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Abstract—Power balancing is crucial for the reliability of an
electric power grid. In this paper, we consider an aggregator
coordinating a group of distributed storage (DS) units to provide
power balancing service to a power grid through charging
or discharging. We present a real-time, distributed algorithm
that enables the DS units to determine their own charging
or discharging amounts. The algorithm accommodates a wide
spectrum of vital system characteristics, including time-varying
power imbalance amount and electricity price, finite battery
size constraints, cost of using external energy sources, and
battery degradation. We develop a modified Lyapunov optimiza-
tion framework for real-time power balancing and provide a
fast iterative method for distributed implementation. The two
components interact through a novel cost cushion parameter that
tunes the trade-off between system performance and convergence
speed. We show analytically that the algorithm converges quickly
and provides asymptotically optimal performance as the capacity
of DS units increases. We further study through simulation the
algorithm performance over a wide range of parameter values
and demonstrate that it is highly competitive over a greedy
alternative.

I. INTRODUCTION

Balancing power supply and demand, i.e., matching power

generation and demand load continuously, is crucial for the

reliability of an electric power grid. To achieve power balance,

power grids schedule generation and load both in a large time

scale (e.g., day-ahead or hour-ahead) based on the prediction

of future supply and demand, and in a real-time scale (e.g.,

minutes or seconds) so as to clear power imbalance due to,

for example, unavoidable prediction error [1]. For real-time

scale power balancing, one of the most prevalent examples

is frequency regulation, which operates every few seconds to

maintain the frequency of a power grid at its nominal value,

and is the most expensive ancillary service [2].

With the growing environmental concerns and the need to

reduce greenhouse gas emissions, more and more renewable

energy resources, such as wind and solar, are expected to

be integrated into the future power grid. For example, the

European Commission aims to include 20% renewable energy

in the EU energy profile by 2020 [3], and California plans to

achieve 33% of retail sales from renewable energy by 2020 [4].

However, as renewable generation is intermittent and difficult

to predict, high penetration of renewable energy will create
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additional variations in the power system, and in particular

new challenges to real-time power balancing.

To address the real-time power balancing problem, sev-

eral intelligent algorithms have been proposed which aim at

optimally scheduling either dispatchable generation on the

supply side (e.g., [5] and [6]), or flexible load on the demand

side (e.g., [7]). Complementary to these direct approaches,

distributed storage (DS) units, such as batteries in electric

vehicles and batteries deployed at renewable generators for

regulating the rate of power supply, are potentially effective

alternatives for real-time power balancing [8]. For example,

experiments have revealed that an electric vehicle’s power

electronics and battery can well respond to frequent charg-

ing/discharging signals [9]. Thus, it is possible to exploit

plugged-in electric vehicles to eliminate real-time power dis-

crepancy.

There are many benefits in using DS units to balance

power. Compared with supply side management using tradi-

tional generators, such as natural gas generators, which burn

fossil fuels, DS units may be more environmentally friendly.

Compared with scheduling power demands, intelligent charg-

ing/discharging of DS units may cause less inconvenience to

users. Moreover, it is expected that there will be a large number

of DS units in the near future. For example, based on the data

published in [10], the cumulative U.S. plug-in vehicles sales

had reached 180,000 in February 2014 since December 2010,

and keep on rising. Additionally, with a significant growth of

distributed photovoltaics, the number of battery-backed solar

systems will increase accordingly [11]. Therefore, DS units

will play important roles in the future power grid design

and evolution, and in particular will create additional design

choices for real-time power balancing.

However, the employment of DS units for real-time power

balancing requires the participation of a large number of DS

units, as the power imbalance amount in a power grid is in

general much greater than the power capacity of an individual

DS unit. For example, the typical power capacity of an electric

vehicle is 5-20 kW, in comparison with frequency regulation

service requirement often on the order of megawatts. To

coordinate participating DS units, it is often beneficial to have

an aggregator. When serving power balancing, the aggregator

could determine specific charging and discharging amounts for

each DS unit. Nevertheless, since the DS units may belong

to different owners, letting the aggregator fully control DS

charging/discharging would override an owner’s individual

choice, thus potentially hampering its enthusiasm for partic-

ipation [12]. Furthermore, the computational complexity of

centralized control would dramatically increase as the number

of participating DS units increases. An alternative approach,
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which is the focus of this paper, is to distribute the decision

making to individual DS units.

In this paper, we consider a general problem of using

DS units to provide real-time power balancing service for

an electric power grid. We aim at offering both an optimal

schedule of charging and discharging for each DS unit, and a

fast distributed algorithm for its implementation. The proposed

algorithm leverages the flexible charging and discharging ca-

pability of each DS unit and the bidirectional communication

envisioned in the future power grid. Specifically, we consider

an aggregator-DS system, in which the aggregator coordinates

a large number of DS units exclusively serving power bal-

ancing. The aggregator is assumed to be regulated and non

profit-driven, which can represent a government-funded party

that encourages participation of DS units. The aggregator aims

to minimize the long-term system cost, including its own cost

and each DS unit’s cost, in the presence of uncertain power

imbalance amount and electricity price. Meanwhile, it has to

respect each DS unit’s battery capacity constraint as well as

the degradation cost constraint associated with charging and

discharging. This leads to a large-scale stochastic optimization

problem. The problem is particularly challenging in two ways.

First, in terms of real-time design, the dynamic system state

and the finite battery size constraints complicate the joint

decision making over multiple time instances. Second, in terms

of distributed implementation of scheduling the DS units’

charging and discharging amounts, the decision of each DS

unit is intrinsically coupled with those of the others due to

the system-wide objective, which hinders the development of

a decentralized solution.

To tackle these two difficulties, we first use a modified

Lyapunov optimization technique [13] to transform the orig-

inal long-term objective into real-time sub-problems that re-

spect the battery size constraints. Then, we employ Lagrange

dual decomposition [14] and adapt a fast iterative shrinkage-

thresholding algorithm (FISTA) [15] to distributively solve

the real-time sub-problems. We propose a novel cost cushion

parameter, which integrates the aforementioned two compo-

nents into a unified distributed optimization algorithm. The

parameter is also designed to tune the trade-off between

system performance and convergence speed. The proposed

algorithm does not require any knowledge of the system

statistics. We show analytically that the algorithm converges

quickly and guarantees optimal performance asymptotically as

each DS unit capacity increases. Through simulation studies,

we characterize the performance of the proposed algorithm

over a wide range of parameter values and demonstrate that it

significantly outperforms a greedy alternative.

The remainder of this paper is organized as follows. The

related works are summarized in Section II. In Section III, we

describe the system model and formulate the power balancing

problem for an aggregator-DS system. In Section IV, we

decompose the original problem into real-time sub-problems,

and in Section V, we provide a distributed solution to the real-

time sub-problems and study its convergence performance.

In Section VI, the overall algorithm is summarized and its

optimality properties are evaluated. Simulations are presented

in Section VII, and a discussion on dynamic DS units is given

TABLE I
LIST OF MAIN SYMBOLS (IN THE ORDER OF APPEARANCE)

gt energy imbalance signal at time slot t

gmax maximum value of the energy imbalance signal

1s,t indicator of energy surplus at time slot t

1d,t indicator of energy deficit at time slot t

xi,t charging amount of the i-th DS during time slot t

yi,t discharging amount of the i-th DS during time slot t

ri,max maximum allowed charging/discharging amount of the i-th DS

si,t energy state of the i-th DS at the beginning of time slot t

ηi,c charging efficiency coefficient of the i-th DS

ηi,d discharging efficiency coefficient of the i-th DS

si,cap energy capacity of the i-th DS

si,min minimum preferred energy state of the i-th DS

si,max maximum preferred energy state of the i-th DS

pm,t unit market electricity price at time slot t

pm,min minimum unit market electricity price

pm,max maximum unit market electricity price

pc,t unite price for charging service at time slot t

pd,t unite price for discharging service at time slot t

Di,c(·) degradation cost function of the i-th DS for charging

Di,d(·) degradation cost function of the i-th DS for discharging

di,l lower bound of the second derivatives of Di,c(·) and Di,d(·)

li,u upper bound of the long-term degradation cost of the i-th DS

Cs(·) cost function for clearing energy surplus using external sources

Cd(·) cost function for clearing energy deficit using external sources

cl lower bound of the second derivatives of Cs(·) and Cd(·)

in Section VIII. Finally, we conclude in Section IX.

Notation: Denote [x]ba as min{max{x, a}, b}, which

projects a scalar x onto the interval [a, b]; denote R as the

set of real numbers; denote 1(A) as the indicator function,

which equals 1 (resp. 0) if the event A is true (resp. false); for a

function F (·), denote F ′(·) and F ′′(·) as its first derivative (or

gradient) and second derivative, respectively; denote F (·)−1

as its inverse function. The main symbols in this paper are

summarized in Table I.

