2 has better localization results and is 

closer to the ground truth. 

 

 
(a)                                           (b)   

 
 (c)                                           (d)   

Figure 2. Comparison of trajectories 

 

Overall, ORB-SLAM2 has higher localization accuracy for low 

brightness and high turbidity datasets, while DXSLAM 

localization performs better for dynamic fish interference and 

underwater light spots datasets. This is because for structured 

environments such as low brightness and high turbidity, the 

feature points extracted by ORB-SLAM2 are better, providing 

better initial conditions for a series of threads including feature 

matching and pose calculation, and then higher positioning 

accuracy is achieved. For unstructured environments such as 

dynamic fish interference and underwater light spots, the 

randomness and uncertainty of motion and light spots in the 

environment will lead to large errors in the extraction and 

matching of feature points. This also shows that the feature 

extraction method based on deep learning is more robust to 

complex unstructured environments. 

 

This paper presents the feature extraction results for the 

dynamic fish interference dataset, as shown in Figure 3. Figure 

3a is the feature extraction result of ORB-SLAM2 while figure 

3b is the feature point extraction result of DXSLAM, and the 

red star represents the image feature points extracted by the two 

algorithms. The interference of dynamic fish brings challenges 

to traditional geometry-based feature point extraction methods. 

The specific performance is that in some scenes, the feature 

points extracted by ORB-SLAM2 are clustered and distributed 

in the middle of the image, which is also the area where the fish 

moves, and there are almost no feature points around the image. 

The feature points extracted by DXSLAM are more evenly 

distributed, which is more in line with the requirements of high-

precision and robust positioning. 
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(a) 

 
(b) 

Figure 3. Comparison of feature extraction 

 

 

5. CONCLUSIONS 

 

This paper mainly studies the underwater UUV real-time 

positioning based on vision, and then realizes the underwater 

autonomous navigation of UUV. Specifically, this paper 

compares the key performances such as localization accuracy 

and robustness of the classical geometry-based visual 

localization method ORB-SLAM2 and the deep learning-based 

visual localization method DXSLAM in typical underwater 

environments. The experimental results show that the 

positioning accuracy of ORB-SLAM2 is higher for the 

structured environment, but for some unstructured 

environments such as dynamic fish interference, the robustness 

of the feature points extracted by ORB-SLAM2 is poor, which 

affects the positioning accuracy and causes larger errors. For 

DXSLAM, its localization accuracy is lower than ORB-SLAM2 

in structured environments, but it shows stronger robustness in 

complex scenes. In addition, the experimental results show that 

the two positioning methods have different degrees of trajectory 

drift, which also confirms the necessity of focusing on the 

complexity of underwater environment, such as image 

preprocessing, so as to realize high-precision real-time UUV 

positioning and environment perception. 

 

 

ACKNOWLEDGEMENTS 

 

This research was funded by the National Key R&D Program of 

China, grant numbers 2018YFB0505400, the National Natural 

Science Foundation of China (NSFC), grant number 41901407 

and the College Students' Innovative Entrepreneurial Training 

Plan Program, Research on visual navigation, perception and 

localization algorithm of unmanned underwater vehicle/robot 

(UUV). 

 

 

REFERENCES 

 

Bay, H., Ess, A., Tuytelaars, T.,Van, G.L., 2008. Speededup 

robust features (SURF). Computer vision and image 

understanding, 110(3), 346–359. 

 

Campos, C., Elvira. R., Rodríguez, J.J.G., Montiel, J.J.M., 

Tardós, J.D., 2021. ORB-SLAM3: An Accurate Open-Source 

Library for Visual, Visual–Inertial, and Multimap SLAM. IEEE 

Transactions on Robotics, 37(6), 1874-1890. 

 

Chen, C., 2021. Review of Underwater Sensing Technologies 

and Applications. Sensors, 21(23), 7849-7877. 

 

Sahoo, A., Dwivedy, S.K., Robi, P.S., 2019. Advancements in 

the field of autonomous underwater vehicle. Ocean engineering, 

181(1), 145-160. 

 

Chen, C., Wang, B., Lu, C.X., Trigoni, N., Markham, A., 2020. 

A survey on deep learning for localization and mapping: 

Towards the age of spatial machine intelligence. arXiv preprint, 

2006.12567. 

 

Cong, Y., Gu, C., Zhang, T., Gao, Y., 2021. Underwater robot 

sensing technology: A survey. Fundamental Research, 1(3), 

337-345. 

 

Chum, O., Matas, J., 2005. Matching with PROSAC-

progressive sample consensus. Computer vision and pattern 

recognition (CVPR), IEEE, 1(1), 220-226. 

 

Debaditya, A., Kourosh, K., Stephan, W., 2019. BIM-PoseNet: 

Indoor camera localisation using a 3D indoor model and deep 

learning from synthetic images. ISPRS Journal of 

Photogrammetry and Remote Sensing, 150(1), 245-258. 

 

Fischler, M., Bolles, R., 1981. Random sample consensus: A 

para-digm for model fitting with applications to image analysis 

and automated cartography. Communications of the ACM, 

24(6), 381-395. 

