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A B S T R A C T

Interest in real-time syndromic surveillance based on social media data has greatly increased in

recent years. The ability to detect disease outbreaks earlier than traditional methods would be

highly useful for public health officials. This paper describes a software system which is built

upon recent developments in machine learning and data processing to achieve this goal. The

system is built from reusable modules integrated into data processing pipelines that are easily

deployable and configurable. It applies deep learning to the problem of classifying health-related

tweets and is able to do so with high accuracy. It has the capability to detect illness outbreaks

from Twitter data and then to build up and display information about these outbreaks, including

relevant news articles, to provide situational awareness. It also provides nowcasting functionality

of current disease levels from previous clinical data combined with Twitter data.

The preliminary results are promising, with the system being able to detect outbreaks of in-

fluenza-like illness symptoms which could then be confirmed by existing official sources. The

Nowcasting module shows that using social media data can improve prediction for multiple

diseases over simply using traditional data sources.

1. Introduction

Interest in syndromic surveillance based on social media data has greatly increased in recent years (Charles-Smith et al., 2015;

Paul et al., 2016). Many more such data sources, such as Twitter, have become available due to the massive growth in social media

usage (Greenwood, Perrin, & Duggan, 2016). In addition the development of distributed and parallel technologies and modern

Machine Learning frameworks have provided a good foundation for real-time data processing (Wu, Zhu, Wu, & Ding, 2014).

This paper is built upon a flurry of recent work in the field of syndromic surveillance through social media. The publication of

Google Flu Trends (GFT) in 2009 (Ginsberg et al., 2009) was a landmark in digital disease detection. GFT demonstrated that data not

collected for public health purposes could be a useful addition to traditional health data analysis. In recent years social media,

especially Twitter data, has been used to positive effect for: disease tracking (Collier, Son, & Nguyen, 2011; Culotta, 2010; Lamb,

Paul, & Dredze, 2013; Lampos & Cristianini, 2010; Lampos, De Bie, & Cristianini, 2010), outbreak detection (Aramaki, Maskawa, &
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Morita, 2011; Bodnar & Salathé, 2013; Diaz-Aviles, Stewart, Velasco, Denecke, & Nejdl, 2012; Li & Cardie, 2013) and predicting the

likelihood of individuals becoming ill (Sadilek, Kautz, & Silenzio, 2012). News media has also been used to give early warning of

increased disease activity before official sources have reported (Brownstein, Freifeld, Reis, & Mandl, 2008).

This project presents a software system, SENTINEL, which extends the previous version of the system (DEFENDER

(Thapen, Simmie, Hankin, & Gillard, 2016)) by focusing on real-time processing and improved health classification and denoising

using deep neural networks.

The system ingests social, news and clinical sources and internally performs data extraction, transformation, aggregation and

statistical analysis. We provide three main disease surveillance applications:

• Early warning detection (EWD): To provide advance warning of potential health events.

• Situational awareness: To provide contextual information about potential health-related events that may have occurred.

• Nowcasting: To provide predictions of disease levels which incorporate data from current social media activity.

Early warning is provided by running a bio-surveillance outbreak detection algorithm over the time-series of symptomatic tweets

for each location. This detects possible outbreak events. Tweet ranking and retrieval of relevant news articles provide situational

awareness for each detected event. Nowcasting is a type of forecasting where one attempts to predict the current but still unknown

level of a time series (Lampos & Cristianini, 2012). For example, CDC notifiable disease reports2 are published with a one to two week

lag time, so providing an estimate of the current disease level before a report is released can be valuable (Eysenbach, 2009). We

employ a model that combines previous CDC disease data and Twitter data to improve nowcasting performance over a model solely

incorporating the CDC data.

Overall, the current system achieves a better performance than the previous version, while processing all the data in real-time. It

processes an average of 1.8 million tweets per day in normal usage on a single machine, and has the ability to process 90 million per

day if more data is available.

2. Related work

When looking at event detection using Twitter various approaches have been attempted. These have included searching for spatial

clusters in tweets (Nagar et al., 2014; Walther & Kaisser, 2013), leveraging the social network structure (Aggarwal & Subbian, 2012),

analysing the patterns of communication activity (Chierichetti, Kleinberg, Kumar, Mahdian, & Pandey, 2014) and identifying sig-

nificant keywords by their spatial signature(Abdelhaq, Sengstock, & Gertz, 2013). More recently interesting approaches have been

described for multi-scale event detection of spatio-temporal events using a Wavelet transform (Dong, Mavroeidis, Calabrese, &

Frossard, 2015) and for fusing data from multiple social networks in order to increase confidence in event detection (Peña-

Araya, Quezada, Poblete, & Parra, 2017). Eyewitness (Krumm & Horvitz, 2015) is another event detection system which detects

anomalies in time-series of tweets from localised areas at differing temporal and spatial resolutions.

The idea of real-time Twitter data processing has been exploited in the past for Earthquake Reporting (Sakaki, Okazaki, & Matsuo,

2013). This system treated users mentioning earthquakes as sensors, using a particle filter to determine the earthquake epicentre. It

was tested against notifications delivered by the Japan Meteorological Agency (JMA), and managed to warn users faster than the

JMA’s reporting systems. Jasmine (Watanabe, Ochi, Okabe, & Onai, 2011) is another system that focuses on local event detection

based on geolocated information propagated on microblogging platforms. Their approach focuses on real-time and location dis-

ambiguation for tweets without any location information. Recently the Indiana University Network Science Institute has developed

OSoMe (Davis et al., 2016), an open analytics platform designed to facilitate computational social science. This is a distributed real-

time processing system built on Apache Hadoop and HBase that leverages a collection of over 70 billion tweets. It provides apps for

displaying temporal and geographical diffusion of information across the social network, along with visualisations of the network.

Several software systems which detect events from Twitter and provide visualisation and situational awareness capabilities have

been created in recent years. TwitInfo (Marcus et al., 2011) identifies events by finding spikes in the number of tweets mentioning

keywords and provides timelines and maps for visualisation. LeadLine (Dou, Wang, Skau, Ribarsky, & Zhou, 2012) provides similar

visualisation capabilities while incorporating topic modelling and named entity recognition. Twitris (Sheth et al., 2014) is a com-

prehensive platform with real-time processing built on Apache Storm, designed to enable spatio-temporal analysis of events on

Twitter, including sentiment analysis, incorporation of associated news and Wikipedia content, friend-follower network information

and sentiment analysis. Systems focused on disease include Lee, Agrawal, and Choudhary (2013), and Ji, Chun, and Geller (2012),

both of which use simple keyword based techniques to identify health-related tweets from Twitter’s streaming API and display geo-

temporal trends visually. The HealthTweet (Dredze, Cheng, Paul, & Broniatowski, 2014) system extends these by using a statistical

classifier to identify those tweets which are truly health-related.

In contrast to these systems SENTINEL examines multiple symptoms and diseases, and uses a more sophisticated classifier using

deep neural networks to identify those tweets which are truly health-related. It is built in a modular way and linked together using

Apache Kafka (Kleppmann & Kreps, 2015), a publish-subscribe scalable messaging service which allows for an extremely high

throughput and low latency.

When looking at nowcasting of disease data using social media various approaches have been employed. Paul, Dredze, and

2 Please refer to Section 4.3 for a full description of this CDC data.
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Broniatowski (2014) have shown that including Twitter data improves nowcasting performance to a greater degree than Google Flu

Trends data. They focus on influenza-like illness (ILI) data from the CDC, using a linear autoregressive model and incorporating a

weekly estimate of the influenza rate derived from Twitter data using the software developed by Lamb et al. (2013). Other studies

applying Twitter data to influenza forecasting or nowcasting include Culotta (2010), Li and Cardie (2013), Sadilek, Kautz, and

Silenzio (2012), and Santos and Matos (2014), and indeed a literature review on this topic has identified influenza as by far the most

popular disease analysed using social media (Charles-Smith et al., 2015). Our approach applies similar statistical techniques to these,

but we extend from influenza to a range of other illnesses reported by the CDC. Another study combining multiple sources of data for

influenza nowcasting is Santillana et al. (2015), who employ a variety of statistical machine learning techniques in order to achieve

excellent results. Other conditions that have been studied using Twitter data include allergies (Lee, Agrawal, & Choudhary, 2015) and

gastro-intestinal disorders (Sadilek, Brennan, Kautz, & Silenzio, 2013).

3. System overview

SENTINEL ingests data from multiple sources in order to provide its disease surveillance applications. Fig. 1 shows a simplified

work-flow of the transformation and fusion of these different data sources, and this section gives an overview of the system’s

operation. All of the components performing these data transformations are fully detailed in Section 6.

SENTINEL’s Event Detection functionality monitors the Twitter stream, classifying those tweets which are self-reports of illness

and storing them. It then creates a daily count of tweets mentioning each monitored symptom for each US state. The CDC’s Early

Aberration Reporting System (EARS) (Hutwagner, Thompson, Seeman, & Treadwell, 2003) algorithm is used to detect unusual spikes

in these daily symptom time-series. Each such spike leads to the generation of an event in the system, which can then be enriched

with more data to provide better situational awareness. The news feed processes articles, saving them if they are health-related and

tagging them with mentioned symptoms. Those articles which match the location, symptom and date of an event are associated with

it.

The Nowcasting functionality ingests disease data from the CDC, which is provided weekly for each US state, but with a 1–2 week

lag. For each disease and state it then creates a weekly nowcast using the previous CDC data combined with the additional regressors

provided by the Twitter symptom data.

The outputs of the Event Detection and Nowcasting functionality, namely the generated events and the nowcasting predictions,

are then shown to the user in the Front-end UI, which runs as a Javascript app.