II. RELATED WORKS

The real-time power balancing problem has been addressed

in previous works using three different approaches: supply

side management, demand side management, and controlled

charging and discharging of DS units. Below, we survey these

works and highlight our contribution.

A. Supply Side and Demand Side Management

Power balance may be achieved directly, on the supply side,

by controlling dispatchable generators, or on the demand side,

by scheduling flexible loads.

Supply side management: In [5] and [6], by assuming that all

demand loads are critical and must be met, the authors provide

real-time algorithms to optimally schedule the power output

of dispatchable generators, so as to minimize the system cost.



3

In particular, [5] focuses on the average system performance,

while [6] emphasizes the worst-case system performance.

Demand side management: In [7], [16], and [17], real-

time power balance is achieved by scheduling the demand

loads of users, with the objective of minimizing the average

system cost. Specifically, [7] proposes to optimally sched-

ule the non-interruptible and deferrable loads of individual

users within their deadlines. The problem is formulated as

a Markov decision process (MDP) problem and is solved

distributively. In addition, both [16] and [17] have developed

their solutions under the framework of Lyapunov optimization,

and considered joint scheduling of flexible load and storage

usage. In [16], a centralized real-time algorithm is provided,

while in [17], a gradient-based distributed real-time algorithm

is suggested.

In our work, we consider the alternative of using an

aggregator-DS system for real-time power balancing. The DS

units are external to the supply-demand dichotomy and are

used to clear the residual power imbalance after direct supply

side and demand side management. Therefore, our work is

complementary to those works mentioned above. Moreover,

the DS units we consider are general as long as they are

capable of charging and discharging.

The Lyapunov optimization technique used in the devel-

opment of our real-time sub-problems shares some similarity

with [16] and [17]. However, compared with [16] and [17], we

focus on the unique characteristics of storage units and employ

a more realistic model that takes into account the battery

inefficiency and energy gain/loss under charging/discharging.

Moreover, compared with the distributed implementation in

[17], our distributed algorithm is enabled by a novel cost cush-

ion parameter design, leading to provably faster convergence.

B. Energy Storage Management in Aggregator-DS System

There is a growing body of recent works on power balancing

using DS units. Specific to the aggregator-DS system, which

focuses on the interaction between the aggregator and DS

units, most works adopt centralized control, with the objective

of maximizing the profit of the aggregator or DS units [18]–

[22], or the social welfare of the system [23], [24]. To our best

knowledge, the only previous works that address distributed

control specific to the aggregator-DS system are presented

in [25]–[27], all studying a static system. In particular, in

[25], assuming that each DS unit considers only whether to

charge, discharge, or remain idle, a service pricing function is

developed so that the difference between the power imbalance

amount and the sum DS contribution is minimized. The same

goal is considered in [26], where each DS unit can additionally

decide its charging and discharging amounts. A pricing strat-

egy and a distributed consensus algorithm are designed for the

DS units to reach a unique Nash equilibrium, but the optimality

of the pricing strategy is not discussed. In [27], the objective

is to minimize the system cost while aligning each DS unit

interest with the system benefit. It considers both synchronous

and asynchronous communication between the aggregator and

each DS unit, but it adopts a greedy instantaneous allocation

approach that ignores the opportunity of joint optimization

over multiple time instances.

... 
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Fig. 1. Schematic representation of a local power grid.

In addition to the limitations summarized above, most of

these earlier works have omitted to consider some essential

characteristics of the aggregator-DS system. For example, a

deterministic model is used in [18] and [21], which ignore the

uncertainty of the electricity price, and the dynamics of the

power imbalance amount is not incorporated in [25]–[27]. For

the aggregator, the potential cost for using external energy

sources to clear the imbalance is ignored in [18]–[22]. For

DS units, the finite battery size constraints are not considered

in [25]; the battery degradation costs due to frequent charg-

ing/discharging in real-time operation are omitted in [20]–

[22], [25], [26]; the energy gain/loss in charging/discharging

is ignored in [20], [23], [25], [26].

In this work, we consider all above factors missed in

previous works in a more complete aggregator-DS system

model. For the system to collectively help a power grid

achieve power balance, we develop a real-time distributed

algorithm that does not rely on any statistics of the system

and is easy to implement in reality. Moreover, the proposed

algorithm is proved to be asymptotically optimal as each

DS unit capacity increases. We have previously studied real-

time power balancing with an aggregator coordinating static

and dynamic DS units in [23] and [24] respectively, with

application to frequency regulation using electric vehicles. The

main objective of those works is to fairly allocate the power

imbalance amount among the participants. Furthermore, the

aggregator centrally controls the charging and discharging of

the electric vehicles. In this work, we consider a more realistic

charging and discharging model with battery inefficiency and

electricity prices, beyond others. More importantly, we aim to

minimize the long-term system cost and propose a solution

that can be solved collectively by the aggregator and all DS

units in a distributed manner.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We first describe an aggregator-DS system that provides

real-time power balancing service to a power grid, and then

formulate the problem.

A. Power Balancing and Aggregator-DS System

In a power grid as shown in Fig. 1, due to intrinsic predic-

tion error of generation and load as well as the randomness

of renewable sources, the generation amount cannot match the
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load amount continuously. The discrepancy between these two

at any time can be represented by a power imbalance signal.

Consider a time-slotted system with equal time intervals,

which in practical systems may range from a few seconds

to a few minutes. For ease of notation, we incorporate time

into the power imbalance signal and use energy units below.

At time slot t, we denote gt, |gt| ≤ gmax, as the energy

imbalance amount, which is random. If gt > 0, then the

generation amount is greater than the load amount by gt
units, which results in energy surplus. If gt < 0, then the

generation amount is less than the load amount by |gt| units,

which results in energy deficit. Define 1s,t,1(gt > 0) and

1d,t,1(gt < 0) as the indicators of energy surplus and

energy deficit at time slot t, respectively, where 1(·) is the

indicator function. Since energy surplus and energy deficit

cannot happen simultaneously, we have 1s,t · 1d,t = 0.

Assume that an aggregator serves the power grid and em-

ploys energy storage, capable of charging and discharging, to

clear the energy imbalance in every time slot. Since the mag-

nitude of the energy imbalance signal, |gt|, is in general large

and building a massive energy storage unit could be costly, the

aggregator instead coordinates N (smaller) DS units, possibly

owned by different users, to provide power balancing service.

These DS units can be, for example, batteries in electric

vehicles and batteries deployed at renewable generators. The

number of such DS units is expected to be large in the

near future owing to electrification of transportation and the

integration of more and more renewable sources.

At the beginning of time slot t, the aggregator receives the

energy imbalance signal gt from the utility. If gt > 0, the

aggregator is required to absorb gt units of energy during

time slot t. If gt < 0, the aggregator is required to contribute

|gt| units of energy during time slot t. Upon receiving the

energy imbalance signal, the aggregator communicates with

each DS unit bidirectionally so as to negotiate the individual

energy absorption or contribution amount. The information

and energy flows of the system are depicted in Fig. 1. For

simplicity of analysis, in the sequel we assume that all DS

units are static and are connected to the aggregator all the time.

Examples of such DS units are batteries deployed at renewable

generators. The case that involves dynamic DS units, such as

batteries in electric vehicles, will be discussed in Section VIII.

For the i-th DS unit, denote xi,t ≥ 0 as its charging

amount during time slot t in the case of energy surplus, and

yi,t ≥ 0 as its discharging amount during time slot t in the

case of energy deficit. Because of limitation imposed by the

charging/discharging circuit, xi,t and yi,t are upper bounded.

For simplicity, assume that the maximum allowed charging

and discharging amounts are of the same quantity, denoted by

ri,max, i.e.,

0 ≤ xi,t ≤ ri,max, 0 ≤ yi,t ≤ ri,max. (1)

Define N -dimensional charging and discharging amount

vectors at time slot t as xt,[x1,t, · · · , xN,t] and

yt,[y1,t, · · · , yN,t], respectively.

Let ηi,c ∈ (0, 1] be the charging efficiency coefficient of the

i-th DS unit, and ηi,d ∈ [1,∞) be the discharging efficiency

coefficient. Because of the battery inefficiency, generally, the

actual stored energy through charging is less than xi,t, and the

actual contributed energy through discharging is larger than

yi,t. Denote si,t as the energy state of the i-th DS unit at the

beginning of time slot t. Due to charging and discharging, the

energy state si,t fluctuates over time and evolves as follows1:

si,t+1 = si,t + 1s,tηi,cxi,t − 1d,tηi,dyi,t,si,t + bi,t (2)

where

bi,t,1s,tηi,cxi,t − 1d,tηi,dyi,t (3)

is defined as the effective charging/discharging amount of the

i-th DS unit during time slot t.
Charging a battery near its capacity or discharging it close

to the zero energy state can significantly reduce battery

lifetime [28]. Therefore, lower and upper bounds on the

battery energy state are usually imposed by its manufacturer

or owner. Denote si,cap as the energy capacity of the i-th DS

unit, and [si,min, si,max] as its preferred energy range with

0 ≤ si,min < si,max ≤ si,cap. We assume that the energy state

at each time slot should be limited within the preferred range,

i.e.,

si,min ≤ si,t ≤ si,max. (4)

Combining the constraints (1) and (4), we can compactly

represent the constraints of xi,t and yi,t as

0 ≤ xi,t ≤ min

{

ri,max,
si,max − si,t

ηi,c

}

and

0 ≤ yi,t ≤ min

{

ri,max,
si,t − si,min

ηi,d

}

,

respectively.