 

González-García, J., Gómez-Espinosa, A., Cuan-Urquizo, E., 

García-Valdovinos, L.G., Salgado-Jiménez, T., Escobedo, 

J.A.E., 2020. Autonomous underwater vehicles: Localization, 

navigation, and communication for collaborative missions. 

Applied sciences, 10(4), 1256-1293. 

 

Hesch, J.A., Roumeliotis, S.I., 2011. A direct least-squares 

(DLS) method for PnP. International Conference on Computer 

Vision (ICCV), IEEE, 383-390. 

 

Hożyń, S., Żak, B., 2021. Stereo Vision System for Vision-

Based Control of Inspection-Class ROVs. Remote Sensing, 

13(24), 5075-5100. 

 

Jalal, F., Nasir, F., 2021. Underwater navigation, localization 

and path planning for autonomous vehicles: A review. 

International Bhurban Conference on Applied Sciences and 

Technologies (IBCAST), IEEE, 2021(1), 817-828. 

 

Kendall, A., Grimes, M., Cipolla, R, 2015. PoseNet: A 

convolutional network for real-time 6-dof camera relocalization. 

International Conference on Computer Vision (ICCV), IEEE, 

2938-2946. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-163-2022 | © Author(s) 2022. CC BY 4.0 License.

 
167



 

 

Li, D., Shi, X., Long, Q., Liu, S., Wang, F., Wei, Q., Qiao, F., 

2020. DXSLAM: A robust and efficient visual SLAM system 

with deep features. IEEE/RSJ International Conference on 

Intelligent Robots and Systems (IROS), IEEE, 4958-4965. 

 

Li, M, Qin, J, Li, D, Chen, R., Liao, X., Guo, B., 2021. 

VNLSTM-PoseNet: a novel deep ConvNet for real-time 6-DOF 

camera relocalization in urban streets. Geo-spatial Information 

Science, 24(3), 422-437. 

 

Lowe, D.G., 2004. Distinctive image features from scale-

invariant keypoints. International journal of computer vision, 

60(2), 91–110. 

 

Maurelli, F., Krupiński, S., Xiang, X., Petillot, Y., 2021. AUV 

localisation: a review of passive and active techniques. 

International Journal of Intelligent Robotics and Applications, 

2021(1), 1-24. 

 

Mohammed, A., Kvam, J., Thielemann, J.T., Haugholt, K.H., 

Risholm, P., 2021. 6D Pose Estimation for Subsea Intervention 

in Turbid Waters. Electronics, 10(19), 2369-2382. 

 

Mu, X., He, B., Zhang, X., Song, Y., Shen, Y., Feng, C., 2019. 

End-to-end navigation for autonomous underwater vehicle with 

hybrid recurrent neural networks. Ocean Engineering, 194(1), 

106602-106611. 

 

Mur-Artal, R., Montiel, J.M.M., Tardos, J.D., ORB-SLAM: A 

Versatile and Accurate Monocular SLAM System. IEEE 

Transactions on Robotics, 31(5), 1147-1163. 

 

Mur-Artal, R., Tardós, J.D., 2017. ORB-SLAM2: an Open-

Source SLAM System for Monocular, Stereo and RGB-D 

Cameras. IEEE Transactions on Robotics, 33(5), 1255-1262. 

 

Radwan, N., Valada, A., Burgard, W., 2018. VLocNet++: Deep 

Multitask Learning for Semantic Visual Localization and 

Odometry. IEEE Robotics and Automation Letters, 3(4), 4407-

4414. 

 

Rice, H., Kelmenson, S., Mendelsohn, L., 2004. Geophysical 

navigation technologies and applications. Position Location and 

Navigation Symposium (PLANS), IEEE, 4(1), 618-624. 

 

Rublee, E., Rabaud, V., Konolige, K., Bradski, G., 2011. ORB: 

An efficient alternative to SIFT or SURF. International 

conference on computer vision, IEEE, 2564-2571. 

 

Tang, J., Ericson, L., Folkesson, J., Jensfelt, P., 2019. GCNv2: 

Efficient correspondence prediction for real-time SLAM. IEEE 

Robotics and Automation Letters, 4(4), 3505-3512. 

 

Walch, F., Hazirbas, C., Leal-Taixe, L., Torsten, S., Sebastian, 

H., Daniel, C., 2017. Image-based localization using LSTMs for 

structured feature correlation. International Conference on 

Computer Vision (ICCV), IEEE, 627-637. 

 

Xing, H., Liu, Y., Guo, S., Shi, L., Hou, X., Liu, W., Zhao, Y., 

2021. A Multi-Sensor Fusion Self-Localization System of a 

Miniature Underwater Robot in Structured and GPS-Denied 

Environments. Sensors, 21(23), 27136-27146. 

 

Zhu, P., Yao, S., Liu, Y., Liu, S., Liang, X., 2020. Autonomous 

Reinforcement Control of Underwater Vehicles based on 

Monocular Depth Vision. IFAC-PapersOnLine, 53(2), 9201-

9206. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLVI-3/W1-2022 
7th Intl. Conference on Ubiquitous Positioning, Indoor Navigation and Location-Based Services (UPINLBS 2022), 18–19 March 2022, Wuhan, China

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLVI-3-W1-2022-163-2022 | © Author(s) 2022. CC BY 4.0 License.

 
168