4. Data acquisition & management

The most important data source used by SENTINEL is Twitter data. It is used as the basis of the Event Detection system as well as

being an input to the Nowcasting algorithm. The Nowcasting algorithm combines the previous weeks’ CDC data with the up to date

daily aggregated counts of Twitter data to forecast the current level of disease, while the News data is linked to the events and

displayed in the Front-end to increase confidence in the accuracy of the information.

4.1. Twitter data

The primary data source for SENTINEL is social media, specifically US Twitter data, because of its desired characteristics:

• Timely: tweets are received within seconds of their creation.

• High coverage: 24% of online adults in the US use Twitter, equating to 21% of the US population Greenwood et al. (2016).

• Publicly available: tweets for geographical areas or filtered by keyword sets are available without requiring explicit permission

from the post author unless the author has flagged their account as private. Around 5% of users do so Liu, Kliman-Silver, and

Mislove (2014), meaning that the vast majority of tweets are available for research.

• Localised: tweets can provide a fine-grained location estimate for an individual if they have opted into that service. Leetaru, Wang,

Fig. 1. A data integration diagram, showing the transformation process happening within SENTINEL.
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Cao, Padmanabhan, and Shook (2013) found that 1.6 percent of users opt in to geo-locating their Twitter posts. Sloan and

Morgan (2015) found similar results for the UK.

Although the benefits of using social media data for this purpose are substantial there are several disadvantages to using this non-

curated source:

• Noise: tweets referring to potential illness terms may have nothing to do with health. For example high levels of fever activity may

be caused by posts containing the term “Bieber Fever”.

• Low confidence: health related Twitter data is of varying quality. For example, a user may report that they have the flu when

actually they have a common cold or people may be discussing a disease such as scarlet fever due to increased media hype.

• Demographic bias: A recent demographic breakdown of American Twitter users is provided in Table 1. The strongest bias is that

Twitter is used more commonly by younger people, with 36% of online 18–29 year olds using the platform as opposed to only 10%

of those in the 65+ bracket. It also shows that the college educated and those with higher earnings are somewhat more likely to

be Twitter users.

All of these disadvantages are addressable. To eliminate the noise problem a health related tweet classifier has been implemented

into the system pipeline, only storing count data for tweets related to health. This classifier also partially addresses the second

problem, since we attempt to single out only those tweets which are self-reports of a symptom of illness. The classifier is discussed in

more detail in Section 6.1.4. The principal way in which we address the low confidence problem is by including additional data from

news sources. News articles about a symptomatic event may confer more confidence that a Twitter event is a real health concern, or

the temporal dynamics of the event may suggest that the story broke first in the media and is now being propagated through social

media as a result. The bias disadvantage is partially resolved by the fusion of multiple data sources. Concerns about demographic bias

are important, but these do also apply to many other currently used methods of syndromic surveillance. Participatory studies such as

Influenzanet (Guerrisi et al., 2016) only capture a self-selected sample of those who sign up. People who do not visit doctors will not

appear in clinical reports such as CDC data, and Google Flu Trends (Ginsberg et al., 2009) only observes those who use this search

engine. A diversity of methods is required to capture all segments of the population. As long as the demographic bias of the Twitter

data towards younger, richer, college educated individuals is understood from studies such as the Pew report cited above, information

derived from it can be useful in a clinical context.

Tweets for the system are collected via Twitter’s live streaming API, using a geographical bounding box encompassing the

contiguous 48 US states. We use Twitter’s hosebird HTTP streaming library to connect to the API.

4.2. News data

News data is used by SENTINEL for a different purpose than the social media data. Unlike systems such as HealthMap

(Brownstein et al., 2008) news reports are not mined independently for health outbreaks. The articles are instead used as a secondary

source to add or remove confidence from social media events. Our methodology for linking social media and news data together is

detailed in Section 6.2.3.

News data is collected on three different levels:

• World health related news sources, such as ProMed and the World Health Organization News letter. These sources are not

localized to the US, but most of their articles and alerts provide the location of the article as part of the RSS metadata information.

• US National news sources, such as CNN, NY Times, USA Today, Chicago Tribune, Reuters, Wall Street Journal. Most of these

websites provide a separate health related category on their RSS Feed. In total, 19 national news sources are covered, providing 51

RSS feeds.

• US Regional and State level news sources. These RSS feeds were automatically crawled from various community-based platforms

and grouped by the states they cover. In total, 16,803 RSS Feeds are crawled.

Table 1

Demographic breakdown of Twitter users in the United States as of April 2016 (Greenwood et al., 2016). Figures shown are the percentage of online

adults in each category who use Twitter.

Category Subcategory Users (%) Category Subcategory Users (%)

All online adults 24 Gender Men 24

Women 25

Age 18–29 36 Income < $30K/year 23

30–49 23 $30K–$49,999 18

50–64 21 $50K–$74,999 28

65+ 10 $75K+ 30

Education High school or less 20 Living area Urban 26

Some college 25 Suburban 24

College+ 29 Rural 24
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4.3. CDC data

The CDC data is used by SENTINEL as an input to the Nowcasting functionality and also as a source of ground truth for evaluation.

The main source of official data comes from the Morbidity and Mortality Weekly Reports (MMWR) provided by the National

Notifiable Diseases Surveillance System (NNDSS) as part of the Centers for Disease Control and Prevention (CDC) System.3 The data is

published on a weekly basis, with 1 week delay. The reports are available through the Open Data initiative in the US Government, via

the newly created Socrata Open Data API (SODA). These reports provide weekly state wide counts of individuals presenting to

clinicians with one of the notifiable diseases.

Even though the reports are freely available in various formats (JSON, CSV, etc.), the data have not been normalized or cleaned

up, making them difficult to use with the Nowcasting algorithms. Therefore a few simple techniques to clean, remove duplicates and

normalize the data have been employed.

The CDC Influenza (Flu) reports are not published by the SODA API. These can be downloaded manually from the FluView app,

consisting of laboratory confirmed influenza hospitalizations, available from the Emerging Infections Program (EIP) in 10 US states

and Influenza Hospitalization Surveillance Project (IHSP) covering 8 US states. Unfortunately, only California, Colorado, Connecticut,

Georgia, Maryland, Minnesota, New Mexico, Oregon and Tennessee full influenza reports were available from EIP during the

2016–2017 season, and Michigan, Ohio and Utah from IHSP. The other 36 contiguous states do not have these reports in a stan-

dardized (easy to process) format.

During the detailed event evaluation, some of the events were validated manually using reports available on the state level, in

different formats, without having access to the raw data. These are recovered from the Weekly US Influenza Surveillance Reports

(https://www.cdc.gov/flu/weekly/).

The weekly counts of individuals affected by a notifiable disease obtained from official data sources are henceforth referred to as

‘CDC counts’.

4.4. Data characteristics

As of the time this paper was produced the following amount of data has been collected (between 20 June 2016 and 02 March

2017):

• 466,896,997 tweets, approximately 1.8 million per day on average, with peak days seeing 2.2 million tweets received.

• 2,669,235 news articles, around 18,000 daily on a regular month, 40,000 during the period of the US presidential election

• 49 CDC reports4 were collected on a weekly basis (52 weeks) for 54 US locations.5

The CDC Data is published on a weekly basis and for the scope of our work the collection started in the beginning of 2016. We

carried out all evaluations on the above June-March time period where all of our data overlapped. Table 2 shows the average and

maximum number of confirmed cases for specific diseases retrieved for all US contiguous states. The CDC published a list of probable

cases for some diseases, plus subsets for various age ranges and variants. The full list of diseases used by our Nowcasting model is

available in Table A.6.

The only exception to the CDC data collection protocol is Influenza due to its seasonality: it starts in week 40 and ends in week 17

of the next year. Moreover, the data is published only for 12 US states: California, Colorado, Connecticut, Georgia, Maryland,

Minnesota, New Mexico, Oregon, Tennessee, Michigan, Ohio and Utah. All the missing reports for Influenza, mainly outside the data

collection periods, were assumed to be equal to zero.

5. System architecture

The system comprises a back-end architecture that ingests tweets and other data sources and processes them, and a web front-end

to display the results. The system architecture uses a data centred approach, built around lock-free pipelines with reusable com-

ponents that are combined to transform the input into a desirable format. This design allows each component to be simple and

efficient. Due to the large amounts of data and multiple processing steps involved in the system, many tasks are run in the background

rather than at user request.

The back-end engine is composed of various data processing pipelines interfacing with the communication and integration library

(Apache Kafka) and various storage engines. Inputs to the back-end engine are from the Twitter API, RSS feeds of news sites and the

CDC SODA API. The back-end then outputs into a front-end data store (PostgreSQL). The front-end runs as an HTML5 and React.js

JavaScript app. Fig. 2 shows the interaction between various components of the system, also focusing on the processing schedule for

each pipeline. There are three processing types for the SENTINEL data processing pipeline: real-time, daily and weekly. Real-time

data is collected and processed within seconds or less of its conception. The scheduled processing runs daily or weekly, depending on

the publishing patterns of the data sources.

3 https://www.cdc.gov/mmwr/index.html.
4 The 49 CDC reports include 32 distinct diseases and 17 reports of variants of these diseases.
5 The CDC publishes reports for the 53 US states and territories including Guam, Puerto Rico and US Virgin Islands. An additional report for the whole country.
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The processing pipelines split a complex problem into smaller, more manageable parts. These increase the re-usability of these

components, some with different parameters or models. One such example is the Text Processing component, used both in the Twitter

and News pipelines. The Health Classifier component runs the same code in both pipelines, but the underlying models and parameters

are different.

The data processing architecture is stateless, allowing an elastic configuration of resources, by adding or removing components

based on demand. This is one of the key roles of Apache Kafka which provides a watermark feature for all message queues, given by

each topic and subscriber group combination. Components within the same group will have the message id load balancing feature

active.