Since a DS unit absorbs and contributes energy in charging

and discharging, respectively, it has either energy gain or

energy loss when providing real-time power balancing service.

Denote the unit market electricity price at time slot t as

pm,t ∈ [pm,min, pm,max]. Then, the revenue of the i-th DS unit

for absorbing energy in the case of energy surplus is pm,txi,t,

and the loss for contributing energy in the case of energy

deficit is pm,tηi,dyi,t. Additionally, by providing power bal-

ancing service, each DS unit can receive payment from the ag-

gregator for its controllable and flexible charging/discharging

capability. Denote the unit prices for charging and discharging

services at time slot t as pc,t and pd,t, respectively. Assume

that the aggregator pays for the charging/discharging based on

the actual service amounts xi,t and yi,t. In other words, the

i-th DS unit receives payment pc,txi,t in the case of energy

surplus for charging, and payment pd,tyi,t in the case of energy

deficit for discharging. As a result, the effective cost of the i-
th DS unit for providing power balancing service at time slot

t is

φi,t,1s,t(−pm,txi,t − pc,txi,t) + 1d,t(pm,tηi,dyi,t − pd,tyi,t).

For each DS unit, offering power balancing service is

accompanied by battery degradation for frequent charging

1We assume that the role of the DS units is to exclusively provide real-time
power balancing service when connected and thus do not explicitly consider
their own charging needs.
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and extra cycling of battery [29]. Denote Di,c(·) and Di,d(·)
as the degradation cost functions with respect to the charg-

ing amount and the discharging amount, respectively, with

Di,c(0) = Di,d(0) = 0. Since the actual discharging amount

is ηi,dyi,t, for notation simplicity, we will merge ηi,d into

the function Di,d(·). Furthermore, since faster charging or

discharging (larger value of xi,t or yi,t) generally has a more

detrimental effect on battery lifetime, Di,c(·) and Di,d(·) can

be approximated by increasing convex functions in general. To

facilitate later analysis, we slightly strengthen this condition

and take the following assumptions:

C1:

• Di,c(·) and Di,d(·) are increasing, strictly convex, and

twice continuously differentiable on [0, ri,max].
• The second derivatives of Di,c(·) and Di,d(·) are lower

bounded by a constant di,l > 0 on [0, ri,max].

To limit battery degradation, the i-th DS unit sets a pre-

designed upper bound li,u ≥ 0 to restrict the long-

term degradation cost, which can be formally expressed by

limT→∞
1
T

∑T−1
t=0 E[1s,tDi,c(xi,t) + 1d,tDi,d(yi,t)] ≤ li,u.

Due to a lack of participating DS units or high battery

degradation cost, sometimes the sum contribution of all DS

units may be insufficient to clear the total power imbalance

amount. Specifically, for energy surplus, this insufficiency

means that
∑N

i=1 xi,t < gt, and for energy deficit, it means

that
∑N

i=1 yi,t < |gt|. Hence, from time to time, to fill the

gap, the aggregator needs to exploit external energy sources,

such as the external real-time electricity market2. Denote the

cost functions of the external sources for clearing energy

surplus and energy deficit as Cs(·) and Cd(·), respectively,

with Cs(0) = Cd(0) = 0. Then, the cost of the aggregator for

exploiting the external sources at time slot t can be represented

as 1s,tCs(gt −
∑N

i=1 xi,t) + 1d,tCd(|gt| −
∑N

i=1 yi,t). We

assume the following conditions on the external cost functions:

C2:

• Cs(·) and Cd(·) are increasing, strictly convex, and twice

continuously differentiable on [0, gmax].
• The second derivatives of Cs(·) and Cd(·) are lower

bounded by a constant cl > 0 on [0, gmax].

Finally, the total cost of the aggregator, including that for

using the external sources and the payment to all DS units, is

given by

ϕt,1s,t

[

Cs

(

gt −
N
∑

i=1

xi,t

)

+ pc,t

N
∑

i=1

xi,t

]

+ 1d,t

[

Cd

(

|gt| −
N
∑

i=1

yi,t

)

+ pd,t

N
∑

i=1

yi,t

]

.

Combining the costs of all DS units with the cost of the

aggregator, we have the total cost of the aggregator-DS system

at time slot t given by

wt,(

N
∑

i=1

φi,t) + ϕt.

2In practice, the imbalance signal gt may relate to the capacity of the
service provider. In this paper, we focus on the aggregator-DS system, and
assume that gt is determined externally and the aggregator guarantees to clear
the imbalance in every time slot.

Notice that the payment for the charging/discharging service

does not appear in the expression of wt. This is because such

payment is transferred from the aggregator to the DS units,

hence not affecting the system-wide cost. We will revisit the

service payment in Section V-C.

B. Problem Statement

The aggregator is assumed to be regulated and non profit-

driven. For example, it can represent a government-funded

party that encourages the integration of DS units into a power

grid. The aggregator coordinates the DS units to provide real-

time power balancing service, and aims to minimize the long-

term system cost while respecting the battery capacity and

degradation cost constraints of each DS unit. We assume that

each DS unit is willing to provide real-time power balancing

service and is under contract with the aggregator. In return,

the DS units will be paid for such a service as described in

Section III-A3.

We formulate the real-time power balancing problem as the

following stochastic optimization problem.

P1: min
{xt,yt}

lim
T→∞

1

T

T−1
∑

t=0

E[wt]

s.t. 0 ≤ xi,t ≤ min
{

ri,max,
si,max − si,t

ηi,c

}

, ∀i, t (5)

0 ≤ yi,t ≤ min
{

ri,max,
si,t − si,min

ηi,d

}

, ∀i, t (6)

N
∑

i=1

xi,t ≤ 1s,tgt,

N
∑

i=1

yi,t ≤ 1d,t|gt|, ∀t (7)

lim
T→∞

1

T

T−1
∑

t=0

E[1s,tDi,c(xi,t) + 1d,tDi,d(yi,t)] ≤ li,u, ∀i (8)

where the expectations above are taken over the random

system state defined as At,(gt, pm,t) and the possibly random

decisions (xt,yt). The rationale for constraints (5)-(8) is

given in Section III-A. By (7), we mean that, first, the sum

contribution of all DS units should not exceed the required

amount, and second, in the case of energy deficit (resp. energy

surplus) the charging (resp. discharging) amount of each DS

unit should be zero.

The above optimization problem can be solved centrally

by traditional approaches such as dynamic programming [31],

provided that the aggregator knows perfectly about the system

statistics and can fully control the charging/discharging of all

DS units. However, for one, dynamic programming is known

to suffer from “the curse of dimensionality,” and accurate

statistics cannot be easily obtained in practice. For another,

direct charging/discharging control not only overrides a DS

owner’s individual choice but also leads to high computational

complexity as the number of participating DS units becomes

large.

Motivated by these concerns, our goal in this paper is

to develop a real-time distributed algorithm, by which the

3We emphasize that the market aspects, such as the contract design
investigated in [30], are not the focus of this paper.
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statistics of the system state is not required and each DS unit is

able to make its own decision. This is a challenging problem

due to the presence of the dynamic system state, the finite

battery size constraints, and the coupling of decisions among

all DS units. To address this problem, we first decompose

the long-term optimization problem P1 into real-time sub-

problems.

IV. DECOMPOSITION INTO REAL-TIME SUB-PROBLEMS

To solve P1, we now propose the corresponding real-

time sub-problems under the general framework of Lyapunov

optimization [13], with modifications to handle finite battery

size constraints and to facilitate the distributed algorithm

introduced later.

A. Problem Relaxation

Recall that for each DS unit, the hard constraints of the

charging/discharging amount, i.e., (5) and (6), are equivalent

to the constraints (1) and (4). Due to the battery size constraint

(4), for each DS unit, the current charging/discharging decision

is coupled with all previous charging/discharging decisions

through the current energy state, which complicates the op-

timization. To avoid such coupling, we replace (4) with a new

time average constraint and introduce the following relaxed

problem:

P2: min
{xt,yt}

lim
T→∞

1

T

T−1
∑

t=0

E[wt]

s.t. (1)(7)(8),

lim
T→∞

1

T

T−1
∑

t=0

E[bi,t] = 0, ∀i (9)

where bi,t is defined in (3). As opposed to (4), by which the

energy state is always bounded, (9) requires that the effective

charging/discharging amount is zero on average.

We now demonstrate that (4) implies (9), so that P2 is

indeed a relaxation of P1. Summing both sides of the energy

state equation (2) over t ∈ {0, 1, · · · , T − 1} and dividing

them by T yields

si,T
T
− si,0

T
=

1

T

T−1
∑

t=0

bi,t. (10)

Taking expectations on both sides of (10) and taking limits

over T gives

lim
T→∞

E[si,T ]

T
− lim

T→∞

E[si,0]

T
= lim

T→∞

1

T

T−1
∑

t=0

E[bi,t]. (11)

Since si,T and si,0 are bounded by (4), the left hand side of

(11) is equal to zero and the constraint (9) holds.

By removing the coupling in charging/discharging decisions

due to the battery size constraints, the relaxed problem P2

allows us to apply Lyapunov optimization to decompose the

original problem into real-time sub-problems. We will show

later in Section VI that our developed solution in fact also

satisfies (4), so it is feasible for P1. This relaxation technique

to accommodate the type of time-coupled decision constraints

such as (5) and (6) was first introduced in [32] for energy

management in a data center equipped with an ideal battery,

and later was also applied in [16] and [17]. Compared with

[32], besides our problem being different from it, we consider

multiple DS units. Compared with [16] and [17], the struc-

ture of our problem is more complicated, with a nonlinear

objective which allows for bidirectional energy flow between

the aggregator and DS units. Thus, it is more involved in the

relaxation treatment to ensure that the battery size constraints

are satisfied.

B. Virtual Queue Design

To solve P2, we introduce virtual queues and transform

the time average constraints (8) and (9) to queue stability

constraints, as explained below.

Consider constraint (8). To facilitate distributed implemen-

tation which will be explained later, we add a constant cost

cushion ai > 0 to both sides of (8), and obtain the following

equivalent constraint for each DS unit:

lim
T→∞

1

T

T−1
∑

t=0

E[1s,tDi,c(xi,t) + 1d,tDi,d(yi,t) + ai] ≤ l̂i,u

(12)

where l̂i,u,li,u+ai. Define a virtual queue Ji,t, which updates

as

Ji,t+1 = max{Ji,t − l̂i,u, 0}+ 1s,tDi,c(xi,t)

+ 1d,tDi,d(yi,t) + ai. (13)

Initialize Ji,0 = ai and define Jt,[J1,t, · · · , JN,t]. Based

on (13), queue backlog Ji,t accumulates the total amount of

degradation cost in excess of l̂i,u. The function of ai is to

guarantee that Ji,t ≥ ai. The introduction of ai is important,

and we will discuss the design of ai in Section V-B.

For constraint (9), we associate it with a virtual queue Ki,t,

which evolves as

Ki,t+1 = Ki,t + bi,t. (14)

Define Kt,[K1,t, · · · ,KN,t]. By (14), Ki,t accumulates the

total effective charging/discharging amount. Comparing (14)

with (2), we can see that Ki,t and the energy state si,t evolve

in the same manner. We relate them by initializing Ki,0 =
si,0 − βi, where the shift parameter βi is set to be

βi,si,min + ηi,dri,max − V

(

pm,min −
cmax

ηi,d

)

, (15)

where cmax,max{C ′
s(gmax), C

′
d(gmax)} and the weight V ∈

(0, Vmax] with

Vmax, min
1≤i≤N

{

si,max − si,min − (ηi,c + ηi,d)ri,max
cmax+pm,max

ηi,c
+ cmax

ηi,d
− pm,min

}

.

(16)

Thus, the virtual queue Ki,t is a shifted version of the energy

state si,t. Ki,t is introduced to track si,t. More importantly, as

we will see later, the boundedness of si,t can be guaranteed
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through the control of Ki,t. The design of βi and Vmax in

(15) and (16) is crucial. We will show in Section VI-B how

the constraint (4) can be guaranteed by such design.

Note that under the real-time operation, the value of ri,max

in (16) is generally much smaller than the energy capacity.

For example, for the 2012 Ford Focus Electric, the energy

capacity is 23 kWh and the maximum charging/discharging

rate is 6.6 kW. Assuming that the duration of each time slot

is 5 minutes, we then have ri,max = 0.55 kWh ≪ 23 kWh.

By this observation, from (16), we have Vmax > 0 in general.

Finally, we show that the time-averaged constraints (8) and

(9) can be transformed into the mean rate stability constraints

of virtual queues, which is a direct result from [13].

Lemma 1: Constraints (8) and (9) hold if the virtual queues

Ji,t and Ki,t are mean rate stable, respectively.

C. Real-Time Sub-Problems

At time slot t, define a vector Θt,[Jt,Kt], the Lyapunov

function L(Θt),
1
2

∑N

i=1(J
2
i,t+K2

i,t), and the associated one-

slot Lyapunov drift

∆(Θt),E [L(Θt+1)− L(Θt)|Θt] .

The drift-plus-cost function is defined as ∆(Θt)+V E[wt|Θt]
[13], in which the time-averaged constraints and the objective

function are jointly considered, with the weight V (the same

V as in (15)) controlling their trade-off. In the following

proposition, we provide an upper bound on the drift-plus-cost

function.

Proposition 1: For all possible policies of the charg-

ing/discharging decisions of all DS units, and all possible

values of Θt, the drift-plus-cost function is upper bounded

as follows:

∆(Θt) + V E[wt|Θt] ≤ B + V E[wt|Θt] +

N
∑

i=1

Ki,tE[bi,t|Θt]

+

N
∑

i=1

Ji,tE[1s,tDi,c(xi,t) + 1d,tDi,d(yi,t)− li,u|Θt] (17)

where

B,
1

2

N
∑

i=1

[l̂2i,u +
(

max{Di,c(ri,max), Di,d(ri,max)}+ ai
)2

+ r2i,max], (18)

and V ∈ (0, Vmax].

Proof: See Appendix A.

Adopting the general framework of Lyapunov optimization

[13], we design a real-time algorithm to minimize the upper

bound of the drift-plus-cost function on the right hand side of

(17). The algorithm can lead to a guaranteed performance as

shown in Section VI. Consequently, we consider the real-time

sub-problems for energy surplus and energy deficit at each

time slot t as follows. For notation simplicity, we will omit

the subscript t of the optimization variables whenever it is

clear from the context.

P2(a) (energy surplus):

min
x

[

N
∑

i=1

Ji,tDi,c(xi)− V pm,txi +Ki,tηi,cxi

]

+ V Cs

(

gt −
N
∑

i=1

xi

)

s.t. 0 ≤ xi ≤ ri,max,

N
∑

i=1

xi ≤ gt.

P2(b) (energy deficit):

min
y

[

N
∑

i=1

Ji,tDi,d(yi) + V pm,tηi,dyi −Ki,tηi,dyi

]

+ V Cd

(

|gt| −
N
∑

i=1

yi

)

s.t. 0 ≤ yi ≤ ri,max,

N
∑

i=1

yi ≤ |gt|.

The optimization variables x and y are N -dimensional vectors

with the i-th element being xi and yi, respectively.

V. DISTRIBUTED ALGORITHM FOR REAL-TIME

SUB-PROBLEMS

The real-time sub-problems P2(a) and P2(b) can be solved

by the aggregator in a centralized way. However, since the

DS units may belong to different users, they may not be

willing to relinquish direct control of charging/discharging to

the aggregator. In addition, the computational complexity of

centralized control would grow too quickly as the number

of DS units increases. In this section, we employ Lagrange

dual decomposition and adapt a fast iterative algorithm to

solve P2(a) and P2(b) distributively. Since energy surplus and

energy deficit cannot happen simultaneously and their analyses

are similar, in the following, we focus on the energy surplus

problem P2(a).

A. Lagrange Dual Decomposition

In P2(a), since Ji,t ≥ ai > 0 and Di,c(·) is strictly convex,

the objective function is strictly convex, which means that

there is at most one global minimizer. Additionally, since the

objective function is continuous and the constraint set of x is

compact, there is at least one minimizer. Therefore, P2(a) has

a unique solution.

However, we note that the term Cs(gt −
∑N

i=1 xi) in the

objective function and the term
∑N

i=1 xi ≤ gt in the constraint

are functions of the charging amounts of all DS units, which

hinders a distributed algorithm. To avoid such coupling, we

first introduce an auxiliary variable q ∈ [0, gt] to represent the

difference between the energy imbalance amount and the sum

contribution of all DS units, i.e., gt −
∑N

i=1 xi, and consider

the following problem.

P2(a’):

min
x,q

[

N
∑

i=1

Ji,tDi,c(xi)− V pm,txi +Ki,tηi,cxi

]

+ V Cs(q)
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s.t. 0 ≤ xi ≤ ri,max, 0 ≤ q ≤ gt, (19)

N
∑

i=1

xi + q = gt. (20)

It is clearly that P2(a’) and P2(a) are equivalent and have the

same unique solution in x.