Dealing with heterogeneous data sources in an optimal way is always difficult (Halevy, Rajaraman, & Ordille, 2006). Storing the

data without a major impact on performance, both on update and retrieval, is sometimes very complex. For this system, we use

multiple storage engines and strategies, each tailored to specific requirements. Data in numeric tabular formats are stored in Post-

greSQL and text documents are inserted into an Elastic Search Index. This offers major benefits on the query strategies available, such

as retrieving similar documents. The processing queues are stored by Kafka to allow better load balancing and reply strategies.

In terms of performance, the system regularly processes 1.8 million tweets and 18,000 news articles per day. At its peak, when re-

processing all data from scratch, the system achieved a top performance of approximately 90 million tweets per day on a single machine.

Table 2

Statistics of CDC confirmed cases for specific diseases.

Disease Confirmed cases Disease Confirmed cases

Avg. Max. Avg. Max.

Babesiosis 0.36 72 Campylobacteriosis 17.13 770

Chlamydia Trachomatis Infection 513.14 18,367 Coccidioidomycosis 5.21 359

Cryptosporidiosis 3.44 391 Dengue 0.00 2

Giardiasis 4.10 246 Gonorrhea 154.71 6,088

Haemophilus Influenzae Invasive 1.40 107 Hepatitis 0.53 52

Invasive Pneumococcal Disease 5.53 305 Legionellosis 1.72 117

Lyme Disease 6.54 635 Malaria 0.46 43

Meningococcal Disease 0.10 10 Mumps 1.50 216

Pertussis 4.25 205 Rabies Animal 1.15 75

Rubella 0.00 2 Salmonellosis 13.16 731

Shiga Toxin 1.46 113 Shigellosis 4.83 294

Spotted Fever 0.56 110 Syphilis 3.41 151

Tetanus 0.01 2 Varicella 2.62 123

Vibriosis 0.35 33 West Nile 0.03 13

*Influenza 219.69 6,580

Fig. 2. System architecture.
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6. Back-end: components and algorithms

Splitting the pipelines into smaller components ensures that each one is manageable and has a single responsibility. The pro-

cessing is split into the Twitter and News Processing Pipelines, the Event Detection Pipeline and the Nowcasting pipeline. This section

details each of the components in the system.

6.1. Twitter and news processing pipelines

The Twitter and News Processing Pipelines share most of their components, with the exception that the News pipeline does not

require the Location Resolver or Aggregator components. The other difference between the pipelines is in the underlying models and

parameters, which are adapted to each domain. Both pipelines ingest textual data, pre-process it and then tag it with metadata such as

location or detected symptoms. They then determine if the text is health-related, and if so store it. In addition the Twitter pipeline

aggregates the data by symptom, date and location to provide time-series data which can be fed into the Event Detection and

Nowcasting pipelines.

6.1.1. Location resolver

The Location Resolver attempts to resolve each tweet’s location metadata to a uniform format. In this version of the system, an

assumption has been made that the location metadata is correct and validated by Twitter.6 Nevertheless, depending on the user’s

privacy settings, the location can be very precise as the exact address (e.g. Mitchell Street, Milwaukee, WI, USA), state or a Point of

Interest (POI) (e.g. Manhattan or Statue of Liberty). In all these cases the bounding box of the location is provided by the API. The

Location Resolver attempts to translate the string provided in Twitter’s metadata into a city and state code. When not possible, (i.e.

for a POI), the bounding box of the objective is checked against the state (or city) border using well known city bounding box

databases.7

6.1.2. Text processing

This component converts raw text into easily processable word tokens suitable for use by our machine learning algorithms. We

pre-process the text to:

1. Remove links, email addresses and mentions.

2. Translate html entities (e.g. &nbsp; becomes the space character).

3. Translate emojis and emoticons into their name, according to a dictionary of well-known web emoji (emoticon, n.d.) and ASCII

emoticons (gemoji, n.d.).

4. Quoted words are unquoted and prefixed with quote_ (For example *cough* and “cough” are replaced with quote_cough). This was

implemented because words quoted in this way often denote sarcasm.

5. Hashtags are split into the individual words, by applying two different strategies:

(a) For hashtags written in Camel-Case scripting notation, the words are split according to the case rules.

(b) Otherwise a prefix-based space prediction algorithm (Aho-Corasick (Aho & Corasick, 1975)) is used to split the hashtag into

the minimum possible number of words.

6. All punctuation and excess spaces are removed. Finally, text is converted to lower case.

The semantic hashtag splitting task is the most complex text processing step and has been a research focus in itself (Bansal, Bansal, &

Varma, 2015). In our work the problem is simplified since the hashtags are not used directly for the event tracking, but are split into

their constituent words and added to the processed text. The Aho–Corasick (Aho & Corasick, 1975) word splitting algorithm was

chosen due to its speed in real-time systems (Tumeo, Villa, & Chavarria-Miranda, 2012). This algorithm is biased towards prefixes

that form valid longer words when parsing is ambiguous (e.g. superbowl will be parsed as a single valid word instead of superb owl). In

practice we found this to be an advantage since these longer words better captured the intended semantics of the hashtags.

6.1.3. Assigning symptoms

In order to determine which tweets and articles show symptoms of illness we initially employ a keyword matching technique. The

process of building up the keyword set is described in a previous work by the authors (Thapen, Simmie, & Hankin, 2016). It is based

on a combination of the Freebase (Bollacker, Evans, Paritosh, Sturge, & Taylor, 2008) ontology’s /medicine/symptom tag (Freebase

has subsequently been shut down so this is no longer generally available), symptom terms found on the CDC website8 and manual

revision which results in a group of keywords describing each symptom (including common aliases and synonyms for these words). In

this work we further enriched these synonym lists by using the word embeddings trained on the Twitter data (described below). For

each symptom keyword we generated a list of the 10 closest words in the embedding space by cosine similarity, and manually added

6When using a location based filter, the Twitter Firehose API streams only the tweets containing location information.
7 The state bounding boxes were extracted from http://www.mapdevelopers.com/ and https://www.openstreetmap.org/.
8 www.cdc.gov and in particular the specific symptom pages such as: Influenza (cdc.gov/flu/consumer/symptoms.html), Campylobacter (cdc.gov/campylobacter/

symptoms.html), E. Coli (cdc.gov/ecoli/ecoli-symptoms.html), etc.
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those that were appropriate synonyms. The final symptom list contains 38 different symptoms, each with an average of 27 synonyms.

Each tweet and article is tagged with any symptoms that match any word in the text. The machine learning classifier is then

responsible for determining whether text tagged with symptoms is actually health-related or is using these words in non health-

related contexts.

6.1.4. Machine learning classification

We employ Machine Learning classifiers to identify those tweets and news articles which are genuinely health-related. The

keyword matching technique employed using our symptom keywords throws up many tweets and articles which use other senses of

the symptom words. For example the term ‘headache’ can easily crop up in many non health-related contexts. Only health-related

tweets and news articles are stored in our databases.

Previous studies in this area have used methods such as Multinomial Naïve Bayes (Lee et al., 2015; Santos & Matos, 2014) and

SVMs (Dredze et al., 2014) to identify health-related tweets. In recent years Deep Neural Networks (DNNs) have set new benchmarks

in text classification (Kim, 2014) due to their ability to learn complex representations from the textual data. To test their effectiveness

in the health classification task on Twitter we implemented two DNN models, a Convolutional Neural Network (CNN) as in

Kim (2014) and a Long Short Term Memory Network (LSTM) (Hochreiter & Schmidhuber, 1997), which is a type of Recurrent Neural

Network (RNN). These DNNs were implemented using TensorFlow (Abadi et al., 2016), a software library widely used and well

supported within the machine learning community. We also implemented an SVM model using the LibShortText toolkit (Yu, Ho,

Juan, & Lin, 2013) and a Multinomial Naïve Bayes model using Scikit-learn (Pedregosa et al., 2011) to serve as baselines, both using

TF-IDF (Sparck Jones, 1972) feature vectors.

An advantage of DNNs is their ability to leverage unlabelled data as well as labelled data to aid in classification (Mikolov, Chen,

Corrado, & Dean, 2013). It is time-consuming to manually annotate more than a few thousand tweets, but easy to collect many

millions of unlabelled tweets. Word embeddings such as GloVe (Pennington, Socher, & Manning, 2014) learn vector representations

of words from large corpora of text utilising the distributional hypothesis that similar words will appear in similar contexts. In these

vector representations similar words should have similar vectors. Using these word embeddings as inputs to neural network models

instead of simpler one-hot representations of words has been shown to increase performance on a variety of natural language

processing tasks (Turian, Ratinov, & Bengio, 2010). In particular they allow machine learning models to generalise more effectively

beyond their limited number of training examples, since similar words not seen in these examples should produce similar classifier

outcomes. We experimented with the Glove (Pennington et al., 2014) and FastText (Bojanowski, Grave, Joulin, & Mikolov, 2016)

techniques for generating word embeddings, and present our results in Section 8.1.

In order to train our machine learning classifiers we selected 9353 tweets for manual annotation using a stratified sampling

method, attempting to select 10 tweets for each of our 1026 symptom keywords (or as many as available if 10 were not present in our

dataset.). These were then annotated as being health-related if they were an instance of a user self-reporting an illness, and non-

health related otherwise. Hence a tweet merely discussing illness, such as referring to a flu vaccination campaign, was treated as non

health-related for our purposes. 29.3% of this training set were found to be health-related. To account for this imbalance, we ensured

that each mini-batch during training was sampled to contain equal numbers of health-related and non health-related tweets. For the

news classifier we employed a different approach to annotation, using a distant supervision method. We took a sample of 5761

articles equally split between those in a health-related RSS feed and those from general feeds. Those articles taken from health feeds

were labelled health-related for training purposes, and those from general feeds non-health related.