Next we associate the equality constraint (20) with a La-

grange multiplier λ. The partial Lagrangian of P2(a’) is

Ft(x, q, λ) =

[

N
∑

i=1

Ji,tDi,c(xi)− V pm,txi +Ki,tηi,cxi

]

+ V Cs(q) + λ

(

gt −
N
∑

i=1

xi − q

)

.

The dual function Gt(λ) is defined as the partial minimum of

Ft(x, q, λ) with respect to the primal variables x and q:

Gt(λ) = min
x,q

Ft(x, q, λ) s.t. (19).

Note that Gt(λ) can be naturally decomposed into sub-

problems for each DS unit and the aggregator. Specifically,

with Gt(λ) divided by V , the sub-problem for each DS unit

is

min
xi

−pm,txi −
λ

V
xi +

Ji,t
V

Di,c(xi) +
Ki,tηi,c

V
xi (21)

s.t. 0 ≤ xi ≤ ri,max,

while the sub-problem for the aggregator is

min
q

Cs(q) +
λ

V
(gt − q) s.t. 0 ≤ q ≤ gt. (22)

In (21), by interpreting λ
V

as pc,t, the unit price for charging

service as defined in Section III-A, we can view the objective

of the i-th DS unit as minimizing the weighted sum of its

different costs. By the Karush-Kuhn-Tucker (KKT) conditions,

given λ, we obtain the unique solution of (21) in closed

form: [(D′
i,c)

−1
(V pm,t+λ−Ki,tηi,c

Ji,t

)

]
ri,max

0 . In the optimization

problem (22), the aggregator minimizes its cost, including

the external energy cost and the payment to all DS units.

Again, the unique solution of (22) is found in closed form:

[(C ′
s)

−1( λ
V
)]gt0 . Thus, for any given λ, there is a unique so-

lution for both (21) and (22). Consequently, the dual function

Gt(λ) is continuously differentiable in R [33].

The Lagrange dual problem is defined as the maximization

of the dual function:

max
λ

Gt(λ). (23)

Denote the optimal solution of the dual problem at time slot t
as λ∗

t , and the unique optimal solution of P2(a’) at time slot

t as (x∗
t , q

∗
t ). Verifying Slater’s condition on P2(a’), we are

assured to have strong duality between the primal P2(a’) and

its dual (23) [14]. Thus, at time slot t, using λ∗
t , we can recover

the optimal solution (x∗
t , q

∗
t ) by solving the sub-problems (21)

and (22) [33].

To solve (23), we propose a fast iterative algorithm pre-

sented in the next subsection.

Algorithm 1: Distributed algorithm to solve the dual of

P2(a’).

begin Aggregator’s algorithm:

Initialize: k = 1; γ1 = λ0 ∈ R; ν1 = 1; µ, ǫ > 0.

repeat

Broadcast γk; receive xk
i , ∀i.

qk ← [(C ′
s)

−1(γ
k

V
)]gt0 ;

λk ← γk + µ
(

gt −
∑N

i=1 x
k
i − qk

)

;

νk+1 ← 1+
√

1+4(νk)2

2 ;

γk+1 ← λk + νk−1
νk+1 (λ

k − λk−1);
k ← k + 1.

until |gt −
∑N

i=1 x
k
i − qk| < ǫ;

Output: q∗t = qk.
begin DS’s algorithm:

repeat

Receive γk;

xk
i ← [(D′

i,c)
−1
(V pm,t+γk−Ki,tηi,c

Ji,t

)

]
ri,max

0 ;

send xk
i .

until;

Output: x∗
i,t = xk

i .

B. Dual Maximization with FISTA and Convergence Analysis

Since we consider the real-time power balancing problem

with a short time interval, it is highly desirable that the

algorithm can converge quickly in each time slot. To this

end, we adapt a fast iterative shrinkage-thresholding algorithm

(FISTA) [15] to solve the dual problem (23). The proposed

algorithm is summarized in Algorithm 1. Compared with the

standard gradient algorithm in which the Lagrange multiplier

λk is updated from the previous iterate λk−1, in Algorithm

1, λk is updated from γk, which is designed as a linear

combination of the previous two iterates λk−1 and λk−2.

Nonetheless, the extra computation is marginal.

Below we show that the gradient of the dual function is

Lipschitz continuous, and determine its Lipschitz constant.

The result is crucial for the convergence analysis of Algorithm

1.

Lemma 2: Under the conditions C1 and C2, the gradient

of the dual function is Lipschitz continuous, i.e., we have

|G′
t(λ1) − G′

t(λ2)| ≤ ρ|λ1 − λ2| for all λ1, λ2 ∈ R, where

the Lipschitz constant ρ is given by

ρ,(N + 1)max

{

1

a1d1,l
, · · · , 1

aNdN,l

,
1

V cl

}

, (24)

where di,l and cl are given in C1 and C2, respectively, and ai
is the cost cushion parameter in (12).

Proof: See Appendix B.

In (24), since ai > 0, we have 0 < ρ < ∞. Using Lemma

2, we now prove the convergence of Algorithm 1.

Theorem 1: Under the conditions C1 and C2, in Algorithm

1, with step size µ ∈ (0, µ0] where µ0,1/ρ, the sequence

{λk} converges to the optimum λ∗
t of the dual problem (23).

Furthermore, for any k ≥ 1,

Gt(λ
∗
t )−Gt(λ

k) ≤ 2|λ0 − λ∗
t |2

µ(k + 1)2
,
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where λ0 is the initial value of λ.

Proof: Given Lemma 2, the proof is similar to that in

[15] with minor modification. See Appendix C.

Theorem 1 suggests that Algorithm 1 has a worst-case

convergence rate of O(1/k2). In comparison, the standard

gradient algorithm, which is used in [17]4 among many others,

has a worst-case convergence rate O(1/k). Also from Theorem

1, the step size µ is upper bounded by µ0, the inverse of

the Lipschitz constant ρ. Based on the definition of ρ, we

roughly have that, the larger the number of DS units, the

smaller µ0 hence the slower the algorithm, which conforms

to our intuition.

Furthermore, from (24), µ0 is a strictly increasing function

of the cost cushion ai in the interval (0, V cl
di,l

]. Therefore, for

the sole purpose of faster convergence, a larger ai should be

chosen. However, later in Section VI-C, we will show that

using a smaller ai may decrease the system cost.

C. Price Signaling pc,t

We now look at the property of the optimal charging price

signal p∗c,t =
λ∗

t

V
. Since DS units have energy gain by charging,

λ∗

t

V
can be negative. Below, we give a condition under which

λ∗

t

V
is lower bounded and there exists a DS unit willing to

provide power balancing service.

Proposition 2: At time slot t, if there exists a DS unit j
such that −pm,t+

Jj,t

V
D′

j,c(x)+
Kj,tηj,c

V
< C ′

s(x), ∀x ∈ (0, ǫ),
where ǫ is an arbitrarily small positive number, then the price

signal
λ∗

t

V
is lower bounded as

λ∗
t

V
> min

1≤i≤N

{

−pm,t +
Ji,t
V

D′
i,c(0) +

Ki,tηi,c
V

}

and the charging amount x∗
j,t > 0.

Proof: See Appendix D.

Proposition 2 essentially states that, as long as there is a

DS unit whose effective marginal cost, considering both the

energy gain and the charging/discharging cost, is strictly less

than the marginal cost of the external energy source, it is

beneficial for the aggregator to incentivize the DS units to

provide power balancing service (even though the price signal

can be negative).

VI. MAIN ALGORITHM AND PERFORMANCE OPTIMALITY

In this section, we give the main algorithm that combines

the components presented in Sections IV and V, and analyze

its performance with respect to our original problem P1.

A. Main Algorithm

In Algorithm 2, we formally state the real-time distributed

algorithm for the aggregator-DS system to provide power

balancing service. For presentation simplicity, we focus on

the energy surplus case only.

We now discuss the information required in Algorithm 2

and show that Algorithm 2 can be easily implemented in

4The subgradient algorithm used in [17] reduces to the gradient algorithm
when the dual function is differentiable.

Algorithm 2: Main algorithm: real-time distributed algo-

rithm for power balancing.

begin Aggregator’s algorithm:
Repeat at each time:

1) Observe gt.
2) Broadcast 1s,t.

3) Execute aggregator’s algorithm in Algorithm 1.

begin DS’s algorithm:
Initialize: Ji,0 = ai; Ki,0 = si,0 − βi.

Repeat at each time:

1) Observe pm,t, 1s,t, Ji,t, and Ki,t.

2) Execute DS’s algorithm in Algorithm 1.

3) Update Ji,t and Ki,t based on (13) and (14),

respectively.

practice. In Algorithm 2, the statistical information of the

system is not required, and only instantaneous observations

are needed, which can be obtained either locally or through

simple communication. Specifically, at each time slot t, the

aggregator observes the energy imbalance signal gt, and each

DS unit observes the electricity price pm,t, the indicator of

the energy imbalance signal 1s,t, and the queue backlogs Ji,t
and Ki,t. To initialize Ji,0 and Ki,0 at each DS unit, the

aggregator broadcasts V , cl, and cmax to all DS units at the

initial time. For the aggregator to determine Vmax in (16), the

values of ηi,c, ηi,d, and si,max − si,min − (ηi,c + ηi,d)ri,max

at each DS unit are required. In practice, however, it may be

unnecessary to acquire all such information for determining

Vmax. Note that as argued in Section IV-B the maximum

allowed charging/discharging amount ri,max is much smaller

compared with the energy capacity. Thus, when the battery

has high charging/discharging efficiency, i.e., ηi,c and ηi,d are

close to 1, approximately only the minimum battery capacity

among all DS units is required for the design of Vmax.

B. Boundedness of Energy State

The proposed algorithm in Algorithm 2 is designed for P2,

in which the battery size constraint (4) in P1 is replaced by

the relaxed time average constraint (9). Thus, with {x∗
t ,y

∗
t }, it

is not yet certain whether the resultant si,t violates the battery

size constraint (4), thus becoming infeasible for P1. We now

demonstrate that under the proposed algorithm, si,t in fact

always satisfies (4).

Since the virtual queue Ki,t is designed to be a shifted

version of si,t, to prove the boundedness of si,t, it suffices to

show that Ki,t is restricted within a shifted preferred range. We

first show through the following lemma that, Ki,t is bounded

for any initial value Ki,0.

Lemma 3: For any initial value Ki,0,

1) if gt > 0 and Ki,t > V
(pm,max+cmax)

ηi,c
, x∗

i,t = 0;

2) if gt < 0 and Ki,t < V (pm,min − cmax

ηi,d
), y∗i,t = 0.

Proof: See Appendix E.

Lemma 3 says that, given any Ki,0, for energy surplus, if

Ki,t is greater than the above threshold, the resultant charging

amount is zero, and thus Ki,t+1 cannot be increased at the

next time slot. Similarly, for energy deficit, if Ki,t is less than
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the above threshold, the resultant discharging amount is zero,

and thus Ki,t+1 cannot be decreased at the next time slot.

Therefore, Ki,t is bounded.

Using Lemma 3, we next show that by our designed

initialization, Ki,t is bounded within a shifted preferred range.

Lemma 4: Given Ki,0 = si,0 − βi, where βi is defined

in (15), the queue backlog Ki,t is bounded within [si,min −
βi, si,max − βi] for all time slot t.

Proof: See Appendix F.

Remarks on Choices of βi and Vmax: To track the energy

state si,t, in principle, the shift βi could be any value.

However, as required in Case 2′ of the proof of Lemma 4,

βi should be lower bounded, i.e., βi = si,min + ηi,dri,max −
V (pm,min − cmax

ηi,d
) + ǫ1 for any ǫ1 ≥ 0. Furthermore, as

required in Case 1 of the proof, it is sufficient to set Vmax =

min1≤i≤N

{

si,max−si,min−ηi,dri,max−ǫ1−ǫ2
cmax+pm,max

ηi,c
+ cmax

ηi,d
−pm,min

}

with any ǫ2 > 0.

Finally, to facilitate Case 2 of the proof, we set ǫ1 and ǫ2
to be 0 and ηi,cri,max, respectively, to make Vmax as large as

possible. (As shown in Theorems 2 and 3 below, a larger Vmax

implies better performance by the proposed algorithm.) This

leads to the specific designs as shown in (15) and (16).

By Lemma 4, the boundedness of the energy state si,t is

straightforward, and is given in the following lemma.

Lemma 5: Under the proposed algorithm, the energy state

si,t is bounded within [si,min, si,max] for all time slot t.

C. Optimality Analysis

Denote the long-term system cost under the proposed algo-

rithm as f∗ and that under the optimal solution for P1 as

f opt. Note that the optimal solution may require statistical

information of the system. The optimality of the proposed

algorithm is described in Theorems 2 and 3.

Theorem 2: Suppose that the system state At is i.i.d. over

time.

1) The virtual queues Ji,t and Ki,t are mean rate stable, and

{x∗
t ,y

∗
t } is feasible for P1;

2) f∗ ≤ f opt + B
V

, where B is defined in (18) and V ∈
(0, Vmax].

Proof: See Appendix G.

From Theorem 2, the system cost under the proposed

algorithm is away from the optimum by O(1/V ). Thus, the

larger V , the better the performance of the proposed algorithm.

However, in practice, due to the boundedness of the preferred

energy range, V cannot be arbitrarily large and is upper

bounded by Vmax, whose design rationale is given in the

remarks after Lemma 4.

Based on the definition of Vmax in (16), Vmax increases

with the smallest span of the DS units’ preferred ranges,

i.e., min1≤i≤N{si,max−si,min}. Therefore, roughly speaking,

the performance gap between the proposed algorithm and the

optimum decreases as the smallest battery capacity increases.

Asymptotically, as each DS unit’s battery capacity goes to

infinity, the proposed algorithm achieves the optimum.

We also note that the cost cushion ai increases the per-

formance bound through the constant B. Hence, a smaller ai
is desirable. Combining this with the convergence analysis in

Section V-B, we observe the important role of ai as a tuning

parameter in the trade-off between system performance and

convergence speed.

In Theorem 2, the i.i.d. condition of At can be relaxed to

Markovian, and a similar performance bound can be obtained.

This allows us to design aggregator-DS systems in the case

when the power imbalance amount gt and the electricity price

pm,t are Markovian over time.

Theorem 3: Suppose that the system state At evolves based

on a finite state irreducible and aperiodic Markov chain.

1) The virtual queues Ji,t and Ki,t are mean rate stable, and

{x∗
t ,y

∗
t } is feasible for P1;

2) f∗ ≤ f opt +O(1/V ), where V ∈ (0, Vmax].

Proof: The above results can be proved by expanding the

proof of Theorem 2 using a multi-slot drift technique [13]. We

omit the proof here for brevity.

VII. NUMERICAL ANALYSIS

In the previous section, we have proven the analytical

performance bound and asymptotic optimality of the proposed

algorithm. In this section, we present numerical evaluation of

the algorithm. Since as explained in Section II, the previous

works on power balancing with the distributed aggregator-DS

system, e.g., [25]–[27], study system models that are different

and simpler than ours, they are not applicable for numerical

comparison. Instead, we consider a greedy algorithm as a

benchmark.

A. Simulation Setup

We have developed an aggregator-DS model in Matlab.

Unless otherwise specified, the following parameters are set as

default. The aggregator is connected with N = 150 DS units,

each with energy capacity si,cap = 23 kWh and maximum

charging/discharging rate 6.6 kW (based on the 2012 Ford

Focus Electric). The duration of each time slot is ∆t = 30
seconds. Then, the maximum allowed charging/discharging

amount of each DS unit is ri,max = 6.6∆t
3600 kWh. The

charging and discharging efficiency coefficients are ηi,c = 0.8
and ηi,d = 1.2, respectively. The preferred energy range of

each DS unit is [0.1si,cap, 0.9si,cap], from which the initial

energy state si,0 is uniformly drawn. The degradation cost

functions of the charging/discharging amount are Di,c(x) =

Di,d(x) = x1.5, and the upper bound li,u =
( ri,max

2

)1.5
. The

energy imbalance signal gt is i.i.d. over time and is sampled

uniformly from [−gmax, gmax], where gmax =
∑N

i=1 ri,max.

The unit market electricity price is 7 cents/kWh, which is

the current off-peak electricity price in Ontario [34]. The

external cost functions for clearing energy surplus and energy

deficit are Cs(x) = Cd(x) = 7x1.2. To determine the

charging/discharging amounts of DS units at each time slot

t, we apply the proposed algorithm in Algorithm 2 with

V = Vmax. The cost cushion parameter ai =
Vmaxcl
di,l

by default

for fast convergence.
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TABLE II
NUMBER OF ITERATIONS FOR |gt −

∑N
i=1

xk
i − qk| < 0.01.

µ/µ0 1 10 20 50 100

ai = Vmaxcl/di,l 279 105 85 45 26

ai = Vmaxcl/(4di,l) 964 411 183 131 44

B. Convergence of Distributed Algorithm

In Table II, we show the convergence speed of Algo-

rithm 1 by listing the number of iterations required for

|gt−
∑N

i=1 x
k
i−qk| < 0.01, when the current energy imbalance

signal gt = gmax. From Table II, when the step size µ = µ0,

with the default ai, the algorithm converges within 279 steps;

in contrast, when ai is a quarter of the default value, the

algorithm takes 964 steps to converge as the applied µ0 now

is much smaller. We also observe that the convergence speed

can be significantly improved by increasing µ, indicating the

robustness of the algorithm to the step size design.