Our CNN uses 128 filters that act on 3 words, 128 filters that act on 4 words and 128 filters that act on 5 words (parameters

chosen for their success in Kim, 2014). This produces a total of 384 features which are fed into a final logistic regression function

which produces the final classification result. Our RNN uses two LSTM layers, the first of 128 neurons and the second of 256. For

regularisation we use dropout on both models with a probability of 0.5, and for the CNN an additional L2 regularisation term with a

factor of 0.01. When training word vectors on our Twitter corpus we trained 300 dimensional models on 269,544,449 tweets. Our

models were trained on a server running Ubuntu Linux 16.10, with a 48 core CPU, 256GB of RAM and 2 NVidia 1060 GPU cards.

The details of the training and test regimen used are presented in the evaluation in Section 8.1.

6.1.5. Aggregator

The Aggregator is a real-time batch processing component. Its input is a stream of the health-related tweets identified by the

Machine Learning Classifier and is made up of the original tweet text, the publication date, location and detected symptoms. The

algorithm counts the tweets matching each symptom in a given time window, for the specific location. The date, symptom and

location will produce a unique aggregation key, used by our event tracking components.

In our current experiments, the time window is one day, but this could be easily adjusted to other frequencies, such as hourly or

every 5 minutes, if needed. Each tweet is counted for every detected symptom, when multiple symptoms are considered and at city,

state and country level. The Aggregator publishes a database update for the new counts and a notification event when an update is

available, which all the updated aggregation keys. The aggregated output is used by the event detection algorithm.

6.2. Event detection pipeline

The Event Detection Pipeline ingests the aggregated tweet counts and executes the EARS algorithm to detect relevant events. Each

event is then processed to determine the most relevant tweets related to it. Relevant news articles are also linked to each event.

O. Șerban et al. Information Processing and Management 56 (2019) 1166–1184

1173



6.2.1. Event detection

The Event Detection module uses time-series of symptom count data generated by the Aggregator to create possible outbreak

events. It leverages considerable existing syndromic surveillance research by utilising an algorithm designed and developed by the

CDC. The primary surveillance algorithm used is EARS (Hutwagner et al., 2003), specifically the C2 and C3 variants of this technique.

Details of our adaptation of EARS can be found in an earlier work by the authors (Thapen et al., 2016). One change that we made for

the SENTINEL system was to implement our own version of the algorithm in Java to streamline our software stack by reducing the

number of language dependencies.

6.2.2. Situational awareness

Once an event has been detected, the event data needs to be enriched with more details useful for a Situational Awareness tool.

Firstly, the set of tweets that make up the event are processed. Stop words are removed, and then TF-IDF vectors are generated for all

terms remaining. TF-IDF is a numerical statistic that is intended to reflect how important a word is to a document in a collection or

corpus (Sparck Jones, 1972). The TF-IDF value increases proportionally to the number of times a word appears in the document, but

is offset by the frequency of the word in the corpus, which helps to adjust for the fact that some words appear more frequently in

general. A document such as a tweet can be represented by a TF-IDF vector, which contains the TF-IDF value for every word in the

document.

We generate a word cloud to provide an overview of the tweets in the event. Words in the word cloud are sized according to their

raw term frequency in the tweet corpus. Another overview is provided by the selection of the most relevant tweets, using a ranking

method described in Thapen et al. (2016) which is similar to that of Zubiaga, Spina, Amigó, and Gonzalo (2012). It involves ranking

the tweets by their cosine similarity to the mean vector of the event corpus (using TF-IDF vector representations). The top five tweets

ranked by this measure are returned for presentation to the user.

6.2.3. News linking

News articles are linked in to the event if they are health-related and share a symptom, location and were published within two

days of the event. The date of the article is taken to be the date on which it was published, and the article text is scanned using our

symptom keywords to obtain a keyword match and assign mentioned symptoms. Articles from local newspapers are assigned a

location of the US state in which the newspaper operates, whereas national newspaper articles are taken to match any state location.

The linked news articles are then displayed to the user in a list in the front-end UI.

6.3. Nowcasting

The Nowcasting pipeline uses LASSO (Least Absolute Shrinkage and Selection Operator) to make its predictions. LASSO is a

regression analysis method that performs both variable selection and regularization in order to enhance the prediction accuracy and

interpretability of the statistical model it produces. It was introduced by Robert Tibshirani in 1996 based on Leo Breimans

Nonnegative Garrote (Tibshirani, 1996).

In the previous work (DEFENDER (Thapen et al., 2016)) the Nowcasting module used a Mean Absolute Error (MAE) on a cross-

validation window of 4 time periods (over 28 days for training).

The previous work dealt with a limited number of symptoms and diseases, whereas for SENTINEL there are a larger number of

variables to consider. For this scenario we found that LASSO offered comparable accuracy with much improved performance, training

in several minutes as opposed to several hours for the prior method.

First the weeks where we have both CDC data and Twitter data are selected, and the Twitter data is aggregated into weekly counts

for each symptom (from the daily). We take 8 weeks as the minimum training set, so that nowcasts can start to be produced on the 9th

week from the start of the coincident data. We define the first week where we have coincident data as t0. For each CDC disease the

predictions for week tn are made as follows:

• Take the US-wide time series of all Twitter symptoms from t0... −tn 1 as regressors.

• Take the CDC counts from t0... −tn 1 as the ground truth.

• Feed these into the LASSO model for training.

• This will output the Twitter symptom coefficients y1... yn that best fit the model, shrinking most of them to 0.

• Next for each state, take the CDC counts t0... −tn 1 for that state, and the Twitter symptom time series y1... yn for the same times for

that state. Train a LASSO state-specific model using this data.

• Now use this model to predict the CDC count for tn using the Twitter counts for tn as regressors.

Selecting the coefficients is done on the US-wide data as this provides the model with the largest volume of data to work with,

which should select the best model and be less prone to over-fitting.

7. Front-end: SENTINEL app

The front-end UI is designed as an Early Warning Detection (EWD) and Situational Awareness system, where the user can interact

with the data and filter the targeted events. The whole system and UI is not meant to work independently of the user, but aid them in

the decision making process and provide a support for data-driven decisions. Fig. 3 shows the list of available events, along some
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basic data, that can be used for filtering. The number of users, tweets and MAD (Median Absolute Deviation) provide a measure of

confidence in the detected events. MAD was chosen as a robust statistic for determining the strength of relative spikes in count-based

time series. It can be interpreted similarly to the standard deviation, but is more robust to outliers and non-normal data distributions.

The reasoning behind this choice is more fully explored in a previous work by the authors (Thapen et al., 2016).

Figs. 4 and 5 show the Situational Awareness screen and put the event into context, by compiling a list of important details related

to the event data: such as the hashtags used in event tweets, the list of all tweets, the list of tweets found to be most relevant and the

linked news.

Fig. 3. The event list shown in the system.

Fig. 4. The Situational Awareness page in the system - top half.
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The Nowcasting screen, shown in Fig. 6, presents the predictions made for a specific disease, based on existing CDC data and

detected symptom-based counts. The data can be navigated by date, location and disease.

8. Evaluation

SENTINEL outputs a range of results, so multiple evaluation protocols had to be employed:

1. Classifier evaluation: testing the efficacy of our Machine Learning models by evaluating their performance on human annotated

data;

2. Evaluation of the EWD: performed to assess the accuracy of the outbreak detection algorithm against existing data sources;

3. Nowcasting model evaluation: tests the accuracy of the prediction against the CDC Data.

Fig. 5. The Situational Awareness page in the system - bottom half.

Fig. 6. The Nowcasting screen showing predictions for Gonorrhoea, in California on week 12 (2017).
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8.1. Classifier evaluation

For the classification evaluation, accuracy and F1 were employed as standard measures since they are widely used in Machine

Learning applications (Sokolova & Lapalme, 2009). F1 is weighted according to the class weights.

The size of our annotated corpora was 9353 samples for the Twitter task and 5761 articles for the News task. We performed the

evaluation using 10-fold cross validation using a split of 80% of data for training and 20% held out for testing.

Tables 3 and 4 show the results for the two tasks. It can be seen that the neural networks outperformed the baseline methods in all

cases. For both tasks the models trained using FastText vectors outperformed those using GloVe vectors. The best performing model

for the Twitter health classification task was the CNN using FastText, while the RNN using FastText performed best for the news.

The system evaluation, described in the next section, was performed using the CNN trained on FastText vectors, which was the

model selected for use in the app. We opted to use a single model to simplify the architecture, and this model performed best on the

more important Twitter classification task.

8.2. Early warning detection (EWD) evaluation

Evaluation of outbreak detection can be performed using time-to-detection or examination of successful/erroneous alarms. In

general, researchers have evaluated their event detection systems by examining a specific outbreak after they know it has occurred,

and back-testing to check whether their system would have detected it. Examples of such research include using a seasonal flu

outbreak in the US (Li & Cardie, 2013) or a 2011 E. coli outbreak in Germany (Diaz-Aviles et al., 2012).

In the case of SENTINEL there was no prior known event or outbreak that occurred during the data collection period which the

evaluation can be assessed against. Instead the system must be evaluated by determining whether the events detected during this

period are genuine alarms. In order to do this a source of ground truth is required in order to compare our data with actual real-world

events. For this purpose various state and federal level reports have been employed, including CDC data and state-level influenza

monitoring (as described in Section 4.3).

8.2.1. Detected events

Between July 2016 and March 2017 the Event detection algorithm generated 1329 events containing more than 15 tweets, from

more than 10 users. After an initial manual evaluation we took these values as a cutoff to ensure that a minimum number of users

were involved, as events generated with fewer users were almost always spurious. In order to initially further evaluate these events

we used the MAD metric to split them into 4 intervals, generated between: [min, Q1], (Q1, Q2], (Q2, Q3] and (Q3, max], where Q1, Q2

and Q3 are the MAD quartiles. For the current data: min← 0.07,9 Q1← 2.75, Q2← 3.50, Q3← 4.67 and max← 54.25.

Figs. 7–9 give an overview of the event data. Fig. 7 shows that headache, nausea and anxiety generated the greatest number of

events. Figs. 8 and 9 show that more populous states tended to produce more events, with California and Texas having the greatest

number. We also analysed the events by MAD quartile, but this did not reveal any significant patterns in whether certain symptoms or

states were more likely to produce higher or lower confidence events.

Table 3

The accuracies and F1 scores for the Twitter classification models.

Corpora Classification model Feature model Accuracy F1

Twitter Naïve Bayes TF-IDF 0.780 0.735

Twitter SVM TF-IDF 0.823 0.670

Twitter RNN GloVe 0.828 0.831

Twitter RNN FastText 0.850 0.850

Twitter CNN GloVe 0.836 0.833

Twitter CNN FastText 0.854 0.852

Table 4

The accuracies and F1 scores for the News classification models.

Corpora Classification model Feature model Accuracy F1

News Naïve Bayes TF-IDF 0.832 0.814

News SVM TF-IDF 0.901 0.828

News CNN GloVe 0.934 0.934

News CNN FastText 0.939 0.939

News RNN FastText 0.940 0.940

9 For convenience on generating the reports, the min value is set to 0.00 and the first interval becomes (0.00, Q1].
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8.2.2. Evaluation methodology

For the evaluation a sample of these events was manually analysed using the Event Details page contained in the SENTINEL App.

For each event the following questions were examined:

• After reading the tweets contained in the event, what is a good summary of their content?

• Were the hashtags used in the tweets useful when creating this summary?

• Did the relevant tweets selected by our algorithm provide a precis of the overall tweet content?

• How many of the news articles were relevant to the tweet summary?

Fig. 7. Event counts for all symptoms tracked.

Fig. 8. Raw event counts by US State.

Fig. 9. Event counts normalized by State population.
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• Are the bulk of tweets referring to a health event?

• Is there evidence in ground truth data of a health event occurring in this location and time period?

An example of this evaluation is given here for event 133 (flu in Washington state between the 6th and 8th of January 2017). The

time series for this event as displayed in the SENTINEL front-end is shown in Fig. 10, and the most relevant tweets selected by our

algorithm are shown in Table 5 (along with their score which is their cosine similarity to the mean tweet vector as described in

Section 6.2.2). The tweets are mainly complaints about different cold and flu symptoms. There are four hashtags, with one of them

being the highly relevant #flu, and the relevant tweets selected by the algorithm are indeed useful. No news articles were found for

this event. A manual inspection of the event tweets shows them to be genuine illness reports, showing that the health classifier has

worked correctly in this instance.

In order to see if this is a real health event a source of ground truth is required. In this case we consulted the Washington State

Influenza Update for Week 1 of 2017.10 This reveals that there is indeed a spike in influenza activity during this time period, as

evidenced by Fig. 11. This is therefore evidence that SENTINEL has detected a genuine health event.

8.2.3. Qualitative evaluation

Initially 10 events were randomly selected from each MAD quartile for evaluation, with a constraint being that each event within

a quartile should be for a different symptom. From these 40 events the hashtags people used in their tweets were useful in 7 cases,

while the list of relevant tweets were found to be useful in 37 cases. A relevant news article was found in 8 of the sample events. 33 of

the events were determined to be health-related. However, ground truth evidence was found for only one event in this analysis, an

outbreak of flu in AL. Table A.5 presents a summary of the results.

We then examined the events with the highest MAD, to determine if these could be correlated with outbreaks of illness with a

higher confidence. Events with a minimum MAD of 8 and a minimum user count of 25 were examined, excluding anxiety since this

category was found not to produce high quality events (the tweets in these were found to be generalised expressions of stress with no

theme linking them together). 16 events were detected that fulfilled these conditions. 5 of these were found to coincide with

Fig. 10. SENTINEL front-end screenshot showing a flu event in January 2017 detected based on Twitter data. The time series shows the number of

tweets referring to cold and flu symptoms in the state of Washington. The area coloured orange is the period where an alarm was triggered by the

system.

Table 5

Top 5 most important tweets talking about the flu event detected by the EWD system.

Tweet Score

I’m so mad I’ve already lost hella weight and now I’m gonna lose even more because I have the stomach flu 0.3743

Even tho I hate hospitals, i have to feel very lucky that this flu didnt kill me which it would have if I hadn’t ta ... 0.3631

@McNarnia I almost feel like I have the flu even though I got my flu shot. That would be my luck. 0.3554

I’ve had the flu &amp; I’ve been feeling awful for five days but I woke up feeling so much better today 0.3354

Okay I’m *** dying ! Idk if I have food poisoning the flu idk wtf my whole body is aching and I’m shivering UNDER THE BLANKET 0.3312

Fig. 11. Reported Lab confirmed ILI hospitalizations from Spokane county, WA.

10 http://www.doh.wa.gov/Portals/1/Documents/5100/420-100-FluUpdate.pdf
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outbreaks of influenza-like illness (ILI) in their states, all of them being for symptoms of ILI. A further 3 of them coincided with slight

increases in the ILI figures. Others could be potential health events, but were generated for symptoms such as nausea. No ground truth

data could be found for diseases such as gastro-enteritis and therefore these could not be evaluated. These results show that with

these parameters events were much more likely to be significant and backed up by ground truth data. Further work is required to find

methods of mapping non ILI related symptoms to ground truth for evaluation.

8.3. Evaluation of nowcasting model accuracy

In order to evaluate the accuracy of our nowcasting model its predictions must be compared with the actual outcome, i.e. the true

level of the CDC case counts one week later. This evaluation has been conducted and the Mean Absolute Error (MAE) computed for

each disease. The MAE is defined as follows:

∑= −MAE
n

x y
1

i i (1)

Here xi is the predicted value and yi is the actual CDC value for the ith day, with the days numbered from i = 1 up to n.

Our LASSO model incorporating the Twitter data has been evaluated against a baseline ARIMA autoregression model solely based

on the CDC data. The results for each disease are displayed in Table A.6, along with the percentage improvement from the baseline to

our model. The average percentage improvement is 13.469. Incorporating the Twitter data therefore does provide a real improve-

ment over the baseline model.

9. Conclusion and future work

The system currently collects around 1.8 million tweets per day, processes and stores them. On a daily basis it generates events

and associated situational awareness reports. On a weekly basis it downloads CDC data and performs Nowcasting. All areas of the

system are built with reliable open-source technologies that embody the current state of the art in software development.

Evaluation of our results show that the health classifiers are robust and accurate, with the chosen classifier giving an F1 of 0.852

for the Twitter classification task and 0.939 for news classification. These classifiers outperformed the baselines, demonstrating that

deep learning is useful in this sphere of text classification. Our news crawler is retrieving large numbers of health-related articles,

which are being linked to a significant fraction of detected events, although this linkage shows room for improvement. The event

detection evaluation shows that the tools made available on the Event Details page of the App are useful in event evaluation, and that

given suitable filter parameters around 1/3 of detected events were significant enough to be validated by the ground truth data

currently available. Finally the Nowcasting evaluation showed that including our Twitter data provided a 13% boost to Nowcasting

accuracy compared to the baseline.

Future work:

• Incorporating epidemiological models: Extension of the nowcasting to use the information provided by the specific disease

module and epidemiological models. This would allow forecasting disease levels much further into the future.

• Improved News Linkage: Topic modelling such as Latent Dirichlet Allocation (LDA) could be used to identify the main topic of

each news article. This could then be used to facilitate improved linking of news articles and events, ensuring that only those

articles topically referring to the symptom or disease in question are linked.

Acknowledgements

This research was carried out in cooperation with the UK Defence Science and Technology Laboratory, through contract DSTL/

AGR/00728/01. It was funded by the U.S. Department of Defense’s Defense Threat Reduction Agency (DTRA).

Appendix A. Evaluation results

O. Șerban et al. Information Processing and Management 56 (2019) 1166–1184

1180



T
a
b
le

A
.5

Q
u
a
li
ta
ti
v
e
e
v
a
lu
a
ti
o
n
o
f
e
v
e
n
ts
,
sa
m
p
le
d
fr
o
m

v
a
ri
o
u
s
M
A
D

in
te
rv
a
ls
.

E
v
e
n
t
ID

S
y
m
p
to
m

L
o
ca
ti
o
n

M
A
D

/
T
w
e
e
t
C
o
u
n
t
/

U
se
r
C
o
u
n
t

H
u
m
a
n
su
m
m
a
ry

H
a
sh
ta
g
s
u
se
fu
l?

R
e
le
v
a
n
t
tw

e
e
ts

u
se
fu
l?

N
e
w
s
u
se
fu
l?

H
e
a
lt
h
re
la
te
d
?

2
4
0
8

fe
v
e
r

C
A

2
.8
0
/
3
3
/
2
0

P
e
o
p
le

co
m
p
la
in
in
g
a
b
o
u
t
h
ig
h
te
m
p
e
ra
tu
re
s
-
co

ld
/
fl
u
sy
m
p
to
m
s.