C. Comparison with Greedy Algorithm

As a benchmark, we consider a greedy algorithm that

is applied to the same system model as ours but aims to

independently minimize the system cost at each time slot.

Specifically, the charging/discharging amounts of the DS units

under the greedy algorithm is determined by the following

optimization problem at each time slot t.

min
xt,yt

wt

s.t. (5)(6)(7),1s,tDi,c(xi,t) + 1d,tDi,d(yi,t) ≤ li,u, ∀i.
The above problem produces a feasible solution for P1 at each

time t and can be implemented distributively following the

technique in Section V.

In Figs. 2 and 3, we compare the proposed algorithm with

the greedy algorithm over a wide range of parameter values.

In particular, in Fig. 2, we exhibit the time-averaged system

cost vs. the number of participating DS units under various

values of si,max. For all cases, the proposed algorithm achieves

much lower system cost, with cost reduction ranging from

11% to 80%. When the number of DS units increases, the

system cost of both algorithms decreases. For the proposed

algorithm, Fig. 2 indicates that 150 DS units are enough

for the considered power balancing service, while for the

greedy algorithm, more DS units are needed to further cut

down the system cost. Furthermore, when si,max increases, as

opposed to the greedy algorithm which cannot benefit from

the increased energy range, the proposed algorithm exhibits

performance improvement in general.

In Fig. 3, we consider four different values of ∆t and dis-

play the normalized (over ∆t) time-averaged system cost vs.

the ratio gmax/
∑150

i=1 ri,max for different gmax values. For the

proposed algorithm, the system cost grows with ∆t and gmax.

We observe that when the energy imbalance amount is low, the

system cost achieved by the proposed algorithm increases at a

much lower rate than that of the greedy algorithm. When the

energy imbalance amount is high, even though the system cost

achieved by both algorithms increases at nearly the same rate

due to saturation of the DS capacity, the proposed algorithm

still substantially outperforms the greedy algorithm.
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VIII. EXTENSION TO DYNAMIC DS UNITS

We have so far focused on static DS units that are always

connected to the aggregator when providing power balancing

service. The case that involves dynamic DS units, i.e., where

DS units can leave and rejoin the system such as batteries

equipped in electric vehicles, is much more complicated. This

is because a returning DS unit may have an energy state

different from when it left, and this discrepancy complicates

the charging/discharging scheduling to ensure the boundedness

of the energy state over multiple time instances.

To overcome this difficulty, we need to reinitialize the

virtual queue defined in (14) every time a DS unit rejoins

the system, to a properly shifted version of its energy state.

The details of this technique can be found in our previous

study on employing dynamic electric vehicles in power grids

[24]. Similar to the extension from the static case in [23] to the

dynamic case in [24], with some mild assumptions, our current

analysis can be extended to accommodate dynamic DS units
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and reach similar conclusions as those presented in Section

VI.

IX. CONCLUSION AND FUTURE WORK

We have considered a comprehensive aggregator-DS system

model to provide real-time power balancing service to a

power grid. To minimize the long-term system cost, we have

developed a real-time distributed algorithm, by which the

statistics of the system is not required and each DS unit

can determine its own charging and discharging amounts.

The algorithm provably converges quickly and asymptotically

achieves the optimal performance as the DS capacity increases.

Also, a novel cost cushion parameter has been introduced

that tunes the trade-off between system performance and

convergence speed. In simulations, we have compared the

proposed algorithm with a greedy algorithm over a wide range

of parameter values, and demonstrated that the algorithm can

offer substantial performance gains.

In this paper the DS units are assumed to exclusively pro-

vide real-time power balancing service when they participate

in the aggregator-DS system. In particular, their own charging

needs (e.g., charging the battery to a certain level before a

deadline) are not considered, except that the energy state is

ensured to be within a preferred range. In a more general

scenario, the DS units, e.g., batteries in electric vehicles, may

need to conduct self charging while providing power balancing

service. The challenging problem of jointly optimizing self

charging and power balancing remains open and is left for

future research.

APPENDIX A

PROOF OF PROPOSITION 1

Based on the definition of L(Θt), we have

L(Θt+1)− L(Θt) =
1

2

N
∑

i=1

(J2
i,t+1 − J2

i,t +K2
i,t+1 −K2

i,t).

(25)

Using the fact that for any q ≥ 0, b ≥ 0, and a ≥ 0, there is

(max{q − b, 0} + a)2 ≤ q2 + a2 + b2 + 2q(a − b), we can

upper bound J2
i,t+1 − J2

i,t as follows:

J2
i,t+1 − J2

i,t ≤ l̂2i,u + (max{Di,c(ri,max), Di,d(ri,max)}+ ai)
2

+ 2Ji,t [1s,tDi,c(xi,t) + 1d,tDi,d(yi,t)− li,u] .
(26)

By the update equation of Ki,t in (14), K2
i,t+1 −K2

i,t can be

upper bounded by

K2
i,t+1 −K2

i,t ≤ 2Ki,tbi,t + r2i,max. (27)

Imposing the upper bounds (26) (27) on the right hand side

of (25), taking conditional expectation on both sides, and then

adding the term V E[wt|Θt] give the upper bound of the drift-

plus-cost function in Proposition 1.

APPENDIX B

PROOF OF LEMMA 2

The gradient of Gt(λ) is G′
t(λ) = gt −

∑N

i=1 xi,t(λ) −
qt(λ), with xi,t(λ),[(Di,c)

′−1
(V pm,t+λ−Ki,tηi,c

Ji,t

)

]
ri,max

0 and

qt(λ),[(C ′
s)

−1( λ
V
)]gt0 . The second derivative of Gt(λ) when

it exists is

G′′
t (λ) = −

N
∑

i=1

x′
i,t(λ)− q′t(λ) (28)

where x′
i,t(λ) when it exists is

x′

i,t(λ)=











1
Ji,tD

′′

i,c
(xi,t(λ))

, D′

i,c(0)≤
V pm,t+λ−Ki,tηi,c

Ji,t
≤D′

i,c(ri,max)

0, otherwise,

and q′t(λ) when it exists is

q′t(λ) =

{

1
V C′′

s (qt(λ))
, C ′

s(0) ≤ λ
V
≤ C ′

s(gt)

0, otherwise.

Assume that λ1 < λ2. Applying the mean value theorem to

G′
t(·), we have

G′
t(λ1)−G′

t(λ2) = G′′
t (ǫ)(λ1 − λ2), (29)

where ǫ ∈ (λ1, λ2). Using (28) in (29), there is

|G′
t(λ1)−G′

t(λ2)|
= |G′′

t (ǫ)||λ1 − λ2|

=

(

N
∑

i=1

x′
i,t(ǫ) + q′t(ǫ)

)

|λ1 − λ2|

≤ (N + 1)max
{ 1

a1d1,l
, · · · , 1

aNdN,l

,
1

V cl

}

|λ1 − λ2|,

where the conditions C1 and C2 as well as the fact that Ji,t ≥
ai are used to derive the last inequality. When the second

derivative of Gt(λ) does not exist, we can replace the gradient

in (29) by subgradient and the result still holds [35].

APPENDIX C

PROOF OF THEOREM 1

From Theorem 4.4 of [15], we have the following conclu-

sion: if in Algorithm 1 the step size µ = µ0 = 1/ρ, then the

generated sequence {λk} converges to the optimum λ∗
t , and

for any k ≥ 1,

Gt(λ
∗
t )−Gt(λ

k) ≤ 2ρ|λ0 − λ∗
t |2

(k + 1)2
,

where λ0 is the initial value of λ.

By the fact that if a function is Lipschitz continuous for

the Lipschitz constant ρ, then the function is also Lipschitz

continuous for all finite constant ρ′ ≥ ρ, we can easily obtain

Theorem 1 using Theorem 4.4 of [15] for all µ ∈ (0, µ0].
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APPENDIX D

PROOF OF PROPOSITION 2

By the Karush-Kuhn-Tucker (KKT) conditions, at the opti-
mal point of P2(a’), the following optimality conditions hold










Ji,t

V
D′

i,c(0)− pm,t +
Ki,tηi,c

V
−

λ∗

t

V
≥ 0, if x∗

i,t = 0
Ji,t

V
D′

i,c(x
∗

i,t)− pm,t +
Ki,tηi,c

V
−

λ∗

t

V
= 0, if 0 < x∗

i,t < ri,max

Ji,t

V
D′

i,c(ri,max)− pm,t +
Ki,tηi,c

V
−

λ∗

t

V
≤ 0, if x∗

i,t = ri,max.