N
o

Y
e
s

N
o

Y
e
s

1
9
1
5

it
ch

C
A

3
.2
3
/
2
9
/
1
6

C
o
m
p
la
in
ts

a
b
o
u
t
g
e
n
e
ra
l
it
ch

in
g
-
n
o
sp
e
ci
fi
c
th
e
m
e

N
o

Y
e
s

Y
e
s

Y
e
s

4
4
4
9

co
u
g
h

C
A

2
.7
7
/
5
4
/
3
1

P
e
o
p
le

co
m
p
la
in
in
g
a
b
o
u
t
co

u
g
h
in
g
-
co

ld
/
fl
u
sy
m
p
to
m
s

N
o

Y
e
s

7
/
1
3

Y
e
s

2
2
2
1

sw
e
ll
in
g

U
S

3
.2
7
/
3
3
/
2
1

M
ix
tu
re

o
f
d
iff
e
re
n
t
ty
p
e
s
o
f
in
fl
a
m
m
a
ti
o
n
-
n
o
cl
e
a
r
th
e
m
e

N
o

N
o

4
/
2
2

Y
e
s

4
1
8
4

n
e
ck

p
a
in

N
Y

2
.8
0
/
2
2
/
2
6

M
ix
tu
re

o
f
h
e
a
d
a
ch

e
a
n
d
ca
ff
e
in
e
re
fe
re
n
ce
s

Y
e
s

Y
e
s

n
/
a

N
o

1
1
4
2

d
e
li
ri
u
m

U
S

2
.8
0
/
1
4
5
/
7
4

C
o
m
p
la
in
ts

a
b
o
u
t
in
so
m
n
ia

Y
e
s

Y
e
s

1
/
4

Y
e
s

2
4
1
0

p
n
e
u
m
o
n
ia

U
S

2
.9
5
/
2
9
/
2
1

C
o
m
p
la
in
ts

a
b
o
u
t
fl
u

N
o

Y
e
s

N
o

Y
e
s

2
6
5
2

h
e
a
d
a
ch

e
N
V

2
.8
8
/
3
6
/
2
0

C
o
m
p
la
in
ts

a
b
o
u
t
h
e
a
d
a
ch

e
/
m
ig
ra
in
e

N
o

Y
e
s

n
/
a

Y
e
s

3
6
5
4

a
p
n
e
a

T
X

2
.8
8
/
1
8
/
1
4

C
h
a
tt
e
r
a
b
o
u
t
ca
ff
e
in
e

N
o

Y
e
s

N
o

N
o

1
1
8
3

g
e
n
e
ri
c
d
ru
g
s

P
A

3
.2
9
/
3
3
/
2
1

C
h
a
tt
e
r
a
b
o
u
t
d
iff
e
re
n
t
d
ru
g
s,

in
cl
u
d
in
g
a
lc
o
h
o
l.
C
o
u
ld

b
e
re
la
te
d
to

4
th

Ju
ly

ce
le
b
ra
ti
o
n
s.