(30)

Suppose that under the condition of Proposition 2, we have the

contrary, i.e.,
λ∗

t

V
≤ min1≤i≤N{Ji,t

V
D′

i,c(0)− pm,t+
Ki,tηi,c

V
},

and thus x∗
t = 0 from (30). Then we will show that we can find

another solution with all elements zero except the j-th element

equal to ǫ resulting in a strictly smaller objective value, which

is a contradiction. Using the objective function of P2(a’), this

is equivalent to showing

Jj,t
V

Dj,c(ǫ)− pm,tǫ+
Kj,tηj,c

V
ǫ < Cs(gt)− Cs(gt − ǫ).

(31)

By the mean value theorem, from the left hand side of (31),

Jj,t
V

Dj,c(ǫ)− pm,tǫ+
Kj,tηj,c

V
ǫ

= ǫ
[Jj,t
V

D′
j,c(δ1)− pm,t +

Kj,tηj,c
V

]

(32)

where 0 < δ1 < ǫ; from the right hand side of (31), we have

Cs(gt)− Cs(gt − ǫ) = ǫC ′
s(δ2) (33)

where gt−ǫ < δ2 < gt. Using (32) and (33), (31) is equivalent

to

Jj,t
V

D′
j,c(δ1)− pm,t +

Kj,tηj,c
V

< C ′
s(δ2). (34)

(34) is true since we have C ′
s(δ2) > C ′

s(δ1) >
Jj,t

V
D′

j,c(δ1)−
pm,t+

Kj,tηj,c

V
, where the first inequality is due to gt ≫ ǫ and

C ′′
s (·) > 0, and the second inequality is based on the condition

of Proposition 2.

APPENDIX E

PROOF OF LEMMA 3

1) Consider gt > 0. Suppose that when Ki,t >

V
(pm,max+cmax)

ηi,c
, the optimal solution under the proposed

algorithm is x̃t with x̃i,t > 0. Then we show that we can find

another solution x̂t with x̂j,t = x̃j,t, ∀j 6= i, and x̂i,t = 0,

resulting in a strictly smaller objective value, which is a

contradiction.

Using the objective function of P2(a), this is equivalent to

showing that

[

N
∑

j=1

Jj,tDj,c(x̃j,t)− V pm,tx̃j,t +Kj,tηj,cx̃j,t

]

+ V Cs

(

gt −
N
∑

j=1

x̃j,t

)

>
[

N
∑

j 6=i

Jj,tDj,c(x̃j,t)− V pm,tx̃j,t +Kj,tηj,cx̃j,t

]

+ V Cs

(

gt −
N
∑

j=1

x̃j,t + x̃i,t

)

which is equivalent to

Ji,tDi,c(x̃i,t)− V pm,tx̃i,t +Ki,tηi,cx̃i,t

> V
[

Cs

(

gt −
N
∑

j=1

x̃j,t + x̃i,t

)

− Cs

(

gt −
N
∑

j=1

x̃j,t

)

]

= V x̃i,tC
′
s(ǫ) (35)

where (35) is derived by the mean value theorem with ǫ ∈
(gt−

∑N

j=1 x̃j,t, gt−
∑N

j=1 x̃j,t+ x̃i,t). Since Ji,tDi,c(x̃i,t) ≥
0, from (35), it suffices to show that

[Ki,tηi,c − V pm,t − V C ′
s(ǫ)]x̃i,t > 0. (36)

Since x̃i,t > 0, pm,t ≤ pm,max, and C ′
s(ǫ) ≤ cmax, (36) is

true by using the condition that Ki,t >
V (cmax+pm,max)

ηi,c
.

2) Consider gt < 0. Suppose that when Ki,t < V (pm,min−
cmax

ηi,d
), the optimal solution under the proposed algorithm is

ỹt with ỹi,t > 0. Then there is a contradiction since we can

construct another solution ŷt with ŷj,t = ỹj,t, ∀j 6= i, and

ŷi,t = 0, which results in a strictly smaller objective value.

The proof is similar to that in 1) and is omitted here.

APPENDIX F

PROOF OF LEMMA 4

The proof proceeds by induction over time t. The base case

trivially holds. For the inductive step, first consider the upper

bound. Assume that Ki,t ≤ si,max − βi holds at time slot t.
Consider the following two cases.

Case 1: V
(pm,max+cmax)

ηi,c
< Ki,t ≤ si,max−βi. (It is easy to

check that V
(pm,max+cmax)

ηi,c
< si,max − βi since V ≤ Vmax.)

For gt > 0, from Lemma 3, x∗
i,t = 0; therefore, based on the

update equation (14), there is Ki,t+1 = Ki,t ≤ si,max−βi. For

gt < 0, we have Ki,t+1 = Ki,t−ηi,dyi,t ≤ Ki,t ≤ si,max−βi.

Case 2: Ki,t ≤ V
(pm,max+cmax)

ηi,c
. From (14), Ki,t+1 ≤

V
(pm,max+cmax)

ηi,c
+ ηi,cri,max ≤ si,max − βi, where the last

inequality holds since V ≤ Vmax.

We now consider the lower bound. Assume that Ki,t ≥
si,min − βi holds at time slot t. Consider the following two

cases.

Case 1′: si,min − βi ≤ Ki,t < V (pm,min − cmax

ηi,d
). (It is

easy to check that si,min − βi < V (pm,min − cmax

ηi,d
) since

ri,max > 0.) For gt < 0, from Lemma 3, y∗i,t = 0; therefore,

Ki,t+1 = Ki,t ≥ si,min−βi. For gt > 0, from (14), Ki,t+1 =
Ki,t + ηi,cxi,t ≥ Ki,t ≥ si,min − βi.

Case 2′: Ki,t ≥ V (pm,min − cmax

ηi,d
). From (14), Ki,t+1 ≥

V (pm,min − cmax

ηi,d
) − ηi,dri,max ≥ si,min − βi, where the last

inequality holds based on the definition of βi.

APPENDIX G

PROOF OF THEOREM 2

Consider the problem P2, and denote the optimal long-term

system cost for P2 as f̂ . We first prove the following lemma,

which will be used later.
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Lemma 6: For P2, there exists a stationary randomized

regulation allocation solution (xs
t ,y

s
t ) that only depends on the

system state At, and at the same time satisfies the following

conditions:

E[ws
t ] ≤ f̂ , (37)

E[1s,tDi,c(x
s
i,t) + 1d,tDi,d(y

s
i,t)− li,u] ≤ 0, ∀i, (38)

E[bsi,t] = 0, ∀i, (39)

where the expectations are taken over the randomness of the

system and the randomness of (xs
t ,y

s
t ).

Proof: The claims above can be derived from Theo-

rem 4.5 in [13]. In particular, that theorem implies that the

sufficient conditions for the existence of a stationary and

randomized algorithm as described in Lemma 6 are as follows:

first, the system state At is stationary; second, the system

satisfies the boundedness assumptions and the law of large

numbers; and third, P2 is feasible. It is easy to check that P2

is feasible. In addition, since we have assumed that At is i.i.d.

and the variables gt, xi,t, yi,t, and pm,t are bounded, these

sufficient conditions are all met in our problem. Therefore,

the conclusion in Lemma 6 holds.

Since the proposed algorithm minimizes the upper bound

of the drift-plus-cost function at each time, plugging (xs
t ,y

s
t )

into the right hand side of (17) and using (37), (38), and (39)

yields

∆(Θt) + V E[wt|Θt] ≤ B + V f̂ ≤ B + V f opt, (40)

where the last inequality holds since P2 is a relaxed problem

of P1 hence having a smaller objective value.

We first prove the result in 2). Taking expectations over Θt

on both sides of (40) and summing over t ∈ {0, · · · , T − 1}
gives

E[L(ΘT )]− E[L(Θ0)] + V

T−1
∑

t=0

E[wt] ≤ (B + V f opt)T.

(41)

After some arrangement, from (41), there is

1

T

T−1
∑

t=0

E[wt] ≤
B + V f opt

V
+

E[L(Θ0)]

TV
. (42)

Taking T → ∞ gives limT→∞
1
T

∑T−1
t=0 E[wt] ≤ B

V
+

f opt, V ∈ (0, Vmax], which is exactly the conclusion in 2).
We now prove the result in 1). From (41), we have

E[L(ΘT )] ≤ E[L(Θ0)] + [B + V (f opt − fmin)]T, (43)

where fmin, − pm,max

∑N

i=1 ri,max. Using the fact that

E[Ji,T ] ≤
√

E[J2
i,T ] ≤

√

2E[L(ΘT )], from (43) we get

E[Ji,T ] ≤
√

2 (E[L(Θ0)] + [B + V (f opt − fmin)]T ). (44)

Dividing both sides of (44) by T and taking limits gives

limT→∞
E[Ji,T ]

T
= 0. Hence, by Lemma 1, the virtual queue

Ji,t is mean rate stable and constraint (8) holds. Using a

similar argument, we can show that the virtual queue Ki,t is

mean rate stable and constraint (9) holds. Also, since we have

proven in Lemma 5 that the energy state is bounded within

the preferred range, {x∗
t ,y

∗
t } is feasible for P1.
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