N
o

Y
e
s

n
/
a

N
o

4
6
9
3

tr
e
m
o
r

T
X

4
.8
5
/
4
3
/
1
9

V
a
ri
o
u
s
u
n
re
la
te
d
u
se
s
o
f
th
e
w
o
rd

sh
a
k
e

N
o

Y
e
s

n
/
a

N
o

5
4
2
4

co
u
g
h

C
A

4
.8
7
/
5
3
/
3
2

C
o
m
p
la
in
ts

a
b
o
u
t
co

u
g
h
in
g

N
o

Y
e
s

n
/
a

Y
e
s

3
6
3
5

a
n
x
ie
ty

A
L

4
.7
9
/
5
1
/
4
5

L
o
ts

o
f
p
e
o
p
le

sa
y
in
g
th
e
y
’r
e
co

n
fu
se
d

N
o

Y
e
s

N
o

N
o

2
3
1
0

co
m
m
o
n
co

ld
A
Z

7
.0
0
/
1
8
/
1
6

C
o
m
p
la
in
s
a
b
o
u
t
co

ld
/
fl
u
sy
m
p
to
m
s
-
st
re
p
th
ro
a
t

N
o

Y
e
s

N
o

Y
e
s

2
7
6
9

n
a
u
se
a

M
O

5
.0
0
/
1
7
/
1
5

C
o
m
p
la
in
ts

a
b
o
u
t
g
e
n
e
ra
l
u
n
w
e
ll
n
e
ss

N
o

Y
e
s

n
/
a

Y
e
s

6
2
0

fl
u

A
L

1
9
.5
/
3
4
/
3
0

C
o
m
p
la
in
ts

a
b
o
u
t
h
a
v
in
g
th
e
fl
u

N
o

Y
e
s

1
/
5

Y
e
s

5
6
2
0

a
st
h
m
a

U
S

7
.8
5
/
5
1
/
3
8

C
o
m
p
la
in
ts

a
b
o
u
t
a
st
h
m
a

Y
e
s

Y
e
s

n
/
a

Y
e
s

4
0
4
7

co
n
ju
n
ct
iv
it
is

C
A

5
.8
3
/
3
5
/
2
9

C
o
m
p
la
in
s
a
b
o
u
t
re
d
so
re

e
y
e
s,

so
m
e
re
d
e
y
e
fl
ig
h
ts

N
o

Y
e
s

n
/
a

Y
e
s

2
5
4
6

a
b
d
o
m
in
a
l
p
a
in

T
X

5
.0
9
/
2
0
/
2
3

C
o
m
p
la
in
ts

a
b
o
u
t
st
o
m
a
ch

a
ch

e
s

N
o

Y
e
s

n
/
a

Y
e
s

7
6
4

sw
e
ll
in
g

U
S

5
.8
3
/
4
4
/
2
5

C
o
m
p
la
in
ts

a
b
o
u
t
sw

e
ll
in
g
a
n
d
in
fl
a
m
m
a
ti
o
n

N
o

Y
e
s

n
/
a

Y
e
s

2
8
5

a
b
d
o
m
in
a
l
p
a
in

C
A

2
.1
0
/
1
6
/
1
9

A
co

m
b
in
a
ti
o
n
o
f
p
e
o
p
le

co
m
p
la
in
in
g
a
b
o
u
t
a
b
d
o
m
in
a
l
p
a
in
,
h
e
a
d
a
ch

e
s

a
n
d
fl
u
sy
m
p
to
m
s

n
/
a

Y
e
s

n
/
a

Y
e
s

7
2
7

n
a
u
se
a

A
Z

3
.5
0
/
3
6
/
2
1

U
se
rs

co
m
p
la
in
in
g
a
b
o
u
t
b
e
in
g
il
l

n
/
a

N
o

Y
e
s

Y
e
s

1
2
1
3

a
rt
h
ri
ti
s

U
S

3
.6
1
/
9
0
/
5
7

T
w
e
e
ts

a
b
o
u
t
ch

e
st

p
a
in
,
a
rt
h
ri
ti
s
a
n
d
b
o
d
y
a
ch

e
s

1
/
4

3
/
5

n
/
a

Y
e
s

1
2
1
3

a
rt
h
ri
ti
s

U
S

3
.6
1
/
9
0
/
5
7

T
w
e
e
ts

a
b
o
u
t
ch

e
st

p
a
in
,
a
rt
h
ri
ti
s
a
n
d
b
o
d
y
a
ch

e
s

1
/
4

3
/
5

n
/
a

Y
e
s

1
2
2
9

p
a
le

sk
in

C
A

3
.5
0
/
2
3
/
2
4

A
co

m
b
in
a
ti
o
n
o
f
p
e
o
p
le

tw
e
e
ti
n
g
a
b
o
u
t
a
lc
o
h
o
l
p
o
is
o
n
in
g
a
n
d
sk
in

ra
sh
e
s

n
/
a

3
/
5

n
/
a

Y
e
s

2
3
1
8

d
e
li
ri
u
m

N
Y

3
.5
0
/
1
9
/
1
3

T
w
e
e
ts

a
b
o
u
t
in
so
m
n
ia

Y
e
s

Y
e
s

n
/
a

Y
e
s

2
4
4
7

tr
e
m
o
r

C
A

3
.5
0
/
2
7
/
1
9

T
w
e
e
ts

a
b
o
u
t
p
e
o
p
le

sh
iv
e
ri
n
g
fo
r
v
a
ri
o
u
s
re
a
so
n
s

N
o

Y
e
s

n
/
a

N
o

2
7
0
7

fl
u

F
L

1
.5
0
/
2
3
/
1
2

P
e
o
p
le

co
m
p
la
in
in
g
a
b
o
u
t
th
e
fl
u

N
o

Y
e
s

Y
e
s

Y
e
s

2
7
6
8

co
m
m
o
n
co

ld
C
A

3
.5
0
/
1
6
/
1
2

P
e
o
p
le

tw
e
e
ti
n
g
th
e
ir

co
ld

sy
m
p
to
m
s

n
/
a

Y
e
s

n
/
a

Y
e
s

2
9
6
5

g
e
n
e
ri
c
d
ru
g
s

G
A

3
.5
0
/
2
0
/
1
1

U
se
rs

tw
e
e
ti
n
g
a
b
o
u
t
a
ll
e
rg
ie
s
a
n
d
v
a
ri
o
u
s
d
ru
g
s

n
/
a

Y
e
s

n
/
a

Y
e
s

3
0
9
0

b
le
e
d
in
g

U
S

4
.0
0
/
1
1
4
/
6
4

S
o
m
e
o
f
th
e
tw

e
e
ts
a
re

sa
rc
a
st
ic
,
b
u
t
m
o
st
o
f
th
e
m

a
re

a
b
o
u
t
u
se
rs

tw
e
e
ti
n
g

a
b
o
u
t
b
le
e
d
in
g
sy
m
p
to
m
s

N
o

Y
e
s

N
o

Y
e
s

3
4
1
5

h
e
a
d
a
ch

e
A
L

0
.9
7
/
2
7
/
1
2

U
se
rs

tw
e
e
ti
n
g
a
b
o
u
t
th
e
ir

m
ig
ra
in
e
s

n
/
a

Y
e
s

2
/
1
5

Y
e
s

3
5
0
7

co
m
m
o
n
co

ld
U
S

0
.5
2
/
1
2
1
/
5
5

P
e
o
p
le

tw
e
e
ti
n
g
th
e
ir

co
ld

sy
m
p
to
m
s

N
o

Y
e
s

N
o

Y
e
s

3
6
6
0

co
u
g
h

P
A

3
.8
2
/
2
0
/
1
5

P
e
o
p
le

tw
e
e
ti
n
g
a
b
o
u
t
th
e
m

co
u
g
h
in
g

n
/
a

Y
e
s

n
/
a

Y
e
s

3
7
6
8

fe
v
e
r

C
A

0
.7
2
/
3
5
/
2
6

P
e
o
p
le

tw
e
e
ti
n
g
h
a
v
in
g
a
fe
v
e
r

n
/
a

Y
e
s

1
/
2
0

Y
e
s

3
9
9
7

d
ia
rr
h
e
a

U
S

2
.2
7
/
4
4
/
2
7

U
se
rs

sw
e
a
ri
n
g
a
n
d
co

m
p
la
in
in
g
a
b
o
u
t
d
ia
rr
h
e
a

N
o

N
o

N
o

N
o

4
4
6
9

b
le
e
d
in
g

C
A

1
.3
3
/
2
6
/
2
0

P
e
o
p
le

tw
e
e
ti
n
g
a
b
o
u
t
b
le
e
d
in
g

n
/
a

Y
e
s

N
o

Y
e
s

4
7
4
7

a
rt
h
ri
ti
s

C
A

1
.7
5
/
1
6
/
1
1

T
w
e
e
ts

a
b
o
u
t
ch

e
st

p
a
in
,
a
rt
h
ri
ti
s
a
n
d
b
o
d
y
a
ch

e
s

n
/
a

Y
e
s

N
o

Y
e
s

4
8
0
8

tr
e
m
o
r

T
X

1
.0
0
/
2
4
/
1
2

T
w
e
e
ts

a
b
o
u
t
p
e
o
p
le

sh
iv
e
ri
n
g
fo
r
v
a
ri
o
u
s
re
a
so
n
s

Y
e
s

Y
e
s

N
o

Y
e
s

5
3
6
4

d
e
li
ri
u
m

C
A

0
.9
1
/
1
6
/
1
1

T
w
e
e
ts

a
b
o
u
t
in
so
m
n
ia

n
/
a

Y
e
s

n
/
a

Y
e
s

5
4
6
0

fl
u

T
X

3
.7
6
/
6
/
3
9

P
e
o
p
le

co
m
p
la
in
in
g
a
b
o
u
t
th
e
ir

fl
u
sy
m
p
to
m
s

Y
e
s

Y
e
s

n
/
a

Y
e
s

O. Șerban et al. Information Processing and Management 56 (2019) 1166–1184

1181



Supplementary material

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ipm.2018.04.011

References

Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., et al. (2016). Tensorflow: A system for large-scale machine learning. In Osdi (pp. 265–283). (vol. 16).

Abdelhaq, H., Sengstock, C., & Gertz, M. (2013). Eventweet: Online localized event detection from twitter. Proceedings of the VLDB Endowment, 6(12), 1326–1329.

Aggarwal, C. C., & Subbian, K. (2012). Event detection in social streams. Sdm12. Sdm SIAM624–635.

Aho, A. V., & Corasick, M. J. (1975). Efficient string matching: An aid to bibliographic search. Communications of the ACM, 18(6), 333–340.

Aramaki, E., Maskawa, S., & Morita, M. (2011). Twitter catches the flu: Detecting influenza epidemics using twitter. Proceedings of the conference on empirical methods in

natural language processing. Stroudsburg, PA, USA: Association for Computational Linguistics1568–1576 EMNLP ’11

Bansal, P., Bansal, R., & Varma, V. (2015). Towards deep semantic analysis of hashtags. European conference on information retrieval. Springer453–464.

Bodnar, T., & Salathé, M. (2013). Validating models for disease detection using twitter. Proceedings of the 22nd international conference on world wide web companion.

Republic and Canton of Geneva, Switzerland: International World Wide Web Conferences Steering Committee699–702 WWW ’13 Companion.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2016). Enriching word vectors with subword information. arXiv:1607.04606.

Bollacker, K., Evans, C., Paritosh, P., Sturge, T., & Taylor, J. (2008). Freebase: A collaboratively created graph database for structuring human knowledge. Proceedings of the

2008 acm sigmod international conference on management of data. AcM1247–1250.

Brownstein, J. S., Freifeld, C. C., Reis, B. Y., & Mandl, K. D. (2008). Surveillance sans frontieres: Internet-based emerging infectious disease intelligence and the

healthmap project. PLoS Med, 5, e151.

Charles-Smith, L. E., Reynolds, T. L., Cameron, M. A., Conway, M., Lau, E. H., Olsen, J. M., et al. (2015). Using social media for actionable disease surveillance and

outbreak management: A systematic literature review. PloS one, 10(10).

Chierichetti, F., Kleinberg, J., Kumar, R., Mahdian, M., & Pandey, S. (2014). Event detection via communication pattern analysis. Eighth international AAAI conference on

weblogs and social media (icwsm)51–60.

Collier, N., Son, N. T., & Nguyen, N. M. (2011). Omg u got flu? Analysis of shared health messages for bio-surveillance. Journal Biomedical Semantics, 2(S-5), S9.

Culotta, A. (2010). Detecting influenza outbreaks by analyzing twitter messages. arXiv:1007.4748.

Table A.6

Nowcasting mean absolute error per disease.

Disease LASSO ARIMA Percentage difference

Babesiosis 0.25 0.325 23.235

Campylobacteriosis 5.287 6.165 14.250

Chlamydia trachomatis infection 122.018 126.673 3.675

Coccidioidomycosis 1.039 1.069 2.772

Cryptosporidiosis 3.556 3.702 3.942

Dengue 0.006 0.012 46.667

Ehrlichiosis anaplasmosis anaplasma phagocytophilum 0.562 0.628 10.522

Ehrlichiosis anaplasmosis ehrlichia chaffeensis 0.292 0.322 9.113

Ehrlichiosis anaplasmosis undetermined 0.022 0.036 36.957

Giardiasis 2.125 2.275 6.578

Gonorrhea 38.01 39.944 4.844

Haemophilus influenzae invasive all ages all serotypes 0.583 0.641 9.025

Hepatitis viral acute type A 0.436 0.486 10.366

Hepatitis viral acute type B 0.363 0.419 13.444

Hepatitis viral acute type C 0.231 0.305 24.316

Invasive pneumococcal disease age < 5 0.208 0.228 8.537

Invasive pneumococcal disease all ages 1.753 1.76 0.401

Legionellosis 0.996 1.085 8.191

Lyme disease 3.176 4.23 24.911

Malaria 0.358 0.383 6.452

Meningococcal disease invasive all serogroups 0.073 0.093 21.667

Mumps 1.787 1.81 1.268

Pertussis 1.841 1.924 4.274

Rabies animal 0.746 0.838 10.964

Rubella 0.003 0.006 50.000

Salmonellosis 6.077 6.996 13.130

Shiga toxin producing E.coli stec 1.046 1.155 9.429

Shigellosis 2.277 2.472 7.893

Spotted fever rickettsiosis confirmed 0 0 0.000

Spotted fever rickettsiosis including RMSF confirmed 0.023 0.031 25.000

Spotted fever rickettsiosis including RMSF probable 0.599 0.765 21.695

Spotted fever rickettsiosis probable 0.008 0.012 33.333

Syphilis primary and secondary 1.196 1.296 7.771

Tetanus 0.026 0.021 -25.926

Varicella chickenpox 1.039 1.076 3.510

Vibriosis 0.373 0.426 12.422

West nile virus disease neuroinvasive 0.034 0.035 4.348

West nile virus disease non-neuroinvasive 0.003 0.005 42.857

O. Șerban et al. Information Processing and Management 56 (2019) 1166–1184

1182

https://doi.org/10.1016/j.ipm.2018.04.011
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0001
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0002
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0003
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0004
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0004
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0005
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0006
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0006
http://arxiv.org/abs/1607.04606
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0007
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0007
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0008
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0008
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0009
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0009
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0010
http://arxiv.org/abs/1007.4748


Davis, C. A., Ciampaglia, G. L., Aiello, L. M., Chung, K., Conover, M. D., Ferrara, E., et al. (2016). Osome: The iuni observatory on social media. PeerJ Computer Science,

2, e87.

Diaz-Aviles, E., Stewart, A., Velasco, E., Denecke, K., & Nejdl, W. (2012). Epidemic intelligence for the crowd, by the crowd. ICWSM, 12, 439–442.

Dong, X., Mavroeidis, D., Calabrese, F., & Frossard, P. (2015). Multiscale event detection in social media. Data Mining and Knowledge Discovery, 29(5), 1374–1405.

Dou, W., Wang, X., Skau, D., Ribarsky, W., & Zhou, M. X. (2012). Leadline: Interactive visual analysis of text data through event identification and exploration. Visual

analytics science and technology (vast), 2012 ieee conference on. IEEE93–102.

Dredze, M., Cheng, R., Paul, M. J., & Broniatowski, D. (2014). Healthtweets. org: A platform for public health surveillance using twitter. AAAI conference on artificial

intelligence. Citeseer593–596.

Eysenbach, G. (2009). Infodemiology and infoveillance: Framework for an emerging set of public health informatics methods to analyze search, communication and

publication behavior on the internet. Journal of Medical Internet Research, 11(1).

Ginsberg, J., Mohebbi, M., Patel, R., Brammer, L., Smolinski, M., & Brilliant, L. (2009). Detecting influenza epidemics using search engine query data. Nature, 457,

1012–1014 doi:10.1038/nature07634.

Greenwood, S., Perrin, A., & Duggan, M. (2016). Social media update 2016. Pew Research Center, 11.

Guerrisi, C., Turbelin, C., Blanchon, T., Hanslik, T., Bonmarin, I., Levy-Bruhl, D., et al. (2016). Participatory syndromic surveillance of influenza in europe. The Journal

of Infectious Diseases, 214(suppl_4), S386–S392.

Halevy, A., Rajaraman, A., & Ordille, J. (2006). Data integration: The teenage years. Proceedings of the 32nd international conference on very large data bases. VLDB

Endowment9–16.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural Computation, 9(8), 1735–1780.

Hutwagner, M. L., Thompson, M. W., Seeman, G. M., & Treadwell, T. (2003). The bioterrorism preparedness and response early aberration reporting system (ears).

Journal of Urban Health, 80(1), i89–i96.

Ji, X., Chun, S. A., & Geller, J. (2012). Epidemic outbreak and spread detection system based on twitter data. Health information science. Springer152–163.

Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv:1408.5882.

Kleppmann, M., & Kreps, J. (2015). Kafka, samza and the unix philosophy of distributed data. IEEE Data Engineering Bulletin, 38(4), 4–14.

Krumm, J., & Horvitz, E. (2015). Eyewitness: Identifying local events via space-time signals in twitter feeds. Proceedings of the 23rd sigspatial international conference on

advances in geographic information systems. ACM20.

Lamb, A., Paul, M. J., & Dredze, M. (2013). Separating fact from fear: Tracking flu infections on twitter. Proceedings of the 2013 conference of the north american chapter of

the association for computational linguistics: Human language technologies. Atlanta, Georgia: Association for Computational Linguistics789–795.

Lampos, V., & Cristianini, N. (2010). Tracking the flu pandemic by monitoring the social web. Cognitive information processing (cip), 2010 2nd international workshop on.

IEEE411–416.

Lampos, V., & Cristianini, N. (2012). Nowcasting events from the social web with statistical learning. ACM Transactions on Intelligent Systems and Technology (TIST),

3(4), 72.

Lampos, V., De Bie, T., & Cristianini, N. (2010). Flu detector-tracking epidemics on twitter. Machine learning and knowledge discovery in databases. Springer599–602.

Lee, K., Agrawal, A., & Choudhary, A. (2013). Real-time disease surveillance using twitter data: demonstration on flu and cancer. Proceedings of the 19th acm sigkdd

international conference on knowledge discovery and data mining. ACM1474–1477.

Lee, K., Agrawal, A., & Choudhary, A. (2015). Mining social media streams to improve public health allergy surveillance. Advances in social networks analysis and mining

(asonam), 2015 ieee/acm international conference on. IEEE815–822.

Leetaru, K., Wang, S., Cao, G., Padmanabhan, A., & Shook, E. (2013). Mapping the global twitter heartbeat: The geography of twitter. First Monday, 18(5).

Li, J., & Cardie, C. (2013). Early stage influenza detection from twitter. arXiv:1309.7340.

Liu, Y., Kliman-Silver, C., & Mislove, A. (2014). The tweets they are a-changin: Evolution of twitter users and behavior. Icwsm30. Icwsm 5–314.

Marcus, A., Bernstein, M. S., Badar, O., Karger, D. R., Madden, S., & Miller, R. C. (2011). Twitinfo: Aggregating and visualizing microblogs for event exploration. Proceedings

of the sigchi conference on human factors in computing systems. ACM227–236.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:1301.3781.

Nagar, R., Yuan, Q., Freifeld, C. C., Santillana, M., Nojima, A., Chunara, R., et al. (2014). A case study of the New York city 2012–2013 influenza season with daily

geocoded twitter data from temporal and spatiotemporal perspectives. Journal of Medical Internet Research, 16(10).

Paul, M. J., Dredze, M., & Broniatowski, D. (2014). Twitter improves influenza forecasting. PLOS Currents Outbreaks.

Paul, M. J., Sarker, A., Brownstein, J. S., Nikfarjam, A., Scotch, M., Smith, K. L., et al. (2016). Social media mining for public health monitoring and surveillance.

Biocomputing 2016: Proceedings of the pacific symposium. World Scientific468–479.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in python. Journal of Machine Learning

Research, 12, (Oct),2825–2830.

Peña-Araya, V., Quezada, M., Poblete, B., & Parra, D. (2017). Gaining historical and international relations insights from social media: Spatio-temporal real-world news

analysis using twitter. EPJ Data Science, 6(1), 25.

Pennington, J., Socher, R., & Manning, C. D. (2014). Glove: Global vectors for word representation. Empirical methods in natural language processing (emnlp)1532–1543.

Sadilek, A., Brennan, S., Kautz, H., & Silenzio, V. (2013). nemesis: Which restaurants should you avoid today? First AAAI conference on human computation and crowd-

sourcing.

Sadilek, A., Kautz, H. A., & Silenzio, V. (2012). Modelling spread of disease from social interactions. In sixth AAAI international conference on weblogs and social media

(icwsm)322–329.

Sadilek, A., Kautz, H. A., & Silenzio, V. (2012). Predicting disease transmission from geo-tagged micro-blog data. AAAI136–142.

Sakaki, T., Okazaki, M., & Matsuo, Y. (2013). Tweet analysis for real-time event detection and earthquake reporting system development. IEEE Transactions on

Knowledge and Data Engineering, 25(4), 919–931.

Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., & Brownstein, J. S. (2015). Combining search, social media, and traditional data sources to

improve influenza surveillance. PLoS Computational Biology, 11(10), e1004513.

Santos, J. C., & Matos, S. (2014). Analysing twitter and web queries for flu trend prediction. Theoretical Biology and Medical Modelling, 11(1), S6.

Sheth, A., Jadhav, A., Kapanipathi, P., Lu, C., Purohit, H., Smith, G. A., et al. (2014). Twitris: A system for collective social intelligence. Encyclopedia of social network

analysis and mining. Springer2240–2253.

Sloan, L., & Morgan, J. (2015). Who tweets with their location? understanding the relationship between demographic characteristics and the use of geoservices and

geotagging on twitter. PLoS ONE, 10(11), e0142209.

Sokolova, M., & Lapalme, G. (2009). A systematic analysis of performance measures for classification tasks. Information Processing & Management, 45(4), 427–437.

Sparck Jones, K. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of Documentation, 28(1), 11–21.

Thapen, N., Simmie, D., & Hankin, C. (2016). The early bird catches the term: Combining twitter and news data for event detection and situational awareness. Journal

of Biomedical Semantics, 7(1), 61.

Thapen, N., Simmie, D., Hankin, C., & Gillard, J. (2016). Defender: Detecting and forecasting epidemics using novel data-analytics for enhanced response. PloS one,

11(5), e0155417.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 267–288.

Tumeo, A., Villa, O., & Chavarria-Miranda, D. G. (2012). Aho-corasick string matching on shared and distributed-memory parallel architectures. IEEE Transactions on

Parallel and Distributed Systems, 23(3), 436–443.

Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: a simple and general method for semi-supervised learning. Proceedings of the 48th annual meeting of the

association for computational linguistics. Association for Computational Linguistics384–394.

Walther, M., & Kaisser, M. (2013). Geo-spatial event detection in the twitter stream. Advances in information retrieval. Springer356–367.

Watanabe, K., Ochi, M., Okabe, M., & Onai, R. (2011). Jasmine: A real-time local-event detection system based on geolocation information propagated to microblogs.

O. Șerban et al. Information Processing and Management 56 (2019) 1166–1184

1183

http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0011
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0012
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0013
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0013
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0014
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0014
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0015
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0015
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0016
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0016
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0017
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0018
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0018
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0019
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0020
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0020
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0021
http://arxiv.org/abs/1408.5882
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0022
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0023
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0023
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0024
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0024
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0025
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0025
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0026
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0026
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0027
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0028
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0028
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0029
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0029
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0030
http://arxiv.org/abs/1309.7340
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0031
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0032
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0032
http://arxiv.org/abs/1301.3781
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0033
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0033
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0034
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0035
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0035
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0036
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0036
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0037
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0038
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0038
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0039
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0039
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0040
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0041
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0041
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0042
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0042
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0043
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0044
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0044
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0045
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0045
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0046
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0047
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0048
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0048
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0049
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0049
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0050
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0051
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0051
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0052
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0052
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0053


Proceedings of the 20th acm international conference on information and knowledge management. New York, NY, USA: ACM2541–2544. http://dx.doi.org/10.1145/

2063576.2064014 CIKM ’11

Wu, X., Zhu, X., Wu, G.-Q., & Ding, W. (2014). Data mining with big data. IEEE Transactions on Knowledge and Data Engineering, 26(1), 97–107.

Yu, H., Ho, C., Juan, Y., & Lin, C. (2013). Libshorttext: A library for short-text classification and analysis. Rapport interne, Department of Computer Science Software

available at http://www.csie.ntu.edu.tw/~cjlin/libshorttext

Zubiaga, A., Spina, D., Amigó, E., & Gonzalo, J. (2012). Towards real-time summarization of scheduled events from twitter streams. Proceedings of the 23rd acm conference on

hypertext and social media. ACM319–320.

O. Șerban et al. Information Processing and Management 56 (2019) 1166–1184

1184

http://dx.doi.org/10.1145/2063576.2064014
http://dx.doi.org/10.1145/2063576.2064014
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0055
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0056
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0056
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0057
http://refhub.elsevier.com/S0306-4573(17)30344-8/sbref0057

	Real-time processing of social media with SEN&#132;T&#132;I&#132;NEL: A syndromic surveillance system incorporating deep learning for health classification
	Introduction
	Related work
	System overview
	Data acquisition &#x0026; management
	Twitter data
	News data
	CDC data
	Data characteristics

	System architecture
	Back-end: components and algorithms
	Twitter and news processing pipelines
	Location resolver
	Text processing
	Assigning symptoms
	Machine learning classification
	Aggregator

	Event detection pipeline
	Event detection
	Situational awareness
	News linking

	Nowcasting

	Front-end: SENTINEL app
	Evaluation
	Classifier evaluation
	Early warning detection (EWD) evaluation
	Detected events
	Evaluation methodology
	Qualitative evaluation

	Evaluation of nowcasting model accuracy

	Conclusion and future work
	Acknowledgements
	Evaluation results
	Supplementary material
	References


